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Abstract. In this paper a regularized stochastic decomposition algorithm with master programs of
finite size is described for solving two-stage stochastic linear programming problems with recourse.
In a deterministic setting cut dropping schemes in decomposition based algorithms have been used
routinely. However, when only estimates of the objective function are available such schemes can
only be properly justified if convergence results are not sacrificed. It is shown that almost surely
every accumulation point in an identified subsequence of iterates produced by the algorithm, which
includes a cut dropping scheme, is an optimal solution. The results are obtained by including a
quadratic proximal term in the master program. In addition to the cut dropping scheme, other
enhancements to the existing methodology are described. These include (i) a new updating rule
for the retained cuts and (ii) an adaptive rule to determine when additional reestimation of the
cut associated with the current solution is needed. The algorithm is tested on problems from the
literature assuming both descrete and continuous random variables.

Keywords: stochastic programming, decomposition, cutting plane methods

Introduction

The algorithm presented here is a stochastic decomposition (SD) based method
[5] for solving two-stage stochastic linear programs. The purpose of this work
is to address a major handicap of a SD algorithm: the progressively increasing
size of the master program. In deterministic cutting plane algorithms, theoretical
justification for elimination of old cuts has been addressed in the pioneering
work of Eaves and Zangwill [3] and by others [7, 10]. In these works, dropping
cuts while preserving the convergence results relies on the monotonic descent
of the objective function. In stochastic programming, the L-shaped method
of Van Slyke and Wets [16], for example, exhibits monotonic descent of the
objective function since the cuts are produced by solving the subproblem for every
possible realization of the discrete or discretized random variables. Consequently,

*A majority of this work is part of the author’s Ph.D. dissertation prepared at the University of
Arizona in 1990.
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implementations based on this method [2, 4j that include cut dropping schemes
have been able to do so without jeopardizing the convergence to optimal solutions.

Monotonic descent of the objective function is not exhibited, however, by the
SD algorithm. In SD, cuts are estimated based on the solutions of only one
subproblem, solved at the point of concern, as well as information available
from past subproblem solutions. Consequently, the objective function changes
nonmonotonically with each iteration. In a deterministic setting, simple examples
can be constructed in which the elimination of active constraints causes the
algorithm to oscillate between nonoptimal solutions. With SD, due to the
stochastic nature of the cuts, even cuts that are inactive at a given point in
one iteration may become active at the same point in a subsequent iteration (a
situation which does not arise in a deterministic setting). Therefore, justification
for dropping cuts from the SD master program is not straightforward.

In order to alleviate the problem of the ever-increasing master program size,
while preserving the convergence results of the original SD algorithm, a quadratic
proximal (regularizing) term is introduced to the objective function. The intro
duction of this term makes possible a cut dropping scheme similar to that given
in [7] and [10]. Introduction of this term was motivated by its use in several
deterministic algorithms, especially those dealing with nondifferentiable optimiza
tion problems, that exhibited stronger convergence results than could otherwise
be obtained when such a quadratic term is absent (see [7, 10, 11, 13, 14, 15]).

In addition to eliminating unnecessary constraints from the master program, a
new updating mechanism for the retained past cuts is proposed. It is statistically
motivated and takes advantage of information obtained in each iteration of
the algorithm. An adaptive method to determine when to make additional
reestimations of certain cuts is also presented. The resultant algorithm will be
referred to as regularized stochastic decomposition (RSD).

This presentation is organized as follows: Components of the RSD algorithm
are described in Section 1 and 2 concluding with a formal statement of the
RSD algorithm. Convergence results for RSD are presented in Section 3 and
termination criteria are discussed in Section 4. Section 5 contains computational
results for several test problems.

1. The RSD Method

The two-stage stochastic linear program with recourse can be stated as follows:

(P)

Mm f(m) = ex + E[Q(x, ~)]
s.t. xEXCR’1’,



A REGULARIZED STOCHASTIC DECOMPOSITION ALGORITHM 61

Where

Q(x, w) = Mm qy
s.t Wy=w—Tx

y≥o.
The set X = {xIAx ≤ b} is a convex polyhedral set assumed to be compact.
A is a known in1 x n1 matrix, and c, q, and b are known vectors in R’~1, R~z2,
and R~, respectively. The random vector, E~, is defined on a probability space
(Si, A, F), with associated distribution function F~. Si is a compact set, and
E~[•] represents the mathematical expectation with respect to ~. The specified
matrix W is in2 x n2, and T is in2 x n1.

The RSD algorithm produces a sequence of points {xk}~i, referred to as
“incumbent” solutions, a sequence of directions, {dk}~.1, and a sequence of
“candidate” solutions, {zk}~i2. These sequences are related by zk+1 = xk + 4 for
k = 1,2 In iteration /c, the direction 4 is determined through the solution
of a quadratic master program. Beginning with an initial incumbent solution, a
candidate is accepted as the next incumbent if its estimated objective value is
sufficiently lower than that of the current incumbent solution.

Given an observation wk of ~, a subproblem (S”) defined as follows is solved:

(Sk)

Q(zk, wk) = Mm qy
s.t. W~J = Wk — TZk

Y≥o.
The dual to the above problem is

(DSj

Q(zk, wk) = Max ir(wk — Tzk)
s.t. it C H = {ir : irW ≤ q}.

where it is an m2-dimensional row vector. We assume that H is a nonempty
compact convex polyhedral set. Therefore, IQ(x, w)I <oo for all (x, w) C Xx Si,
which implies that (P) has the complete recourse property [17].

Note that the constraint set H is independent of the realization w,~,. This fact
is exploited by the method by which the estimates of the objective function f(x)
are constructed by SD algorithms. How estimates are produced follows.

