
Journal of Hydrology, 118 (1990) 209 228 209

Elsevier Science Publishers B.V., Amsterdam — Printed in The Netherlands

[11

PARAMETER TRANSFERABILITY FOR A DAILY RAINFALL

DISAGGREGATION MODEL

T.W. ECONOPOULY1, D.R. DAVIS2 and D.A. WOOLHISER3

'National Weather Service Office, Edwin A. Link Field, Box 18, Johnson City, NY 13790 (U.S.A.)

'Department of Hydrology and Water Resources, University of Arizona, Tucson, AZ 85721

(U.S.A.)

3USDA, Agricultural Research Service, Aridlands Watershed Management Research Unit, 2000

East Allen Road, Tucson, AZ 85713 (U.S.A.)

(Received June 12, 1989; accepted after revision October 1, 1989)

ABSTRACT

Econopouly, T.W., Davis, D.R. and Woolhiser, D.A., 1990. Parameter transferability for a daily

rainfall disaggregation model. J. Hydrol., 118: 209-228.

The model for disaggregating daily rainfall into sequences of individual showers presented by

Hershenhorn and Woolhiser is modified and applied to data from two midwestern stations in the

U.S.A. Statistical tests indicate that number of showers, the start times, shower depths, and shower

durations of simulated sequences compare favorably with observed sequences, and that the disag

gregation model parameters identified at one gage provide a satisfactory fit for three test stations

up to 470 km away, provided the test stations are in the same climatological region.

INTRODUCTION

Methods that use readily-available daily rainfall data to stochastically

simulate short-time period rainfall have recently been developed. The

simulated short-time period rainfall may then be used as input for time-varying

infiltration models allowing them to be used at locations where only daily

rainfall records are available. At least two methods of disaggregating daily

rainfall into shorter time periods exist in the literature — the discrete-discrete

(D-D) and the discrete-continuous (D-C), (Woolhiser and Goodrich, 1988). The

D-D method disaggregates the discrete process of daily rainfall into the

discrete process of a 60min (or less) rainfall. The methods devised by Betson et

al. (1980), and Srikanthan and McMahon (1985) are good examples of the D-D

method. The D-C method as developed by Hershenhorn (1984) and Hershen

horn and Woolhiser (1987), disaggregates the discrete daily rainfall process

into a continuous process of wet periods (showers) and dry periods within a

day. The showers can then be disaggregated into a continuous intensity

process (Woolhiser and Osborn, 1985). The D-C method appears to require

fewer parameters than the D-D method. Hershenhorn and Woolhiser (1987)
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successfully developed a method of disaggregating daily summer (July and

August) rainfall, from various locations in southeastern Arizona, into a

continuous process of wet and dry periods within a day. If this technique is to

be used on a large scale (i.e. nationwide) the technique must be flexible enough

to handle regional variations in the daily rainfall process. Also, parameter

values obtained at one location should provide some information about the

daily rainfall process at nearby locations, i.e. the parameters should be trans

ferable. In this paper we report on an investigation of the adaptability of

Hershenhorn's techniques to the midwestern United States, and the transfer-

ability of the model parameters within the Midwest.

DATA SET

The breakpoint precipitation data (rainfall depth is tabulated for each time

the intensity changes within a shower) were collected on experimental

watersheds operated by the Agricultural Research Service and were obtained

on magnetic tape from the USDA Hydrology Laboratory. Two of the stations,

Hastings, Nebraska and McCredie (now Kingdom City), Missouri, were used to

determine the feasibility of using the daily disaggregation model in the

midwestern United States for the period May-August. Three additional

locations (Fennimore, WI; Monticello, IL; Treynor, IA), were used to determine

if the parameters obtained at Hastings, or McCredie could be used to disag

gregate daily rainfall at other locations. Some precipitation statistics for

May-August for the stations investigated are listed in Table 1. The annual

precipitation cycle for this geographic region has a summer maximum and a

winter minimum. The maximum monthly precipitation usually occurs during

June, and over half the total annual precipitation occurs during the months of

May-September. Approximately 80% of the summer precipitation has been

classified as frontal in nature (Rudd, 1961). In contrast, most of the rainfall

during the July and August season in southeastern Arizona is a result of local,

convective, air mass type thunderstorms (Trewartha, 1981). Figure 1 illustrates

the precipitation types in North America with regionalization based on the

TABLE 1

Selected precipitation statistics

Location

Hastings

McCredie

Fennimore

Monticello

Treynor

Period of

record

1938-1967

1941-1974

1939-1968

1941-1974

1964-1977

Mean annual

precipitation (mm)

