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ABSTRACT

We examine a tool to assist a decision maker with the task of ranking a finite
number of alternatives based on a finite number of attributes, The procedure
indicates if domination with respect to an importance order (ordinal ranking) of the
attributes can be easily detected if one assumes an additive value function. The
concept of importance order (or partial information) domination has been developed
in the literature but has been ignored in most multi-attribute applications. We show
how closed form solutions of the linear programs needed to determine strong
dominance are derived and present a graphical display of the results in the context of
an example. The procedure outlined is practical to use and the results are easy to
interpret. An example illustrates how one might apply the method to decision making
in farm management with respect to water quality issues.

I. INTRODUCTION

Consider a multi-attribute decision-making problem in which a finite
number of alternatives (choices) are evaluated based on a finite number of
attributes (objectives or criteria). Often, a first step in the decision-making
process is to eliminate from consideration those alternatives that are domi-
nated according to Pareto (see [4, 12]). Once the set of nondominated
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alternatives is determined, a common practice is to continue the evaluation
process by assuming an additive utility function and introducing weights on
each attribute [4, 6, 9]. In this paper, we examine an improved version of the
decision tool applied in [10] that aids the Decision Maker (DM) by finding a
subset of alternatives that dominate with respect to an additive value function
and a given importance order (partial information) of the decision criteria.
The information made available as a result of this analysis can be used to rank
the alternatives and may eliminate the necessity for determining a specific
weight vector associated with each attribute for the purpose of ranking the
alternatives. The decision aid also highlights the necessity to carefully justify a
specific choice of attribute weights when importance order dominance is not
indicated.

Many good methods for multi-attribute decision making exist (see [2] for
numerous references). However, simple tools that can be quickly understood
and applied are still needed. The method presented here is such a tool. The
present analysis falls under the category of partial information in multi-attri-
bute utility theory (see [5] for a discussion and numerous references). Our
approach is conceptually simple and provides the DM with clear graphical
evidence if one alternative is strongly dominant over another.

A generalized description of the problem can be stated as follows: Let U,
be the result of evaluating the ;% alternative (Aj) with respect to the jh
attribute, v, € M, i =1, 2,.... m and j=12 ..., n The DM wishes to
rank the aftematives assuming that the information in matrix V = [v;]
provides a complete description of the alternatives.

The set of Non-Dominated Alternatives, NDA, can be defined as follows:
A; € NDA « A A;, such that v, > v,Vi and y; > vy, for some i =1,
2,..., m. We assume that higher values are more desirable. If there is more
than one NDA, then a common practice is to assume an additive value
function by assigning a weight, w,, to attribute i and defining the total utility

(or worth), U, of A; by,

The alternatives can then be ranked based on their total utility. Numerous
techniques for assessing weights have been proposed in the literature [6, 8].
Most of these techniques solicit weights directly or seek to discern them
indirectly from the DM. The resultant ranking of the alternatives can be very
sensitive to the weights. Of particular interest is the behavior of U if an
importance order on the attributes is imposed.
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Imposing an importance order implies that the attributes can be ordered
so that the only allowable weight vectors are those for which

W 2 Wy = ,..., >w,. (1.1)

Therefore, assuming an additive utility function, a natural definition of
dominance is the following,

DEFINITION.  IMPORTANCE ORDER DOMINATION.  We say that alternative
k dominates alternative j with respect to an additive value function and a

given importance order if and only if for every vector of weights, w =
(w,, ..., w,), consistent with the importance order of the criteria we have

m m

Ywuy, = Y WY, (1.2)

i=] i=]

with at least one vector w satisf:\«“ing (1.2) as a strict inequality.

Determining whether an alternative dominates another with respect to an
importance order of the attributes may be of particular interest in a group
decision making setting, especially if the attributes can be ordered but an
agreement on a particular weight vector is elusive. For the remainder of this
paper, we assume that an importance order of the attributes has been
determined by some means. We further assume that y; = 0 for all i and j,
and that the higher the value of v the more desirable.