Let V denote the set of all extreme point solutions of the subproblem dual,
and let Vk c V be the set of extreme points of (DSj identified in the first k
iterations of the algorithm. For t = 1, 2, ..., k, let ir~ satisfy

c argmax[ir(w~ — TZk) : it e Vk}. (la)
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In the kth iteration, an estimate of a support of f at zk is given by

f~(x) = ex + ~ - Tx). (ib)

The superscript of f is used to indicate the iteration at which the cut was first
derived. As iterations progress, these cuts will be updated and the subscript on
f will be used to indicate the iteration in which the cut was last updated. Thus,
f~(x) is the cut that was first derived in the jth iteration and was last updated
in the tth iteration. Representing (ib) in terms of the variable d, we have

ft(xk+d) a~+(c+/3h@k+d),

where

= ~ (2a)

and

-~Z7r~T. (2b)

With each iteration, previously generated constraints lack information, gained
from subsequent sampling of the random variable ~. If we write QC(x) for the
sample mean of Q(x, ~) using the information obtained so far, we have

Ic

qk(x) = ~ Z Q(x, Wt)

k—i Il 1
= Iv Q(x)+~Q(x,wk)

where L(x, wIc) is a function that is at most linear in x and satisfies L(x,wk) ≤
Q(x, w,J. One choice, if Q(x, w) ≥ 0 for all (x, w) c X x U, is t& let L(x, wIc) = 0.
This update is used in the original SD algorithm. Note that for any x and tu~
even if Q is unrestricted in sign we have

Q(x,wt) ≥ ir(w~ —Tx) Vvr CV.

In particular, since Vk c V, for all Iv

Q(x, wt) ≥ wt(wt — Tx).
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Therefore, if we let LQr, wk) = 1r~(wt Tx), the following more flexible update
of the coefficients of past cuts (those with superscripts j = 1,2,... , k — 1) is
proposed: f~(x) = + (c + ~)x where

= k aL + ~1rkLUk (3a)

j3 k_l~J~T (3b)

and c4 and /3~ defined as in (2).
Let 1 1 indicate the Euclidean norm. The quadratic master program (Mj of

the RSD algorithm is given by:

(Mk) Min{~NdK2 + vk(d) : Xk + d E

where

Vk(d) = max{f~(xk + d)}. (4)
jEt

The function vk(d) approximates the objective function at xk + d. The size of
the index set jk c {1, 2,. . . , k} will be constrained and thereby acts to limit the
size of the master program. ~ is redefined in each iteration. The cut dropping
scheme and the precise definition of this set is described in Section 2. The
solution of (M’~) is denoted by dk and the k + 1st candidate solution is given by
Zk+i = xk + dk.

Before describing how an incumbent solution in SD algorithms is selected we
note that a particular solution may remain as the incumbent solution over many
iterations. In order to guarantee that the function estimate at an incumbent
solution converges to the actual value (with probability 1), Higle and Sen [5]
suggest that the cut associated with a current incumbent solution be reestimated at
each iteration. They do, however, point out that reestimation of the incumbent cut
at each iteration is not necessary if the number of iterations between reestimations
is bounded. Let 7k1 denote the iteration in which the Ic— 1st incumbent solution,
Xk_i, was accepted. Then in iteration Ic, fZ~ (xk_i) represents the current estimate
of the objective in (P) at xk_i. Since the functions {f~ }~?~ represent a statistically
motivated, piecewise linear, approximation of the convex function f, one way to
adaptively determine when reestimation should be performed is to check if

fli(xk_i) > f7k_l(xki) (5)

This inequality can occur since w~ for t = 7ki + 1 to t = Ic may not be the
element from y’~ that maximizes w(wt — Tx7k_I). Thus, the estimates of the cut
at the incumbent are “looser” than should be. If (5) is satisfied, the value of
fJ~(xk~i) is too low and can be raised. The reestimation can be accomplished
as in (1) using the current set of subproblem dual vectors, Vk.
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Checking (5) above does not guarantee that the iterations between reestimation
will be bounded. Therefore, to complete the reestimation instructions, let i- be
a positive integer and in iteration Ic let ?k.~.i represent the iteration at which
the cut associated with the Ic — 1st incumbent solution was last evaluated. Then,
reestimate f~~’(x) whenever one of the following is satisfied:

ft(xk_1) — f~’(xk_1) > 0, or (6a)
Ic — fl—i = ~ (6b)

If one of the conditions in (6) is satisfied then ~ki is reset to Ic. Analogous to
(1), reestimation requires that for t = 1,2,... , Ic,

C argmax[TrQct — Txk_j) : ‘ir e V’~], (7a)

is determined and then,

f~’(x) = cx + ~ Z~~’(wt — Tx) = + (c + fi~’)x. (7b)

Suppose (M”1) has just been solved and now in iteration Ic the kth incumbent is
to be determined. If zk = Xkl + dk_1, then vki(dkl) —f~’@k—1) represents the
amount of descent anticipated in moving from Xki to zk, while f/(zk)—fj[’~’@k_1)
is the descent the function estimates actually exhibit (after updating) in the kth
iteration. Then, zk becomes the kth incumbent, xk, if

f~(zk) - ft1@k-1) <~(vkj@k1) — f~’(xk1)), (8)

where ~u is a fixed parameter such that 0 < ii < 1. Satisfaction of (8) implies that
a sufficient fraction of the anticipated objective value reduction is attained. In
such cases Xk = zk. Otherwise, the incumbent does not change and Xk = Xk_i. -

2. Finite master program size and the RSD algorithm

At each iteration of the SD algorithm, one additional linear inequality is added
to the master program. After a large number of iterations, the number of
constraints can become burdensome. Many of the constraints do not play a
role in defining the optimal solution to the master program. In a deterministic
setting, cut dropping schemes such as those of Eaves and Zangwill [3], Muffin [10]
and Kiwiel [7] have been proposed. These schemes use a line search procedure
that guarantees descent in the objective function, thus justifying the elimination
of cuts. The next function approximation is obtained by defining a piecewise
linear function whose pieces include the most recent cut together with a select
subset of previously obtained pieces. Unlike these methods, satisfaction of (8),
the condition for accepting a candidate as the new incumbent solution, is only a
statistically based indication of descent.
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When the incumbent changes, descent is indicated by (8) and one would like
to retain information in a neighborhood of the new incumbent and eliminate
those constraints that do not define the piecewise linear approximation near
the new incumbent. In iterations in which the incumbent does not change one
should retain the cut that is associated with the current incumbent solution as
well as those constraints that define the piecewise linear approximation near the
current candidate.