574.5

909.6

814.1

819.2

811.3

Mean monthly

precipitation (mm)

May

90.9

111.5

94.0

85.1

122.0

June

125.2

116.3

125.0

97.3

118.0

July

73.2

90.2

106.0

101.0

90.9

August

65.8

74.7

95.3

88.1

94.2
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1 HASTINGS. NE

2 McCREDIE, HO

5 FENNIMORE, Wl

4 MONTICELLO, IL

5 TREYNOH.IA

6 WALNUT GULCH, At

Fig. 1. Location of test and primary sites within precipitation regions of North America based on

the annual march of precipitation (after Trewartha, 1981).

characteristics of the annual march of precipitation (Trewartha, 1981). All five

stations fall within type 3; Hastings is in subtype 3c and the other stations are

in subtype 3d. Precipitation at Hastings exhibits the typical monthly variation

for subtype 3c. The crest of the precipitation profile is characteristically sharp,

with June usually being the wettest month. It is common for the profile to halt

its decline in August and September, so that a bench or a hint of a slight

secondary September maximum may be evident. The monthly precipitation

profile of McCredie is typical of a location in the subtype 3d. This subtype

experiences more precipitation than 3c and occasionally has a double

maximum in the summer. The first peak usually occurs in June (occasionally

May or July) and the second peak occurs most commonly in September.

MATHEMATICAL MODEL

The mathematical model used in this study was described in detail by

Hershenhorn (1984) and Hershenhorn and Woolhiser (1987), and will be briefly

described here. Let £(t) denote the continuous process of precipitation intensity

at a point in space. <J(0 is non-negative and will take on positive values over

random intervals of time. A possible realization of this function in an arbitrary

period of time is illustrated in Fig. 2. Let a positive <;(<) pulse which is bounded

on both sides by £(0 of zero for ten or more minutes be defined as a shower. The

starting time of the nth shower is Tn, the ending time is T'n, and the duration

is Dn. A complete shower is defined as one that occurs within one day, and a
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Y..
ijn

Complete shower

^ Partial shower

(b) day j j + l j + 2

A

Fig. 2. (a) Possible sample function of the rainfall intensity process (from Hershenhorn, 1984). (b)

Definition sketch of complete and partial showers.
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partial shower is one which begins on one day and ends the following day. Let

Zy represent the total rainfall on day; ofyear i and let N^ represent the number

of showers on that day. Then:

Ntj = Ncij + Afo (1)

where: Ncij = the number of complete showers (Ncij = 0, 1, 2, . . .), N^ = the

number of partial showers (Npij = 0, 1, 2).

Let Tjjk represent time in hours from midnight to the beginning of the Jfeth

shower and let Y^ represent the depth of the fcth shower (partial or complete).

Thus, a shower which occurs over a two-day period will be separated into two

partial showers with depths Y^v and Y|v,.u.

By definition:

ZtJ = I Yllk (2)

Thus each day with an observable amount of precipitation is associated with

random variables which describe the number of complete and partial showers

(NtJ), shower depth (Vn) and duration (D,,), and shower starting time (7^-).

The rainfall process is assumed to be stationary on an annual basis but may

have seasonal cycles.

DATA ANALYSIS

The Hastings and McCredie data were analyzed to determine if the model

developed by Hershenhorn (1984) for southeastern Arizona could be used for

the two time periods, May-June and July August at Midwestern locations.

The analysis for the disaggregation of daily rainfall into individual showers

requires the following steps:

(1) Determine what special procedures are required for the partial showers

(those showers which continue past midnight).

(2) Develop the appropriate form for the joint distribution of the number of

showers per day and the daily rainfall depth. Estimate the values for the

required parameters.

(3) Devise a procedure to disaggregate the daily rainfall amount Zti into TV",

showers (of depth YiJk and duration D,lk), and estimate the values for the

required parameters.

(4) Determine the form of the distribution function for the shower starting

time, T,jk, and estimate the values for the required parameters.