DETERMINING THE BEST AND WORST TOTAL UTILITY OF AN
ALTERNATIVE

2

L

Once an importance order of the criteria is established, best and worst
total utility for each alternative can be found without requiring the DM to set
specific weights beforehand.

Let us assume that the indices of the attributes are such that if i < j, then
attribute i is at least as important as attribute j (G.e., attribute 1 is at least as
important as attribute 2 and so forth). This importance order suggests that we
should require w, > w, >,..., > w,. Therefore, given the importance
order, the highest total utility possible for alternative j can be determined by
the following linear program.
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Best Total Utility:

Maximize

n

Z Wi

i=1
subject to

W), Z2Wy 2 ,..., =W

The first constraint set is due to the importance order, (1.1); the second is a
normalizing constraint, and the third restricts the weights to be nonnegative.

Similarly, the lowest total utility that altermative j can achieve under the
same importance order is found by minimizing the objective function in the
above linear program instead of maximizing it.

Worst Total Utility:

Minimize

m
Z Wity

i=1
subject to

W) 2wy =z ,..., =2W

m

For each alternative, the solutions to these two linear programs determine
the maximum and minimum total utility possible for any combination of
weights that do not violate the given importance order of the criteria. Having
these two objective values immediately alerts the DM to the sensitivity of
each alternative to a choice of weights.
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The two linear programs must be solved for each alternative under

consideration. This may, at first, seem to be a burdensome task, however, the
linear programs are easily solved in closed form. For k = 1,.. ., m_ let sy be
defined as follows:

k
2. ks (2.1)

THEOREM 2.1.  Let BU, and WU, indicate the objective function values at
the optimal solutions to the best and worst total utility linear programs,
respectively. Then,

BU, = max {1},

and

WU, = mkin {s1,)-

ProOF. Consider the best total utility linear program. Let a; > 0, i =
1,...,m, then the weights can be defined as

m
wy = Z &,
i=k

and, consistent with the importance order, we have W 2w, =,..., = Wy, .
Define B; = i«;. Then,

ZJB;'Z i“f=2():“k]=zw.-:
i ; i1 \ k=i

i=1 i=1

and, therefore,
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Additionally, we have:

m I m
Z Wi = E E O Uy
i=1 i=1 k=i
m m l
= E 7By
i=1 k=i k *

i
2
—
-
oS

I
7
»

The best total utility linear program is equivalent to the following linear

program:
Maximize
m
> By s
k=1
subject to
m
E B =1
k=1
Bi>0,k=1,2...,m.
Let k; € {1,2,..., m} be such that S§; = max sy}, then, clearly, an optimal

solution to the program above is given by:
1, ifi= ﬁv;
B = i

0, otherwise.

The objective function value for this program and, therefore, for the best
total utility program is equal to 5t 5 The proof with regard to the worst total
utility objective value is analogous if we replace Maximize by Minimize and
max by min in the above argument. =
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If the importance order is such that some of the criteria are considered to
be of equal importance, then a slight modification of the closed form solution
is necessary. In this case, there are strict equalities in the importance order
constraint set, i.e., w, = w;,, for j in a subset of the integers 1 throngh m
that we deonte by J. Let [ ={1,2,..., m} \ J. Then, BU; and WU, are found
as in Theorem 2.1 with the modification that the index k be restricted to the
set _]A

The following theorem is a trivial result of the definition for importance
order domination given in Section 1 and the best and worst total utility linear

pl'(ng'leTlS ;

THEOREM 2.2.  Alternative k dominates alternative J with respect to a
given importance order if WU, > BU, and BU, + WU,

If WU, > BU, the second condition only excludes the dominance of
alternative k over alternative j iff BU, = WU, = BU; = WU, This is the
case in which all of the attribute values for alternatives k& and J are equal to
the same constant.

An alterative that dominates another by Theorem 2.2 is said to strongly
dominate the other alternative since the definition of importance order
domination is satisfied even if different weight vectors consistent with the
importance order are used on either side of (1.2).