Let j~~’ ç {1, 2, ..., k — 1} be the set of indices in (4) that define t-’k...l(d) in
iteration Ic — 1. Let n1 be the dimension of x, the first-stage decision variable.
By Caratheodory’s Theorem (see [1], for example), at most i-i1 + 1 constraints
are needed to define a solution to (Mk_l). The active constraints are identified
as those with nonzero Lagrange multipliers at the solution. Most quadratic pro
gramming subroutines automatically provided the associated Lagrange multipliers
with not more than it1 + 1 of them nonzero [7j. Since the constraints associated
with X, the feasible region of the first-stage variable, are fixed, we are concerned
only with the multipliers A~1, J e j~’, that are associated with the constraints
indicated by (4) at dk_1. Let j~’ = {~ e 3k1 A~1 > 0}. The set j~ is defined
as follows.

jk = 1k—1 U {m k}. (9)

Thus, jk is the set of the constraint indices from j’~~ that are active (have positive
multipliers) at the current candidate solution, plus the cut associated with the
current incumbent and the new cut associated with the current candidate.

With this cut dropping scheme, RSD will maintain a finite master program
size with at most it1 + 3 constraints at any iteration.

The preceding developments are summarized as follows.

Algorithm: Regularized stochastic decomposition (RSD)

Step 0. (Initialize)
Ic ~— 0, tü0 *— E[W], xo e argmin{cx + Q(x, wo) x c X},

~ x0, do ~— 0, ~o ~— 0, f$(xo) = cx0 + Q(X0, cuo), V0 = 0, r~ ..... 0.
0<11< 1,M large, and ‘r is given. .1° = 0.
Step 1. (Generate random vector)
Ic i— Ic + 1. Randomly generate an observation, wk, according to the distribution
F~ (cut, t = 1, 2, ..., k are generated independently).
Step 2. (Solve subproblem)
Solve (Sk) and obtain the dual vector ‘lr(zk, Wk).Vk ~V’~’ U {~ir(z,,, csijJ}.

Step 3. (Update master program)
Evaluate fj(zk) according to (1) and for j e j~ determine the updated cut
coefficients according to (3).
Step 4. (reestimate incumbent cut)
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Check reestimation conditions (6). If satisfied, determine f~ (x,~_i) according
to (7), fl—i ~— /c.
Step 5. (Check new incumbent condition and drop cuts)
a) If (8) is satisfied then xk +— z~, 7k ~— k2fj,, ~—k. Otherwise
b) xk,7k, ~k are unchanged.
In either case, determine j~ according to (9).
Step 6. (Solve master program)
Solve (Mj to obtain 4 and vk(4) and the dual variables Aj~, j e j”. Set
Zk+i = 3k + 4, return to step 1.

3. Convergence analysis

In this section we will show that an easily identifiable subsequence of the
incumbent solutions, {xk}, accumulates at optimal solutions.

We begin with a lemma from [5] that examines the limiting behavior of the
sequence of incumbent cuts generated by the SD or RSD algorithms. This
lemma applies to the sequences generated by RSD since they do not depend on
the type of master program, but rather on the characteristics that SD algorithms
have in common (i.e., the manner in which cuts are generated, the rule by which
the incumbent solutions are selected, the reestimation of the incumbent cut).

LEMMA 1. ([5}, Theorem 2). Let {xk~}~1 be an infinite subsequence of {xk}~’i1.
If {xk,} —. x~,0, then with probability 1,

f~(x~) —, cxrj., + E[Q(x~,, W)] = f(x00).

Furthermore, evety accumulation point of {a~’, c + $~“ }~ defines a support of
f(x) at x~, with probability 1.

Next, a lemma that establishes bounds for (vkQlk) — fZ”(xk)), the anticipated
descent in going from Xk to zk, in each iteration is presented. The bound
obtained is a consequence of the quadratic term in the master program (Mj.
This bound plays an important role in establishing that subsequences of {clk}%’?1
that converge to the zero vector, 0, exist.

LEMMA 2. For each lv,

—Nc + P~IIIIdkII ≤ (v,~(c4) — fjk(xk)) ≤ —1141V ≤ 0.

Proof Let superscript T indicate “transpose.” The necessary conditions for a
solution to (Mj imply that for each lv, (4, Uk) satisfy

A(xk + 4) ≤
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Vk(dk) ≥ fj~(x,, + 4) = f~(xk) + (c + /3~)dk, j ~ j’, (10)

(11)
jejk

Z A~=1,X{.>O,ak>O (12)
j~Jk

where o.j, is a m1-dimensional row vector. Furthermore, the following comple
mentary slackness conditions must also be met.

+ (c + I3Ddk — vk(dk)) = 0, j ~ (13)
Ck(A4dk + Ax, — b) = 0. (14)

Summing (13) over all j e jk, adding and subtracting f?(xk), and using
(12) yields

Vk(dk) — f~(zk) = > AjJ~f~(x,,) — fjk(xk)) + ~ Aj~,(c + /3~)dk. (15)
j~Jk jE?