(5) Determine the form of the joint distribution of shower amount Yijk and

duration D,j,t, for the complete and partial showers, separately. Estimate the

values for the required parameters.

In the following sections we will omit the subscripts i andj.

Comparisons between partial and complete showers

A shower is defined as any period in which the rainfall is > 0.01 in. (0.254 mm)

and includes no periods of zero intensity exceeding lOmin in duration. Partial
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Mean, standard deviation, and coefficient of skew for the duration ofcomplete and partial showers

Location Period Shower

type

Mean

(min)

S.D.

(min)

Coeff.

of skew

Hastings

McCredie

TABLE 3

May-June

Jul.-Aug.

May-June

Jul.-Aug.

Complete

Partial

Complete

Partial

Complete

Partial

Complete

Partial

157.2

175.4

137.5

137.9

93.8

186.3

91.1

150.8

177.4

203.2

137.5

156.5

112.0

218.6

100.4

148.7

2.415

2.568

1.725

1.713

2.659

2.336

2.113

1.221

Mean, standard deviation, and coefficient of skew for the depths of complete and partial showers

Location Period Shower

type

No. of

Obs.

Mean

(mm)

S.D.

(mm)

Coeff.

of skew

Hastings

McCredie

May-June

Jul.-Aug.

May-June

Jul.-Aug.

Complete

Partial

Complete

Partial

Complete

Partial

Complete

Partial

540

129

432

72

1107

129

770

69

8.43

10.90

8.08

8.86

5.56

8.20

6.35

7.80

11.02

17.48

10.46

14.86

7.16

10.82

8.71

9.91

2.68

3.94

3.08

3.12

2.65

2.19

3.27

1.61

showers usually begin late at night. If a location experiences an abundance of

showers occurring near midnight, that location will also have a high frequency

of partial showers. The mean, standard deviation, and coefficient of skew of the

shower duration and depth for the complete and partial showers at Hastings

and McCredie are listed in Tables 2 and 3. The partial showers have somewhat

larger depths and considerably longer durations than the complete showers.

However, it is possible that the differences in the mean and standard deviation

in depths can be attributed to sample variation. Accordingly, we wish to test

the hypothesis that the samples of partial shower depths and complete shower

depths came from the same population. We found that the mixed exponential

distribution provided a better fit than the exponential, gamma or Weibull

distributions. For each station and for each season the mixed exponential

parameters were estimated for the depths of complete and partial showers

individually (6 parameters) and collectively (3 parameters). The likelihood

ratio test (Hoel, 1971) was used to test the null hypothesis (Ho) that the

distributions ofdepths ofpartial and complete showers may be described by one

parameter set against the alternative hypothesis that two parameter sets are
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required. The likelihood ratio test indicated that the null hypothesis could not

be rejected at the 0.01 level except for May-June of McCredie. Because the

partial showers represent only 10% of the total showers for this period it

appears that we will not introduce serious error if we assume that the depths

of complete and partial showers have the same distribution. Note that

throughout this analysis we have used midnight as the time of observation

(TOB) for daily rainfall. Obviously the number and characteristics of partial

showers may change if the TOB is changed.

Distribution of number of showers and daily rainfall depth

The joint distribution of the number of showers and the daily rainfall depth

can be written as a product of the conditional distribution of number of

showers given daily depth and the marginal distribution of daily depth:

HNJ.(n,z) = GKZ(n\z)Fx\z) (3)

where: N = the number of showers = Nf + NQ and Z' = the daily precipita

tion depth minus a threshold.

Because the lower limit of observation is 0.01 in. (0.254 mm), the threshold

was set to 0.009 in. (0.229 mm) to include all observations. Goodness of fit

statistics were calculated for the exponential, gamma, mixed exponential and

Weibull distributions for the marginal distribution of Z' for both time periods

for each station.

The Mixed Exponential Distribution:

z\
j (4)

provided the best fit for three out of the four data sets. The one-sample Kol-

mogorov -Smirnov (KS) and the /2 goodness of fit tests were used to test the null

hypothesis, (Ho), that each of the data sets were samples from mixed exponen

tial distributions. According to the KS test at the 5% significance level. Ho

could not be rejected for any of the data sets. According to the y2 test at the

same significance level. Ho was accepted for both time periods at McCredie and

rejected for both time periods at Hastings. It should be noted that with large

sample sizes and with artifacts introduced by processing analog rainfall charts,

it is very difficult to obtain fits that pass the #'* test. Based on these results we

used the mixed exponential as the marginal distribution of daily rainfall,

anticipating possible problems with ■£ testing of the joint distribution of

number of showers and daily rainfall depth for Hastings.

