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Introduction

In the past few years the shallow water equations have become popular
tools for use in research on surface runoff problems. Many mathematically
minded engineers have been intrigued by the possibility of integrating these
equations to obtain rational hydrographs. Implicit in the use of these equa-
tions is the objective of synthesizing the surface runoff component of a
watershed as a distributed, nonlinear system. Although the shallow water
equations are perhaps the most complex formulation of the physics of the
problem that can be handled conveniently, the many idealizations necessary
in their derivation prevent the solutions from conforming to reality. On
the other hand, the equations indicate important parameters and the general
form of the solution.

The basic component of mathematical models describing surface runoff is
an overland flow plamne discharging into a channel as shown in Figure 1. Un-
steady, spatially varied flow over the plane surface is described by the
shallow water equations:

h 3h du _
at tu X th ox (1)
2u 2u oh _ - . au
at T UG T B g~ 88, -8 -7y (2)
where h = depth (dimensions of length, L),
u = velocity (L/T),
t = time (dimensions of time, T),
®x = horizontal distance (L),
q = lateral inflow (L3/TL2),
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FIG. | OVERLAND FLOW PLANE DISCHARGING INTO A WIDE REC-
TANGULAR CHANNEL

g = acceleration of gravity (L/T2),

S = the channel oxr plane slope (L/L), and

o
g = the "friction slope" defined (in this paper) by the Chezy equa-
2
tion Sf = E%E where C is an empirical constant. The Manning

equation could alsc be used.

The system forms two simultaneous equations in the dependent variables, h and
u, as functions of the independent variables, x and t. DBecause the equations
are nonlinear, the solutions usually must be carried out on a digital computer.

A similar form of the shallow water equations exists for flow in chan-
nels. These equations can be made as complex as desired within the general

framework of shallow water theory, That is, the plane or channel may be
warped; the lateral inflow may be a function of space and time and can
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also be varied to account for infiltration; several types of boundary condi-
tions are suitable; and the friction relationship can take a number of dif-
ferent forms. However, all of these variations cannot be made to account for
the many natural variations in a drainage area in any practical way. On the
other hand, the shallow water equations do account for the physics of the
surface runoff process much better than any of. the previous methods, either
theoretical or empirical. -

The Runoff Process

It is obvious even to the casual observer that continuous sheet flow,
which is assumed as the basis for derivation of the shallow water equations,
does not occur in nature. On natural surfaces, water forms rivulets which
join in a branching pattern. Obstacles such as grass, pebbles, and natural
debris significantly disturb the flow. Even when the surface is paved the
flow is discontinuous, the discontinuities being caused by a friction-slope
instability or by surface tension. In the early stages of channel flow many
of the same anomalies are present. Only after an appreciable flow has col-
lected in a channel does it appear that the assumptions upon which the
derivation is based are wvalid.

The definition of the frictional resistance to flow is an extremely
difficult problem. The flow regime may vary from laminar to turbulent as a
function of distance and time depending on variations in depth of flow,
geometry of the roughness elements and disturbance by raindrop impact,
Manning's or Chezy's empirical equations have commonly been used to define
frictional resistance, usually with the recognition that their application
is rather tenuous in the case of overland flow. Indeed it might be more
realistic teo describe the relation between velocity and depth by a para-
metric model of the form cited by Wooding [4].

u = uhn_l

where o and n are merely parameters to be optimized to obtain the best fit of
computed and observed hydrographs according to some specified criterion.
These optimized parameters could then be correlated with physical properties
of the surface, A more detailed approach such as that of Harbaugh and Chow
[2] results in an increase in the number of parameters with the associated
problem of physical interpretation and estimation.

The Definition of Significant Parameters

It is useful to write the shallow water equations in dimensionless form.
Dimensionless variables are defined by dividing each variable by physically
significant normalizing quantities having the same dimensions:

S S W
x*_L :t*"'L :u"‘v H '"'H sq*_
o] o Q o o Q

Using these definitions in equations (1) and (2) there results [3,6]:
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+ u +h, — =g (3)
BE* ® Bx* * ax, *®
2
au* . au* . 1 Bh* K1 u *) U, @
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ot * Bx* FO 0K, h* I h*

The two dimensionless parameters appearing in these equations are:

Vo S0 L0
F = and k = =77~
© #gHo ¥ oHo

FD is a Froude number based upon the reference quantities. The other number,

k (called the kinematic f£low number in this paper),! indicates the importance
of slope and friction and is very significant in the solution of the equations.
Solutions to equations (3) and (4) with a step fumction lateral inflow

are shown in Figure 2 for an F0 of 1 and a variable k. As k becomes large,

the dynamic solution approaches the kinematic wave solution [6]. Under
these conditions slope and friction dominate the dynamic effect and as
k + = equation {(4) reduces to

u,? = h (5)

The solution to the simultaneous equations (3) and (5) can be obtained
analytically for a step function lateral inflow [4,6]

Q, =u h

3;2 .,
wtx = by 3 0 < ¢t

21 (6)

|
=
=

Q*" <t

This solution is independent of the parameters Fo and k.

An examination of Figure 2 shows that when k > 20 the kinematic wave
approximation is very good indeed. For many overland flow problems the
kinematic flow number is well over 1,000 in which case the solutions would be
practically indistinguishable. This is fortunate because as k becomes large
the dynamic equatiom is poorly posed and numerical solution becomes very dif-
ficult. Although numerical solution of the kinematic wave equations is not
trivial, it is not as difficult as the solution of the complete equations
and, furthermore, analytic solutions are attainable in many cases.

Dy, D. L. Brakensiek at the Annual Meeting of the American Geophysical
Union, April 1967, suggested the term "kinematic wave number." Because the
phrase "wave number" has a quite different connotation, the writers prefer
the indicated terminology.
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FIG. 2 THE RISING HYDROGRAPH - VARIATION WITH &

Equation (6) represents the dimensionless rising hydrograph for kinematic
flow without reference to the particular problem, given that the lateral in-
flow can be represented by a step function. Similar solutions can be obtained
for other input patterns such as single pulses of varying lengths or a series
of pulses of varying length or intensity. Because the problem is nonlinear,
superposition cannot be used and the response to any particular input pattern
is unique. In a recent paper, J. C. I. Dooge [1] states that the kinematic
wave formulation appears to be a special case of what he has called uniformly
nonlinear models~-a class of nonlinear models consisting of a series of non-
linear elements all of which are nonlinear to the same degree, The implica-
tions of this observation are not presently apparent and this appears to be
a good area for further research.

The equations describing flow per unit width in a wide rectangular chan-
nel receiving inflow from a plane are identical to equations (3) and (4) if
the dimensionless variables are defined as follows:

X uy b q1b;
Fan Ty P Yex Ty 0 By = Hy * Y T E;f;
tVl t v
and = 0
L; AL
o
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LOV1
ing quantities, the Froude number and the kinematic flow number, are as pre-
vously defined except they refer to the channel rather than to the plane.

The parameter X is a time scale and can be computed for any particular case
in terms of the geometry and roughness-as

where } = is the ratio of the characteristic times. The other normaliz-—

L co2 by s \1/3
M= PRCEIETET

where CO and C are the Chezy coefficients for the plane and the channel,

respectively. This definition of a time scale corresponds very closely to
that used by Wooding [4] and has the same significance. A small value of A
indicates a very short channel which will have very little effect on the
hydrograph. As X becomes larger, the channel effects become more Important.

If one considers the case where the lateral inflow to a channel such as
shown in Figure 1 is the kinematic response of a plane to a step input,
equation (3) becomes

a h** N 3 h** . n d Ugu Gt )3/2 0 <t <1/ o
u e —— H
3ty *h 3 x, % 9 X ki » K&
=13 /A 2t,,

when the expression u 2 =-h is substituted into (7) we obtain

e ek
8 h 9 h
Sk 3 1/2 s 3/2
+ = h = (A t,,) (8)
d by, 2 ¥ 3 X, *k
which can be reduced to the ordinary differential equation
dh
dee 3/2
T - (ot 3 0 < by, < 1/2 (9)
%k
=1 s L/h <t
in the characteristic direction defined by
dx
%%k 3 172
= =h (10)
dt,.. 2 R

The solution plane for this problem is shown in Figure 3. The expression
for the rising hydrograph can be obtained analytically for 0 < t, < ta
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where
3 2 1/2 4 1 3/2 2/3
=3+ 11- G GG

Equations (9) and (10) cannot be integrated analytically from a point on
the upstream boundary (0,t0) where £, < 1/x (Figure 3) so the discharge over

the interval t; < t,, < t3 must be obtained by numerical integration.