Hence, solving (11) for >ZJEJk Aj(c + ,8~) and substituting into (15) yields

Vk(dk) — f~@k) = > AjJj~(x~) — f17(x,J) — Idk~I2 — ukAdk. (16)
jEJ4

Note that the first group of terms on the right in (16) is nonpositive since
.f~(xk) — f7/~(xk) is nonpositive for all j € jk and k. From (14), the nonnegativity
of ~k, and the feasibility of xk, we have akAdk = crk(b — Axk) ≥ 0. Therefore

Vk(dk) — f~@k) ≤ _~4~2 ≤ 0. (17)

The Cauchy-Schwarz inequality and (10) imply

—J~c + < (c + f3~jdk < v~(d,,) — f7/~(xk) (18)

From (17) and (18) we have the result. C

The following lemma is a result of the test for the new incumbent and Lemma 2.
It establishes that there exists a subsequence of {dk}~1 that converges to 0
almost surely.

LEMMA 3. Let {dk}%~1 be the sequence of master program solutions. Then there
exists a subset of indices, K’, such that {dk}kEK’ ; 0 almost surely.

The rather lengthy proof of this lemma is included as Appendix A of this paper.
Equation (11) and the assumptions on P, which include the compactness of X,

imply that ~k, the dual multiplier vector associated with the set X, is uniformly
bounded. This property is used to prove the following theorem that establishes
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the optimality of limiting incumbent points associated with subsequences of
{dk}y~1 that converge to 0.

THEOREM L Let index set K be such that

—* x~, ,‘ 0,

then x~, is an optimal solution of (P) with pivbability 1.

Proof Let? ç jk be the set of indices of the binding inequalities in (4) of (Mj.
By Caratheodory’s Theorem (see [1]) we may assume that the cardinality of?,
denoted by p(Iv) = i1~, satisfies p(k) ≤ it1 + 1. Let {k~}~’?, denote the indices

in the set j’ that are also in ?, and let Ak = (At’, ..., A?N) be the vector of
associated multipliers.

Suppose we have {xk}kEK —, x~, and {dk}kEK — 0. By the assumptions on (P)
and Lemma 3, there exists a subset K’ c K and a positive integer p ≤ it1 + 1
such that for all k e K’ we have p(k) = p, Ak € R~ for all Ic e K’, and from (11)

d~ + ZA~’(c+ 5~’) + &~A = 0T (19)

Ck(AQEk + dk) b) = 0,

{c+5~’}keK’~(c+5~), j=1,...,p

{A~}kEK’~A~≥0,j=l,...,p,

= 1, {ck}keK’ (20)

Therefore, the fact that {dk}kcK’ —, 0 implies that we have

+ 5i)+ cA = 0T (21a)

c(Ax~ — b) = 0. (21b)

Lemma 2, (16) and the fact that {dk}kcK’ —* 0 imply that

{fNxk) — f~(xk)}keK’ —, 0, if A~ > 0, j = 1, ..., p. (22)

Let 8 indicate “subgradient.” From (22), Lemma 1, and the fact that for
any x € X the cuts present in master program (M”) accumulate at values that
underestimate the actual objective (with probability 1), we have

(a + 53) e 8(cx~ + E[Q(x~, 0)]), almost surely for j = 1,..., p. (23)
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(20), (21), and (23) yield stationarity conditions for XDQ with probability 1.

A description of how to identify such a subsequence is now given. Since
with probability 1 there exists an infinite subset K’ such that {dk}kcK’ —‘ 0, any
accumulation point of {xk}kEK’ is an optimal solution of (P) with probability 1,
by Theorem 1. When the incumbent changes only finitely often, the unique
accumulation point of the incumbent solutions is an optimal solution with prob
ability 1, When the incumbent changes infinitely often, a method to identify a
subsequence of the incumbent solutions that accumulates at optimal solutions
is needed. We describe one way to identify such a subsequence. To do so,
we introduce a sequence, {6k}~1. If we let bo be sufficiently large and define
constants l~L2 ≤ in < 1 that are used to prevent 6 from decreasing too rapidly,
then we let 6k be defined as follows:

= •f P16k—1, if 1411< p26k—1;
I.. mln[&_~, 11411], otherwIse.

Thus the monotonic sequence {6k}~.1 converges to zero, with probability 1, since
there exists a subsequence of indices, K’, such that {dk}kEK’ —÷ 0. The set of
indices K’ can be defined as follows:

K’ = {k:IldkII ≤ ~ (24)

Clearly, K’ is an infinite set since either 6k = I’16k—1 infinitely often or = 11411
infinitely often. Since 6k —* 0, we then have {dk}kEK’ —, 0. Note that the
compactness of X guarantees that the sequence {xk}kEK’ has accumulation points
in X. Thus we obtain the following corollary to Theorem 1.

COROLLARY 1. Let {xk}r.l be the sequence of incumbent solutions identified by
the RSD algorithm and suppose that K’ is the index set defined by (24) then evety
accumulation point of {xk}kEK’ is optima4 with probability 1.

4. Termination criteria

In this section several termination rules are listed. Since the piecewise linear
approximations are derived from set Vk, termination of the algorithm should be
considered only after a sufficiently large number of iterations have passed in
which no new dual vertex of the recourse problem has been found. Therefore,
consider termination if:

1. The cardinality of Vk equals the cardinality of y~i’ for p < Ic a large positive
integer (stability of set Vk).

This rule is suggested in [5].
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The progress of the incumbent objective value, ff(xk) can be monitored. A
statistical summary, ~k, of the incumbent objective values can be used to monitor
those iterations corresponding to the subsequence defined in (24) (i.e., k C K’).
Termination is considered if the following test is satisfied.