Hershenhorn (1984) found that the shifted negative binomial (SNB) distribu

tion provided a good fit for the conditional distribution of the number of

showers given daily depth. The probability mass function of the SNB can be

written as:

P(N = n) = (I ^ " 2)pr(l - p)" '; n = 1, 2, ...

0; 0 < p < 1 (5)
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Hershenhorn (1984) allowed/? and r to vary as functions of the daily rainfall

depth. The southeastern Arizona (Walnut Gulch) and the Hastings data

indicated that the expected number of showers given daily depth asymptotic

ally approached a limiting value (Fig. 3). However, as also illustrated in Fig.

3, the McCredie data suggested that the expected number of showers asymptot

ically approached a straight line with a positive slope. Modifications were

made in the functional forms ofp and r used by Hershenhorn (1984), to allow

for the expected number of showers given daily depth to approach a straight

line with a positive slope or a zero slope. It is possible that with very large daily

rainfall depths the expected number of showers might even decrease. However,

the data for these locations did not support such a functional form. The

modified functional forms for p and r are:

p = exp(-A,Z') (6)

r = (E{N\Z'} - 1.0)p/(1.0 - p) (7)

E{N\Z'} = A2 + A3Z' + (1.0 - A2)exp(-A4Z') (8)

where: E{N\Z'} is the expected number of showers given a daily precipitation
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Fig. 3. Expected number of showers vs. daily rainfall depth.
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TABLE 4

Parameter values for the shifted negative binomial distribution*

Station

Hastings

McCredie

Period

May-June

Jul.-Aug.

May-June

Jul.-Aug.

Parameters

A,

(mm'1)

0.01057

0.01417

0.04472

0.03201

At
(mm"1)

1.387

1.623

4.162

4.677

(mm"1)

0.00288

0.00970

0.0140

0.00948

A,

(mm"')

0.0492

0.0459

0.0620

0.0590

0 See text for functional form.

amount, and Z' is daily precipitation depth minus a threshold of 0.009 in.

(0.229mm). A,, A2, A3 and A4 are parameters.

Numerical maximum likelihood techniques were used to obtain the

parameter values for the midwestern data shown in Table 4.

The bivariate distribution function may be written by utilizing the

expressions for the mixed exponential and shifted negative binomial distribu

tions and eqn. (3):

-1,![("TV-*>-]
fa -s (1 - a) -si

bexpT + ~^exp-JI ds (9)

where: N is the number of events on a day with rainfall Z' + 0.009 in.

(0.229 mm) and s is a dummy variable of integration.

A x2 goodness of fit test was used to test the hypothesis (Ho) that the sample

data were taken from the identified bivariate distribution. At the 0.01 level, Ho

could not be rejected for both time periods at McCredie; however, Ho was

rejected for both time periods at Hastings. We conclude that the SNB with

functional forms for the parameters r and p given by eqns. (6}-(8) is acceptable

for the McCredie data. Because the mixed exponential was rejected as the

marginal distribution of Z' for Hastings we cannot draw definite conclusions

regarding the SNB and the functional forms for r and p for Hastings.

Individual shower depths

The daily depth Z must be distributed among N showers and the sum of the

individual shower depths which occur within a day must equal the daily

rainfall depth. The ratio technique developed for southwestern data (Hershen-

horn, 1984; Hershenhorn and Woolhiser, 1987), also worked well with the

Midwestern data. The ratios are defined in the following expressions:
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(a) Two showers per day:

Rl = (depth of first shower)/(daily total) = YJZ (10)

(b) Three showers per day:

R2 = [Y, + Y3]/Z (11)

R3 = Y2I[Y2 + Y8] (12)

(c) Four showers per day:

RA = [Y3 + YA]/Z (13)

i?5 = Y,j[Yx + y2] (14)

J?6 = YJ[Y3 + Y4] (15)

Following Hershenhorn and Woolhiser (1987), we used the beta-Fourier

distribution for the ratios Rl and R2 and the uniform distribution for R3-R6.