3. RANKING THE ALTERNATIVES

Theorems 2.1 and 2.2 suggest a method that can be used to determine
whether an alternative can be recommeded based on ly on the values in V and
an importance order of the attributes, or if additional input from the DM(s) is
needed. However, if finding best and worst total utilities and then applying
Theorem 2.2 does not yield a complete ranking of the alternatives and the
partial ranking based is not satisfactory, then we suggest two courses of action

for the DM:

(A) Average the best and worst total utilities for each alternative and rank
the alternatives in descending order of the averages.
(B) Provide additional information on the weights.

It will be evident after the discussion of choice (B) that choice (A) will always
rank an alternative at least as high as one that it dominates. Therefore, choice
(A) yields a reasonable ranking of the alternatives based on the limited
information on the weights with very little effort. This rule is especially useful
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if additional information on the weights is difficult to assess. The above
analysis followed by (A) comprise the procedure followed in [10] and [11].
The additional information on the weights that we consider if (B) is
selected is to ask the DM to supply constants ¢, = 1, i = 2, ..., m, which
imply the following relationships:
Wi = Cly, Wy B Cqlby, o, W, | >, w, = 0. (3.1)
We seek conditions under which A, dominates A;. Let Ww > 0 be the

matrix and vector notation for the system of inequalities given above, and let
1 indicate the p™ column of the value matrix V. Then,

wT(vh - vj) = 0, Vw such that Ww = 0
implies that the system
wl (v, — v;)) <0, Ww >0

has no solution. By Farkas” Lemma [1], this is true iff there exists A € ™
such that the following system has a solution:

(vi —v;) =AW, A = 0.

j
Therefore, we have
Ui T S A
Vg — Uy = —C A A
Ynk — Um_f = _'Cm)lm -1 + )lm'

If we define ¢, = 1, this system has nonnegative solution for A iff

P Ui- e vl--} P
Z (Vi - 2 n(;r =0, = 1.,m (3.2)

i=1 i =i

To satisfy the definition of importance order domination, one of the inequali-
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ties in (3.2) must be satisfied as a strict inequality for alternative k to
dominate alternative j.
Conditions (3.2) are ';imildr to results obtained in [7] F'()r €, =€y =
.., =c¢, = 1, the vectors sJ {.s]}, — mj} j= ., n, defined in
(‘) 1) should be compared to determine dominance. Tht, c.ondthons for this
case are equivalent to the results obtained in [3] and [7]. Therefore, without
any additional information on the weights beyond (1.1), alternative k& domi-

nates alternative j iff

=>s..Vi=1,2,...,m,and s, > s. forat least one i. 3.3
Sik ijr ik ij

From (3.3) it is clear that rule (A) will never rank an alternative below one
it dominates. Before stating this formally in a theorem, let us define the best
and worst total utilities as a function of ¢ = {¢,,¢,,...,¢,}". For k =
l,....,mand j=1....,n,¢ =1, let

k
1 v, K
sgle)=—— Y LI,
It 6 e
k €,
ZL"L_
=15

Then, it can be shown that forall j = 1,... n we have
Bb}(c) = mf.x [skj(c)}, (3.4a)

VV{J}(C) = mkin [skj(c)}. (3.4b)

Where BU(c) and ‘fVU((,) indicate, respectively, the best and worst total
utilities of : 1lt(=matwe~ j given the restriction implied by (3.1). The definitions
and discussion above yield the following theorem and related corollary.

TueoreM 3.1, If Ay dominates A, then

Cl. BU(e) = BU(e)
C2. WU, (e) = WU(e).

CoRrOLLARY 3.1, If alternative k dominates alternative j with respect to
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the importance order given by (3.1), then

BUi(c) + WU (c)  BU(e) + ‘{V[’(c)

2 # 2

(3.5)

By Corollary 3.1, ranking the alternatives according to (A) will always rank
an alternative at least as h]g_,h as an alternative that it dominates with respect
to the importance order and does not require the extra work to determine
dominance explicitly by (3.2). If one wishes to insure that an alternative that
is ranked higher by (A) dominates those ranked below it when Theorem 2.2 is
not satisfied, it may be necessary to check if conditions (3.2) are satisfied for
the given c. It may not be necessary, however, to check (3.2) for all
alternative pairs. Note that Theorem 2.2 is sufficient but not necessary, and
Theorem 3.1 is necessary but not sufficient. Therefore, to determine impor-
tance order dominance of A, over another alternative, (3.2) need only be
checked for those A; that do not satisfy the conditions of Theorem 2.2
(otherwise we already know A, dominates A;) but do satisfy Theorem 3.1
(otherwise A, cannot dominate A)).