2. < E (stability of the objective function).

An exponentially smoothed average defined as

— f Af7/’(xj~) + (1 — A)ij~_1, if /c C K’;
— ~~1k—1, otherwise

with A e (0, 1), and ~ appropriately chosen could be used.
As a result of Lemma 3, we know that the subsequence of {dk}~.1 as defined

in (24) converges to 0. Therefore termination should not be considered unless
IIdkK is small. One can use {BdkN}kEKI to compute a statistic pk, similar to ijk
above. The algorithm may be terminated if for /c C K’ we have

3. Pk <6 (regularizing term small).

Meeting all three of the criteria described above is suggested in order to avoid
premature termination.

5. Computational testing

In this section we report the computational results of applying RSD (with cut
dropping), SD, and SD with cut dropping and linear updating (denoted by SDw).
in the solution of four test problems. All implementations reestimate the cut
associated with the incumbent according to (6).

A brief description of each problem, named SCAGR7, SCRS8, PGP2, and
CEP1, including references and the sizes of each stage can be found in Appendix
B. Notes on the algorithm implementation are also contained in Appendix B.

Discrete random variables

In order to verify the performance of the algorithms, discrete versions of the
problems introduced above were solved. Each algorithm implementation was run
over five independent replications. The optimal solution of each problem was
determined using the L-shaped method of Van Slyke and Wets [16]. The actual
value of the objective function at the terminal incumbent solution was determined
by evaluating the subproblem at this point for each possible realization of the
discretized random variables.
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Table 1. Discrete variable termination summary.

SD SDw RSD

SCAGR7**

av iterations 128.0 (11.0) 130.0 (6.0) 101.0 (0.0)

av. error in o14. 0.0003 (0.0001) 0.0003 (0.0001) 0.0002 (0.0001)

av. dev. from opt. 0.0004 (0) 0.0004 (0) 0.0004 (0)

SCRS8

av. iterations 107.0 (7.0) 107 (8.0) 107.0 (8.0)

au. error in obj. 0.01 (0.01) 0.01 (0.01) 0.01 (0.01)

au~ dev. from opt. 0 (0) 0 (0) 0 (0)

PGP2

ag iterations 160.0 (61.0) 163.0 (52.0) 173.0 (56.0)

au. error in obj. 0.03 (0.03) 0.02 (0.01) 0.02 (0.01)

av. dev. from opt. 0.04 (0.05) 0.01 (0.02) 0.0018 (0.0004)

CEP1

au. iterations 315.0 (44.0) 294.0 (69.0) 327.0 (30.0)

au. error in obj. 0.07 (0.03) 0.09 (0.04) 0.07 (0.03)

ag dev. from opt. 0 (0) 0 (0) 0 (0)

*SD with cut dropping, and linear updating.

tVariable weight on 11d112 term.

Listed in Table 1 are the average number of iterations, the average error in
the terminal incumbent objective estimate as a fraction of the actual objective
value at this point (av. error in obj.), and the average deviation of the actual
objective value at the terminal incumbent from the optimal objective value as a
fraction of the optimal objective value (av. dev. from opt.). Standard deviations
associated with the replications appear in parentheses.

Very little difference between implementations is exhibited in iteration count
for three of the four problems. The RSD runs of problem SCAGR7 performed
roughly 20% fewer iterations than the SD implementations required to meet
all of the termination conditions. However, note that a variable weight on the
quadratic term (see Appendix B) was used for this problem due to the dominance
of this term for many iterations.

The terminal incumbents of each of the runs for problems SCRS8 and CEP1
were optimal. In each case, the terminal incumbent for problem SCAGR7
yielded an actual objective value with a relative error of only 0.04%. Only in
problem PGP2 was there any difference between the SD and RSD runs. In this
case, RSD out performed SD with respect to the deviation from the optimal
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objective value. With the limited number of runs, however, one cannot tell if
this is significant.

As expected, the estimated objective values at the terminal incumbent exhibited
deviations from the actual values by as much as 9% (CEP1). This is due to
the limited number of realizations of the random variables generated and the
subproblem dual bases available before termination. While this fact seems
to suggest that termination may have been premature, the optimality (or near
optimality) of the terminal incumbents from the RSD implementation for problem
PGP2 seems to indicate that improved accuracy of the objective value estimates
may not be necessary in order to determine optimality.

Information concerning the subproblem bases is contained in Table 2. Listed
are the average number of subproblem dual vertices found (av. # vertices) and
the average number of these vertices that are active at the terminal incumbent
(av. # active). That is, we list the average number of distinct w~ C {argmax

— Tx3)Iw c V8},j = 1..., s, where s is the terminal iteration. For example,
solving problem CEP1 with RSD produced an average of 33.0 bases with a
standard deviation of 1.0. On average, 16 of these, with a standard deviation
of 1.0, were active at the terminal incumbent. Thus, roughly half of the bases
identified were used to estimate the objective value at the terminal incumbent.
From Table 2 we see that a large percentage of the bases revealed during the
process play a role at the terminal incumbent for all problems.

The benefits of the linear updating and cut dropping are clearly apparent from
Table 2 if we examine the average number of cuts added to the master program
(av. # cuts) and the average number of times the incumbent cut was reestimated
(av. reestimations). With cut dropping (SD and RSD) only 20% of the master
program cuts were retained for problems SCAGR7 and SCRS8. This percentage
was even smaller for problems PGP2 (<9%) and CEP1 (<5%).

Note that since only one dual subproblem basis was produced for problem
SCRS8, no reestimation of the cut associated with the incumbent solution was
necessary for RSD or SDw. With respect to the other problems, SD required that
the cut associated with the incumbent solution be reestimated, on average, about
four times as often as RSD or SDw. Note that the increase in reestimations
observed when the simple LQc, wk) = 0 update is used in the SD implementation,
is caused by imposing condition (5a). Since the reestimation of this cut requires
that the operation indicated by (6) be performed each time one of the conditions
in (5) is satisfied, the reduction in effort using the new update is apparent.