The beta-Fourier consists of a beta distribution with a superimposed sine term:

Mr) = ww r"~')(1" r)(""1> + 0sin(2;tr) (16)
where 0.0 < r < 1.0; a, /? > 0; and 0 is constrained such that:

|0sin2rtr| < ^|^-»(1 - r^" (17)

Procedures described by Hershenhorn and Woolhiser (1987) were used to

disaggregate daily totals for days with five and six showers. Although 1% ofthe

wet days at McCredie had more than six showers, we used six as a practical

maximum. The parameter values obtained for the beta-Fourier distribution for

each time period at the two midwestern stations are listed in Table 5.

Starting times for complete showers

The starting time of a shower may be important because of its effect on

antecedent moisture conditions. Only the starting times for the complete

TABLE 5

Parameter values for the beta-Fourier distribution for ratios ft, and R.

Station

Hastings

McCredie

Period

May-June

Jul.-Aug.

May-June

Jul.-Aug.

Parameter

a

1.192

1.390

1.419

1.224

P

1.054

0.923

1.019

0.795

0

0.3003

0.5228

0.2959

0.0490

'See text for functional form.
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showers need to be generated because a partial shower starts either at

midnight or at midnight minus the duration ofthe partial shower. Hershenhorn

(1984) used the mixed beta distribution to describe normalized starting times

for complete showers. The times were normalized by dividing the starting

times, in hours from midnight, by 24.

The mixed beta distribution has several undesirable features. The distribu

tion is not necessarily periodic; however, the process that we wish to describe

is so. The distribution does not appear to be analytically integrable, and if

numerical integration is used difficulties may arise at the bounds where the

distribution may take on infinite values. To avoid the deficiencies of the mixed

beta distribution, it was replaced by a Fourier density function with a mean of

one and up to two harmonics. The Fourier is periodic and easily integrated. The

Fourier distribution has the following form:

gT(t) = 1.0 + a,cos(27rt + -/j) + a2cos(4nt + y2) (18)

0 s£ t s$ 1; and a,cos(2nt + •/,) + a2cos(47t< + yt) s£ 1.0

Parameter values for the Fourier distribution were obtained by numerical

maximum likelihood techniques and are listed in Table 6. The one-sample KS

test was used to determine whether the fitted distributions individually

described the subsets of the one-per-day showers, two-per-day showers, and up

to six or more showers per day. Therefore, six subsets were tested for each

period at each station. At the 0.01 level, the null hypothesis could not be

rejected for any of the six subsets.

Although it is clear that the starting times of multiple showers within a day

cannot be strictly independent because showers have finite durations and

cannot overlap, we found that the approximation of independence used by

Hershenhorn and Woolhiser (1987) gave quite acceptable results for both

Hastings and McCredie. Therefore, if N showers are simulated for a day, N

starting times are sampled independently from the Fourier distribution and are

ordered from earliest to latest. The starting times for any simulated overlap

ping showers are adjusted to maintain a minimum of lOmin between showers.

TABLE 6

Parameter values for the Fourier distribution" of shower starting times

Station

Hastings

McCredie

Period

May-June

Jul.-Aug.

May-June

Jul.-Aug.

Parameter

0.4986

0.6511

0.0454

-0.2551

"/i

-0.3784

-0.3446

-0.3188

1.563

-0.1180

-0.1924
*

- 0.1236

"2

0.1227

1.223

0.9312

*/(0 = 1.0 + a,cos(2n< + •/,) + a2cos(4n( + y2).

* Not significant according to AIC (Akaike, 1974).
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It has been demonstrated (Wallace, 1974) that in many parts of the United

States, heavy precipitation displays a pronounced diurnal variation.

Therefore, the distribution of time of occurrence should be conditioned on the

shower amount. For days with one shower the CDF of the conditional distribu

tion of time of occurrence given depth may be written as:

f&w (19)
o

Because gY(y) is constant with respect to time, eqn. (19) may be rearranged to:

Fm(t\y)gY(y) = \ gT(s)fm(y\s)ds (20)
0

gY(y) may be calculated by:

24

gy(y) = j gT&fvAyls)** (21)
o

The expression for gT(s) is the Fourier distribution (eqn. (18)) and the distri

bution for the conditional distribution of depth given time is the exponential-

Fourier:

] (22)

where:

/(0 = t + ot,cos[27rt + ?i) + <x2cos(4nt + y2) (23)

According to eqn. (22), shower depths are distributed exponentially and the

mean shower depth X(t) fluctuates diurnally according to eqn. (23).