(Wooding [4,5] obtained analytical expressions for all segments because he
used the linear friction relationship u = ah for overland flow.)

The kinematic rising hydrograph for a channel receiving kinematic
lateral inflow from a plane with a step-function input is shown for one value
of the parameter A in Figure 4. Also in Figure 4 the kinematic solution is
compared with the dynamic solution for the parameter values F0 =1, k=25

computed by the method of characteristics. As the time ratio, )\, becomes
large in such dimensionless plots the lateral inflow curve will approach a
step input and the effects of the plane will be negligible.
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FIGURE 4 DYNAMIC RISING HYDROGRAPH

The rerouting of overland flow through a channel as illustrated in
Figure 4 has some important implications in the interpretation of experimental
overland flow data. These data commonly show an inflection point on the ris-
ing hydrograph and there is often a considerable time lag before measurable
outflow occurs. These data do not necessarily indicate that the kinematic
approximation is not a good one, because both effects can be obtained by
rerouting a kinematic outflow from a plane through a short reach of channel
as shown in Figure 4. Such rerouting is a physical fact in experiments where
the outflow is concentrated for measuring purposes.

Possibilities for Further Research

Research into the application of the shallow water equations in hydrology
must follow certain logical steps if the physical significance of the equa-
tions is not to be compromised by gross oversimplification of watershed
geometry. Now that it appears that the kinematic wave equation is quite
appropriate for most cases involving overland flow, a comprehensive reanalysis
of experimental data on overland flow should be carried out to see if the
kinematic wave formulation is an improvement over the simple nonlinear storage
models. Several other questions are unresolved with regard to overland flow.
Can a concave or a convex slope be represented by a plane? If so, can an
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objective technique for estimating the slope of the plane be developed? Are
the methods for estimating parameters from experimental data sensitive to
errors in the input or output? It would seem that such questions must be
answered before one attempts to simulate any watershed that departs very
much from a plane.

The important question of what frictional laws are walid still remains
open. Indeed, a great amount of fine detail of the watershed can probably
be lumped into the frictional parameters. For kinematic flow such research
might be immediately productive since the equations indicate that the fric-
tion coefficient (for a given relationship) alters the time base of the
hydrograph but does not affect the flow ordinates.

It is apparent that many of the above questions are related to the prob-
lem of determining an optimum model structure. This is the dilemma faced in
system synthesis: One wishes to select the components of the system in such
a manner that they retain physical significance; yet, the natural complexity
of most watersheds is such that many of the details will inevitably be
omitted in the model. The key question is how much simplification can be
made while still retaining physical significance?

Conclusions

The runoff process is extremely complex and cannot be described mathe-—
matically now or in the foreseeable future. The shallow water equations pro-
vide the closest description available, but the solution to these nonlinear
equations appears to be too complex to gain general popularity, at least as
far as the small drainage area is comcerned. (The river problem seems to be
easier to describe by data input to standard programs.) However, solutions
to the shallow water equations provide insight into the physical process and
aid in evaluating less complex models.

The shallow water equations have indicated the important parameters in
the overland flow problem, They indicate the degree of approximation in the
easier kinematic wave solution. In a like manner they can indicate the
strengths and weaknesses of any other method. Work is now proceeding at
Cornell University to evaluate some of the commonly used methods, such as the
unit hydrograph method, in terms of solutions of the shallow water equations.
Indeed, such solutions can often be used to provide "eclean data" with which
the less sophisticated methods are evaluated, thus abridging the tremendous
difficulties in obtaining good data. Answers can be obtained to such import-—
ant questions as: ''For what values of the parameters is the process reason-—
ably linear or uniformly nonlinear?"

Many aspects of the runoff process are stochastic. For example the
exact stream or rivulet pattern can probably never be described deterministi-
cally, Also because the input to a hydrologic system (rainfall) is stechastic,
the output (streamflow) can only be described in terms of its probability
laws. However, it is reasonable to separate and study those parts of the
process that are deterministic for these are the components subject to control
by engineering works or agricultural practices.

There will undoubtedly be some improvement in runoff predictions made by
the shallow water equations. However, the writers feel that further research
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into the direct use of the shallow water equations, as opposed to using the
equations to obtain a better understanding of the process, will lead to only
small improvements.
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