Continuous random variables

SD algorithms were developed to solve problems with continuous as well as
discrete random variables. Since the RSD results for the discrete examples above
indicated a slight advantage with respect to average deviation from optimality and
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Table 2. Discrete variable termination summary (continued).

SD SDw4 RSD

SCAGR7t

av. # vertices 6.0 (1.0) 6.0 (1.0) 6.0 (1.0)
av. # active 4.6 (0.5) 4.6 (0.5) 4.2 (0.4)

av. # cuts 64.0 (6.0) 13.4 (0.9) 18.0 (4.0)

av. reestimations 127.0 (11.0) 35.0 (5.0) 16.0 (7.0)

SCRS8

av. # vertices 1 (0) 1 (0) 1 (0)

av # active 1 (0) 1 (0) 1 (0)

av. # cuts 54.0 (4.0) 21.3 (0.9) 21.4 (0.7)

av. reestimations 106.0 (8.0)i 0 (0) 0 (0)

PGP2

av. # vertices 15.0 (2.0) 16.0 (3.0) 14.0 (2.0)

av. # active 9.0 (2.0) 10.0 (1.0) 8.0 (1.0)

av. # cuts 81.0 (31.0) 9.0 (1.0) 7.9 (0.4)

av. reestimations 158.0 (61.0) 19.0 (10.0) 24.0 (12.0)

CEP1

av. # vertices 31.2 (0.7) 31.0 (2.0) 33.0 (1.0)

av. # active 19.4 (0.8) 20.0 (2.0) 16.0 (1.0)

av. # cuts 158.0 (22.0) 7.0 (0.1) 7.1 (0.5)

av. reesti,nations 313.0 (44.0) 88.0 (19.0) 125.0 (15.0)

*SD with cut dropping, and linear updating.

ttVariable weight on Hd112 term.

average error in the objective function estimates (see Table 1) over SD and SDw,
the RSD algorithm has been applied to each of the four test problems assuming
continuous random variables. The random variables are uniformly distributed
for problems SCAGR7, SCRS8, and CEP1, and normally distributed in the case
of PGP2 as in the original description of the problem [8].

Table 3 reports the average number of iterations, average number of cuts, the
average number of dual vertices found, and the average number of these vertices
that are active at the terminal incumbent.

With continuous random variables the optimal values of the objective functions
are unknown. Therefore, the relative error in the objective value estimates at
the terminal incumbent is reported in Table 3 as the average deviation from the
sample mean of the terminal incumbent objective value, based on an independent
sample of size 2,000, as a fraction of the sample mean objective value (av. error
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Table 3. RSD results for problems with continuous random variables.

SCAOR7 SCRSD PGP2 CEPI

a’~ iterations 213 (110) 119 (9.0) 200 (25.0) 376 (150.0)
at’. # cuts 15.0 (2.0) 20.2 (0.6) 5.24 (0.05) 7.7 (0.4)

at’. # vertices 5.0 (0) 1 (0) 14.0 (2.0) 14.0 (1.0)
at’. # active 3.2 (0.04) 1 (0) 11.2 (0.7) 10.0 (0)

at’. error in obj. 0.0002 (0.0003) 0.007 (0.004) 0.02 (0.01) 0.06 (0.04)

Variable weight on 11d112 term.

in obj.). With this sample size, under a normal assumption which does not
necessarily apply, the sample mean would be within 4% of the actual objective
value with 99% confidence. Standard deviations associated with the trials appear
in parentheses.

Compared with the discrete versions, the continuous versions of problems
SCAGR7, PGP2, and CEP1 required significantly more iterations before meeting
the termination conditions. In all cases, the RSD algorithm produced good
solutions in the early iterations, however, meeting termination criterion #2 in
section 4 delayed termination while the objective function stabilized.

6. Summary

In this paper a stochastic decomposition algorithm with a master program con
taining a quadratic regularizing term was introduced. This regularizing term
makes it possible to bound the size of the master program without sacrificing
the SD convergence results.

Two other algorithmic enhancements have been included. A mechanism for
updating past cuts was proposed that takes advantage of current information
in the iterative process. With this update, the nonnegativity restriction of the
recourse problem, which was necessary for the simple update of the original SD
algorithm, is relaxed. A condition that adaptively determines when the incumbent
cut should be reestimated was also suggested. This condition, coupled with the
adaptive updating of the piecewise linear approximation for f(x), should make
it possible to avoid the cumbersome reestimation of the incumbent cut at each
iteration as suggested in [5j.

To evaluate the success of the enhancements, a computational experiment
was performed. In these computational experiments we find that regardless
of whether a linear or quadratic objective is used in the master program, the
RSD and SD algorithms perform quite well as indicated by the deviation from
optimality of the terminal incumbents. The addition of both cut dropping and
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the adaptive updating scheme showed a marked improvement of RSD over SD
in the number of cuts retained and the number of reestimations of the cut
associated with the incumbent solution. This improvement was achieved without
affecting the iteration count or the objective value error.

The increased efficiency, which the enhancements can provide, makes extension
of the SD concept to other models look quite promising. One such extension is
investigated in [19]. The problem considered there is one in which the recourse
problem is bounded and thus appears in the constraint set rather than as part of
the objective function. The solution method proposed for this variation of the
standard two-stage stochastic program with recourse involves the introduction of
an exact penalty term to the objective function.