With the addition of the information provided above, the following steps

summarize the approach:

Step 1. Determine the alternatives and attributes.

Step 2. Evaluate, by some means, each alternative with respect to each
attribute.

Step 3. Discern an importance order (ordinal ranking) of the attributes.

Step 4. Determine best and worst total utilities by Theorem 2.1.

Step 5. Discern whether any alternative satisfies the importance order
dominance of Theorem 2.2 and rank the alternatives where possible.

Step 6. If a unique best alternative, or complete ranking (whichever is
desired) is available as a result of Step 5, recommend it, otherwise proceed to
Step 7a if additional dominance information is desired, or to Step 7b for a
complete ranking based on the current information.

Step 7a. Determine those pairs of alternatives that do not satisfy Theo -
rem 2.2 but do satisfy Theorem 3.1. For these, determine if conditions (3.2)
are satisfied and rank the alternatives where possible. If there are still
unranked alternatives, proceed to Step 7b. or modify ¢ and repeat from Step
4 (using (3.4) in Theorem 2.1).

Step 7b.Rank the alternatives in descending order of the average of
BU/(c) and WU (e = {1, . 1JT by default).

A few comments about the pro{:edure, If one does not want to specify the
importance order beyond (1.1) and there are no two alternatives for which
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both the best and worst utilities are equal, performing Steps 1 through 4
followed by Step 7h will order the alternatives preserving any dominance
relations.

Except for the case mentioned above, the mnking (possib]y partial) ob-
tained by checking condition (3.2) in Step 7a will not conflict with the
ranking obtained in Step 7h. Unless it is desired to know explicitly if the
alternative with a strictly higher average in a pair of alternatives satisfying the
conditions in Step 7a actually dominates the other, checking (3.2) is unneces-
sary. If equal ranking of two alternatives by Step 7b is not acceptable, then
checking (3.2), if the two alternatives have equal values for best and worst
total utilities, may resolve the issue. Otherwise, modifying ¢ may break the
tie.

To illustrate how the above procedure can be applied and presented
graphically, we consider the following example from [11].

4. EXAMPLE: MANAGEMENT PRACTICES ON FARMLAND

In this example, the DM is concerned with the evaluation of different
farming practices on crop land. The criteria with which the DM is concerned
are the predicted values from a simulation model of variables that have an
impact on surface and ground water quality as well as income. These include
the amount of soil eroding from the field, the amount of pesticides and
nutrients leaching below the root zone or in runoff, and net farm income.

The management alternatives considered are as follows. Alternative #1,
the conventional or baseline practice, is continuous corn. Alternative #0 is
continuous corn with a small grain winter cover crop. Alternative #3 is fair
pasture. Information on the field, farm operations, chemical applications, and
the simulation models used to determine the attribute values can be found in
[10] and [11]. Alternatives #1 and #2 include annual applications of Nitrogen
(N), Phosphorus (P), and pesticides Atrazine, Carbofuran, and Sevin, Alterna-
tive #3 required only a single application each spring of N.

The noncommensurable data obtained by simulating the three practices
were converted to values in the interval [0, 1]. The conversion method
discussed in [10] and [11] assigns 0.5 to each attribute value for Alternative #1
(the conventional practice). The criteria and value matrix appear in Table 1.