Joint distribution of shower duration and depth

The joint distribution of shower duration and depth may be written as:

hrJ>(y,d) = BvAdWAy) (24)

where d is the shower duration and y is the shower depth minus a threshold

amount. The shower depth is obtained from the shower ratio technique. Her-

shenhorn (1984) and Hershenhorn and Woolhiser (1987) used regression to

predict expected log duration from log depth, and used the normal distribution

with a mean equal to zero, and the standard deviation equal to the standard

error of estimate, as the predictor of spread about the regression line.

Preliminary analysis indicated, for the midwestern stations, that a threshold

amount of 0.099 in. (2.514 mm) subtracted from the complete shower depths

facilitated fitting the regression line to the transformed data. The best linear

relationship for complete showers occurred when the duration was trans

formed to its natural log and the depth was untransformed. The intercept, slope
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TABLE 7

Regression statistics for In (duration (min)) vs. depth (ram) relationshp for complete and partial

showers"

Station

Hastings

McCredie

Period

May-June

Jul.-Aug.

May-June

Jul.-Aug.

Complete showers

y-Inter.

0.3656

0.4098

0.04183

-0.1183

Slope

0.0244

0.0124

0.0319

0.0364

SEE

1.052

1.056

0.9468

0.9643

Partial showers

y-Inter.

0.1774

-0.1734

0.3087

0.1841

Slope

0.0261

0.0366

0.0296

0.0183

SEE

1.230

1.159

1.081

1.228

'Threshold for the complete showers is 0.099in. (2.514mm), and the threshold for the partial

showers is 0.009 in. (0.229mm).

and standard error of estimate for the regression lines, are listed in Table 7. A

correlation ratio test (Kendall and Stuart, 1979) showed no significant

deviation from linearity at the 0.05 level for all four data sets. The residuals

about the regression were examined for normality. Visual inspection revealed

that the residuals appeared to decrease in magnitude with increased depth. To

determine whether the standard deviation of the residuals was constant and

whether the residuals were normally distributed, the x2 goodness of fit test was

performed on four subsets of each data set (16 subsets in total). The subsets

from each set had approximately the same number of observations. The

hypothesis that the residuals came from a normal distribution with a mean

equal to zero and the standard deviation equal to the standard error ofestimate

was rejected, at the 0.01 level, for four of the subsets. When the residuals from

the four data sets, without breaking up into subsets, were tested for normality,

Ho was rejected at the 0.01 level for only the McCredie, July and August data.

The log duration vs. depth relationship for partial showers was also tested

for linearity and normality of the residuals. The threshold subtracted from the

shower depth was at 0.009 in. (0.229 mm). The four data sets transformed in this

manner, passed all the significance testing at the 0.05 level. The intercept, slope

and standard error of estimate of the regressions fitted to the partial showers

are listed in Table 7.

SIMULATION

A simplified flow chart of the daily disaggregation simulation model is

shown in Fig. 4. The general approach is similar to that of Hershenhorn and

Woolhiser (1987). The method examines rainfall amounts on days./ — l,j, and

j + 1. If two successive days are wet a partial shower can be simulated with

probability equal to the ratio of number of partial showers to the total number

of wet-wet transitions observed in the record. Replacing the mixed beta distri

bution by the Fourier distribution should decrease simulation time and

increase model accuracy. The functional relationship between depth and
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Fig.4.Simplifiedflowchartofdisaggregationmodel.

durationwaschangedfromlogdurationvs.logdepthtologdurationvs.depth.

Thepreviousmodelsimulatedthedurationsofallshowers;nowthemodeldoes

notsimulatethedurationsofcompleteshowerswithlessthan0.10in.(2.54mm)

ofrainfall.Thedurationsfortheseshowersweresetequaltothemeanduration

oftheshowersfromthisclass.Thismodificationshouldincreasesimulation

speedandshouldnotadverselyaffectmodelapplicability.Hershenhorn's

(1984)modeldidnotallowthedurationofashowertoexceed8h.Themodified

modelallowsshowerstobeupto24hlong.However,ifthesumofthedurations

oftwoormoreshowersexceeds24h,thedurationsarereducedinproportion

totheiroriginaldurationsoastoretainaminimumof10minbetweenshowers.