Appendix A. Proof of Lemma 3

If the incumbent changes infinitely often, the proof follows from Lemma 6 in [5],
and Lemma 2 in Section 3 above. The proof for the case of a finite number of
incumbents uses the Langrangian dual to the master program and is in the spirit
of Kiwiel [7], which is concerned with unconstrained convex programs. Presented
below is a slight variation of the proof that appears in Yakowitz [18]. Credit for
the proof of the finite incumbent case goes to S. Sen [20].

LEMMA 3. Let {dk}%’i1 be the sequence of master program solutions. Then there
exists a subset of indices, K’, such that {dkJkEK’ —* ft almost surely.

Proof Let {kfl},1EN represent the sequence of iterations at which the incumbent
is changed. That is, for every n C N (8) is satisfied and x~ = z~r,9,, f~”@A~~) =

If N is an infinite set then Lemma 6 of [5] applies as long as {7k, It) e .P. -

Thus for ii e N limm~’Z~.l(vk 1(zk) — f~”~’(xk1)) = 0. Then by Lemma
2, 1im,,1..~ ~ E~=1 IIdk~_1 = 0, with probability 1. Since the summand is positive
for all n, there exists an infinite subset N’ c N such that {dk,_1}flEN’ —+ 0,
almost surely.

If N is a finite set, there exists it < co such that xk = = xK for all It it.

The Lagrangian dual to (Mj for It> it is given by:

Max Ok(c, A) = inf ~ 11d112 + a(AxK + Ad — b) + Z ~(f~(x~) + (c + ~)d)
jEJk

c ~ 0, .V ≥ 0, for j e jk and ZjeJk A~ 1. For a given a, A, the objective is
strictly convex and achieves its minimum at a point d = d,., satisfying

jEJ’~
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Substituting for 4 we obtain:

(Dj

= maxOk(a, A) = c(AxK — b) + Z~f~(x~) — 2
3 EY’

jE?

Let (Ak, ak) denote an optimal solution to (D’~).
Reca11thatJ~~’ ={jcJk:A~>o}u{k, k+1} since-yk = kfor all k≥,~. It

follows that the value of (D~~’), and consequently that of (Mj, can be bounded
using (Ak, (5k). Let s e [0, 1] and define ~ = (1 — s)A~, for j C J’~\{k + 1}.

Then ZjEJk+I\{k+1} )~ + s = 1. Then if we let Ak be the vector whose elements

are 5~, augmented by s, (uk, Ak) is feasible to (Dk4~) for all s C [0, 1]. Thus
we have

~ ≥ 9k÷1QTk, Ak) = Z gf~(x,~) + sft.it?(xK) + o’k(AX~ — b)
jEJ~”~\{k+1)

-~ Z
jEJ’’~\{k+1)

(25)

Note that for j e Jk+l\{k, lv + 1}

~+1k÷l~+k÷lwk÷iwk+1akk÷l(~wk+1wk+1)~ and

~~‘= k+1~ k+l~T~ k+l~÷iT).

And thus f~~1(x,~) = f~(xK) — ~.fr(f~(xK) —1r~(wk+1 —Tx,J). From the assump
tions on (P) we therefore have

!im f~,1(x,t) — f~(x,j = 0, lim II/~~+~ — i~~II =
k—too k—too

For j = K we have from Lemma 1

lim fj~1(x,J — f(z,~) = 0,
k—too

and assumptions on (P), even with the reestimation, ensure that

lim IL~~+1 — =
k—too

Therefore, for j E J~\{k + 1}, we may write



A REGULARIZED STOCHASTIC DECOMPOSITION ALGORITHM 77

f~~1(xk) = fj~(x,~) + 4 and = + 4, (26)

where q~ —÷ 0 and ~4N —~ 0. Substituting (26) into (25) and combining all
diminishing terms into 6k we obtain

~k+1(°k, Ak) = (1 — .s) ~ Aj~(f~(z,~) + 4) + se](x~) + o~k(Ax,~ — b)
jeJk+l\{k+1)

—s) Z Aj~(c+/3%,+4)
jEJk~I\fk+1}

+s(~+~) +akA~

= (1— s) >Z Aj~f~(x,~) + sf~J(x,G) + ak(AxK — b)
jeJkl\{k+1)

-~ ~(1 - s)d~ + s(c + ~) + akA)M +

= (1— s) ~ A~f~(x,~) + sf~(x,t) + Uk(AXk — b)
jEJ~’\{k+1}

_~{IIdkII2 + s211c + + c~A -

+2s(c + ,8t~ ÷ Jk~4)dk — 2811dk1J2} + 6k

=(1_s){ Z A~f~(xfl)+ck(AxK_b)_~NdkII2}
jcJk+l\{k+I}

+s{f~(x~) + u(Axk — b) — (c + + c7k44)dk}

+~IIdkII2 - ~Ic + + ~kA - 4112 + 6k.

Using (14), the definition of O~ and the fact that zk÷1 = x,~, + cik we have

0k+1(°~’k, Ak) = (1 — s)8~ +

+~IIdkI2_çIc÷c~ +akA-4B2+ek. (27)

Since the incumbent does not change after iteration it,

f~(zk+1) — f~j(xk) ≥ ~t(v~(d~) — f~(x~)), for all k> it. (28)

Subtracting f~÷1(x,~) from both sides of (27), using (28), Lemma 1, and the facts
that 8~ = vk(dk) + ~IIdkIt2 and ~ ≥ Ok÷1(ok, Ak) for all s C [0, 1], yields

- f~1(x~) ≥ - f~(x~) + max {-s(i - p)(vk(dk) - f~(xK))
sE[O, 1]
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-~Hc+C~ +UkA_dE~I2+Ek}

where 6k —*0. Assumptions on (P) ensure that {vk@k)—f,~’(xK)} and {Uc+i3~ti +
cikA — 4112} are bounded sequences. Thus, there exists a constant C e [0, co)
such that for all Ic ≥

C> Max {_~(1 - ~)[vk@k) - f~(x~)], ~IIc + + c~A - d~2, i}

so that

- f~1(x~) ≥ - f~(x~) + (1 ~ {vk(dk) — + Ek. (29)

If llmk_,covk(dk) — ft(xc) = r < 0, then since Ek —* 0, for it large enough the
sequence {6~ — f~(x,~J}%g~ is monotone increasing. Since it is bounded from
above it has a unique limit. But if follows from (29) that

lim {(°t÷~ — f÷i(x~)) — (O~ - f~÷1(~))} ~ (1— ~)2r2,
k-co 4C

a contradiction. Hence limk.~vk@k) — f~@~~) = 0 and the result follows from
Lemma 2.