Since all of the alternatives under consideration are members of the set of
Pareto nondominated alternatives, an importance order of the attributes is
needed to continue the analysis. For this example, it was determined to be

I. N in percolation,
2. Sevin surface loss (in runoff and sediment),

4

=
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TABLE 1
VALUE MATRIX

ALT. #1 ALT. #2 ALT. #3
Sediment Yield 0.5 0.84 1.0
N (surface) 0.5 0.79 0.99
N (percolation) 0.5 0.86 0.02
P (surface) 0.5 0.78 0.99
Atrazine (surface) 0.5 0.84 1.0
Atrazine (percolation) 0.5 0.40 1.0
Sevin (surface) 05 0.83 1.0
Carbofuran (surface) 0.5 0.79 1.0
Net Income 0.5 0.71 0.46

Sediment yield,

Net income,

Atrazine in pel'(:nlz'ltiml,
Carbofuran surface loss,
P surface loss,

N surface loss, and

9. Atrazine surface loss.

e L

Based on this ordering, the solutions to the best and worst linear programs
were determined for each alternative by Theorem 2.1. The results are
indicated in Figure 1. (Note: best and worst total utility for Alternative #1 are
both 0.5.) Notice that Alternative #2 (corn with winter cover crop) clearly
dominates, by Theorem 2.2, Alternative #1 (indicated by the broken line in
Figure 1). The results for Alternative #3 indicate an extreme sensitivity to
weight vectors consistent with the importance order. Clearly, Alternative #1
does not dominate Alternative #3 or vice versa. Additionally, we know by
Theorem 3.1 that Alternative #3 does not dominate Alternative #2 given the
importance order implied by (1.1). This graph indicates that regardless of the
choice of weight, vector Alternative #2 is preferred to Alternative #1.
Averaging the best and worst total utilities, according to Step 7b with
ce=(,1,1,1,1,1,1,1, )" by default, yields the following ranking:

Alternative #2
Alternative #1 (conventional)

Alternative #3.

Suppose that the DM chooses to follow Step 7a in order to determine if
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Fic. 1. Best and worst total utility.

Alternative #2 actually dominates Alternative #3. The conditions in (3.2) are
not satisfied. The DM decides to provide additional information on the
weights since domination is desired. In particular, suppose that information
concerning existing nitrate levels in the groundwater indicate that this at-
tribute should be weighted at least twice as much as the others, that is
w, = 20w, (ie, ¢, = 2.0). The best and worst total utilities with this
additional information were computed according to (3.4) and are indicated in
Figure 2. The shaded areas in Figure 2 indicate those values of the total
utility that are no longer possible given the new information on the weights.
Alternative #2 now dominates Alternative #3 according to Theorem 2.2, but
this additional information does not affect the ranking of the alternatives
based on Step 7b. Alternative #2 is the recommended choice among the
three alternatives based on the importance order provided.
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5. CONCLUSIONS

In this paper, a theoretical basis for obtaining the best and worst total
utilities used in [10] and [11] is provided. In addition, closed form solutions of
the LP’s for the best and worst total utilities were derived. Implementing the
procedure or adding the steps to existing multi-attribute decision methods is
conceptually and practically a simple task. We emphasize that this decision
tool can be used to enhance, not replace, existing methods. Methods to
determine the values in V and the importance order were not discussed.

An advantage of our approach is that if one alternative dominates all others
in the sense of Theorem 2.2, then a recommendation can be made without
ever requiring that a weight vector be specified. The example in the previous
section illustrates that even the basic procedure, Step 1-4 and Step 7h,
without a strongly dominant alternative, will always rank an alternative at least
as high as an alternative it dominates.
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The graphical display of the range of possible values of the total utility of
an alternative given the importance order alerts the DM to the sensitivity of
that alternative to the weights. As we pointed out earlier, this tool may be
particularly useful for group decisions. Importance order dominance of one
alternative over another bolsters confidence in the ranking process, especially
when there are disagreements about specific weights or a reluctance to base a
decision on a single we.ight vector,

The closed form solutions also make it practical to examine the effects of
uncertainty in the value matrix, V on the decision process. If the distributions
of the random elements in V are known, estimates of the expected values of
the best and worst total utilities can be computed, for example, by Monte
Carlo sampling.
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