ThemodifiedmodelwasusedtodisaggregatedailyrainfallatHastingsand

McCrediefortheMay-JuneandtheJuly-Augustperiods.Atwo-sampleKS

testwasusedtotestthenullhypothesis(Ho)thatthesimulateddistributions

ofshowerstartingtimes,depthsanddurationscamefromthesameparent

distributionasthecorrespondinghistoricaldistributions.Thex2testwasused

totestHoforthecomparisonsbetweenthedistributionsofnumberofshowers

perday.Inallcasesthenullhypothesiscouldnotberejectedatthe0.01level

(Table8).Althoughthedistributionofthetimeintervalbetweenshowersisnot

explicitlyaccountedforinthedisaggregationmodel,acomparisonof

historicalandsimulatedtimeintervalsshowedaremarkablygoodagreement

ofmeans,standarddeviationsandskewcoefficients(Econopouly,1987).
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butions of starting times at Monticello for the July-August season. The

historical distributions from Hastings were mostly different from those at the

test stations. The historical distributions of shower starting times from

Treynor and Hastings, for both time periods, could be considered to be from the

same parent distribution at the 0.05 level. Also, at the same significance level,

the distribution of shower depths from Monticello, July-August, compared

favorably with showers from Hastings.

TABLE 9

Distances from

Station

Fennimore

Monticello

Treynor

test stations to primary stations

Distance (km) to:

Hastings

676

772

260

McCredie

470

322

445
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TABLE 8

Results of statistical tests between the distributions of historical and simulated showers at Hast

ings and McCredie

Station

Hastings

McCredie

Time period

May-June

Jul.-Aug.

May-June

Jul.-Aug.

Level which Ho'

for distributions

Starting

times*

0.05

0.05

0.05

0.05

' is not rejected

of:

Depths'1

0.05

0.05

0.01

0.01

Durations'"

0.05

0.05

0.05

0.01

No. of

showers

per dayc

0.01

0.05

0.01

0.05

'Ho is the hypothesis that the simulated and historical distributions come from the same parent

distribution.

b Two-sample KS test was used.

c/" test was used.

TRANSFERABILITY OF MODEL PARAMETERS

To be useful, the parameter values for the disaggregation model should be

applicable over climatologically similar areas. In order to determine whether

the parameters developed from the Hastings and McCredie stations could be

used in other locations in the Midwest, daily rainfall data from Fennimore,

Treynor and Monticello were disaggregated into showers using the Hastings

and McCredie parameter sets. These locations will be referred to as the test

stations, whereas McCredie and Hastings will be referred to as the primary

stations.

The monthly profiles of precipitation for the test stations are illustrated in

Fig. 5. The monthly precipitation patterns at the test stations resemble those

at McCredie more than those at Hastings. The distances from each test station

to the primary stations are listed in Table 9.

A comparison of historical data at the primary and test stations shows that

stations in the same climatic zone (Fig. 1) have very similar characteristics.

Hastings has fewer showers with larger depths and longer durations than the

test stations. The shower statistics at McCredie are fairly similar to those at

the test stations. The historical cumulative distribution functions (CDFs) of

duration, depth and starting time of the showers from the test stations were

compared to the corresponding historical CDFs from each of the primary

stations. The two-sample KS statistic was used to test the hypothesis (Ho) that

the historical CDFs came from the same parent distribution. The /2 statistic

was used to test Ho for the comparison between the number ofshowers per day.

When the comparisons were made with McCredie data, Ho was rejected at the

0.01 level only for the comparison between the historical and simulated distri-
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To determine whether the parameter sets developed for the primary stations

were transferable, they were used to disaggregate daily rainfall data collected

at the test stations. The two-sample KS statistic was used to test the null

hypothesis (Ho) that the simulated and historical samples were from the same

population. Test results are shown in Tables 10 and 11. Most of the comparisons

between the simulated distributions obtained using parameters from Hastings

and the historical distributions from the test stations did not pass significance

testing, at the 0.01 level. The distributions for which Ho was not rejected were

between the distribution of starting times at Treynor, May-June, and the

distributions of duration for Treynor, July-August, and Monticello, both time

periods. Recall that for most of the comparisons between the historical distri

butions at Hastings and the test stations Ho were also rejected. Most of the

simulated distributions obtained using parameters from McCredie and the

historical distributions from the test stations were not significantly different,

at the 0.05 level. Ho was rejected at the 0.01 level for the distributions ofshower

depths from Fennimore for both time periods and the distribution of shower

durations from Fennimore for July-August. Ho was also rejected for the distri

bution of shower starting times from Monticello, July-August. Recall that the

historical and simulated distributions of shower starting times from

Monticello and McCredie were also significantly different, at the 0.05 level.