Appendix B. Problem description and implementation notes

Problems SCAGR7 and SCRS8 are two-stage stochastic versions of deterministic
multistage problems described in [6] and [2]. PGP2 can be found in [8]. CEP1
has been described in [18] and [19]. Sizes of the two stages appear after each
description. The quantity M2 indicates the number of the second-stage constraints
that had random right-hand sides.

SCAGR7 is a dairy farm expansion planning model used to maintain an optimal
livestock mix as well as projected growth rates and profits by determining the
acreage of crops to plant, the amount of grain and hay to purchase, and the
disposition of newborn cattle (n.1 = 20, in1 = 15, n2 = 40, in2 = 38, th2 = 3).

SCRS8 is a dynamic energy model for the transition from fossil fuels to
renewable energy resources. This problem models U.S. options for a minimum
cost transition from oil and gas to synthetic fuels while meeting future energy
demands. The future depends on estimates of the remaining quantities of
domestic oil and gas resources and the technical and environmental feasibility
of new methods for synthetic fuel production (it1 = 37, in1 = 28, n~ = 38, in2

28, M2 = 3).
PGP2 is a power generation planning model in which the planner has a choice

of several types of power plant equipment in order to meet the needs of the
community that the plant serves. The planner wishes to determine the capacity of
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each type of equipment to be installed that minimizes the sum of the installation
costs and the expected operating costs. it1 = 4, m1 = 2, it2 = 12, m2 = 7,

CEP1 is a capacity expansion planning problem for a manufacturing plant
that produces several parts on several machines. The objective is to minimize
the cost of new capacity and the expected cost of weekly labor plus tooling
(it1 = 8, m1 = 9, it2 = 15, m2 = 7,th2 = 3).

The SD and RSD algorithms have been implemented on a VAX 8650 at the
University of Arizona. The Fortran program utilizes the XMP subroutines of
Marsten [9] for solving subproblems (Sj and the linear master program in the
SD version. The quadratic master program of RSD is solved using the ZQPCJ’X
algorithm of [12].

The following parameters were used in all computer replications: ~z = 0.25 (the
new incumbent parameter); ‘r = 20 (cut re-estimation parameter); E = 0.0005
(termination tolerance); and A = 0.25 (exponential smoothing parameter).

The convergence analysis of Section 3 requires that only those cuts with indices
in j~ need be retained when the quadratic proximal term is present in the master
program. However, since no theoretical support for dropping cuts from the linear
SD master program is presented here, in iterations during which the incumbent
does not change cuts that are tight at the current incumbent solution, (i.e., at
most it1 + 1 cuts such that c4 + = + /37/v x,~, j € Jk1) are also retained.
Since the dimension of it1 is not very large in the problems considered, these
cuts are retained in the RSD implementation as well so that the cut dropping
schemes are identical. Therefore, at most 2n.1 + 3 cuts are present in the master
programs of the implementations that drop cuts in any iteration.

The algorithmic implementation of RSD did not include an attempt to identify
the subsequence indicated by the indices in K’ defined in (24). The reader will
recall that K’ is the set of indices that corresponds to a subsequence of {dk}~1
that converges to the zero vector. Nevertheless, we wanted an indication of
stability of the objective function before termination. Therefore, we required
that termination rule 2 be satisfied with tIk = AfZ~(xk)+(1—A)?]k_l and A e [0, 1].
The RSD implementation also required that for Ic e N (iterations in which
the incumbent changes) we have pk < c where pk = AlIdkII + (1 —. A)pk_1. If
the incumbent has not changed, we require IclkI~ < E. The SD implementation
substituted ek = Uk_I @k.-1)—f1t~’ (xk_I), for IdkH in the above statistical summary.
In addition, termination was not permitted until 100 iterations were completed
and termination was considered only if the cardinality of the set Vk remained
the same for at least 50 iterations.

In some cases it may be necessary to include a variable weight on the quadratic
term in (M’~) in order to prevent this term from dominating, and thus slowing
the progress of the algorithm, for many iterations. This dominance becomes
apparent when the incumbent changes for many consecutive iterations while IdA2
remains nearly constant. Whenever this condition is detected, a weight, it, is
reduced and used to dampen the term 1d112 in (Mj. If we initialize it as ito =
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the objective function in (Mj is then replaced by:

Mm UkIIdII2 + Vk(d).

Algorithmically, a counter can keep track of the number of consecutive iter
ations during which the incumbent has changed. During these iterations Ildil
can also be averaged. Then when the counter is larger than some fixed integer,
and the current value of HdII is comparable to the average value during these
iterations, the weight, Uk, is reduced. During these iterations Uk is defined by
Uk = max{~uk.I, Q}, where 6 is a fixed, small scalar. Otherwise, u~ = Uk_i. Thus
whenever sustained progress is detected one allows the procedure to accelerate
by becoming greedy. Convergence of the method using a variable weight, as
defined above, can be shown with only slight modification of the proofs of Section
3 since Uk is bounded below by 6.
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