The greatest difference between the simulated mean and historical mean

shower depths at Fennimore was only 0.021 in. (0.533 mm) and when showers

TABLE 10

Results of statistical tests between the simulated distributions using Hastings' parameters and the

historical distributions at the test stations

Station

Fennimore

Monticello

Treynor

Time period

May-June

Jul.-Aug.

May-June

Jul.-Aug.

May-June

Jul.-Aug.

Level which Ho* is not rejected

for distributions of:

Starting Depths'1

times*

* *

* *

* *

* *

0.05 *
* *

Durations'1

s

* i

* i

0.05

0.05 '
# 1

0.05 '

No. of

showers

aer dayc

* Ho is the hypothesis that the simulated and historical distributions come from the same parent

distribution.

b Two-sample KS test was used.

CX2 test was used.

* Not accepted at the 0.01 significance level.



226

TABLE 11
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Results of statistical tests between the simulated distributions using McCredie's parameters and

the historical distributions at the test stations

Station

Fennimore

Monticello

Treynor

Time period

May-June

Jul.-Aug.

May-June

Jul.-Aug.

May-June

Jul.-Aug.

Level which Ho'

for distributions

Starting

times'"

0.05

0.05

0.05
*

0.05

0.05

1 is not rejected

of:

Depths'1

*

*

0.05

0.05

0.05

0.05

Durations'1

0.05
*

0.05

0.05

0.05

0.05

No. of

showers

per day0

0.05

0.05

0.05

0.05

0.05

0.05

■' Ho is the hypothesis that the simulated and historical distributions come from the same parent

distribution.

b Two-sample KS test was used.

'■/? test was used.

* Not accepted at the 0.01 significance level.
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Fig. 6b. Observed and simulated distributions of shower depths, Fennimore, WI, July-August.

over 0.10 in. (2.54 mm) were compared, Ho could not be rejected at the 0.05 level.

Observed and simulated distributions of shower depths for Fennimore, for the

two periods are shown in Fig. 6. The curves virtually coincide at depths greater

than 0.5 in. (12.7 mm), suggesting that the simulated values would be acceptable

for most hydrologic applications.

DISCUSSION AND CONCLUSIONS

The technique for disaggregation of daily rainfall into the intermittent

shower process reported by Hershenhorn (1984) and Hershenhorn and

Woolhiser (1987) for southeastern Arizona required some modification for

application in the midwestern United States. Specifically, the functional rela

tionship between the expected number of showers per day given daily rainfall,

was written in a more general form, and it was found that the best linear

correlation between shower duration and depth was achieved with a log trans

formation of duration and no transformation for depth. The disaggregation

procedure was also improved by using a Fourier distribution rather than the
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mixed beta distribution for shower starting time and by conditioning the

distribution of the time of occurrence of single storms upon the storm (or daily

rainfall) depth.

Analysis of rainfall data from Hastings, NE and McCredie, MO revealed

that the same stochastic structure of the disaggregation process could be used

but that the parameters of most distributions were different. However,

parameters estimated at McCredie could be used to disaggregate daily rainfall

at Treynor, Monticello and Fennimore, a distance of up to 470 km. Because

Hastings and McCredie are in different climate zones it is possible that

boundaries of precipitation regions based upon the annual march of precipita

tion (Trewartha, 1981) or other considerations can be used to determine the

transferability of disaggregation model parameters. For use in obtaining input

for infiltration models in areas where only daily rainfall is available, the model

has been generalized to allow operation in the Midwest as well as in southeas

tern Arizona. Transferability of the disaggregation parameters over fairly

large distances within climatologically homogeneous regions was also shown

to be feasible in the Midwest as well as in southeastern Arizona. Further

analysis will be required to establish limits on the applicability of this disag

gregation model and the local transferability of its parameters.
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