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Abstract

The classical methods for interpolating and spatial averaging of
precipitation fields fail to quantify the accuracy of the estimate. On
the other hand, kriging is an interpolation method for predicting values
of regionalized variables at points (punctual kriging) or average values
over an area (block kriging).

This paper demonstrates the use of the kriging method for mapping
and evaluating precipitation data for the state of Arizona. Using 158
rain gage stations with 30 years or more of record, the precipitation
over the state has been modeled as a realization of a two dimensional
random field taking into consideration the spatial variability
conditions.

Three data sets have been used: (1) the mean annual precipitation
over the state; (2) the mean summer rainy season; and (3) the mean
winter rainy season. Validation of the empirical semi-variogram for a
constant drift case indicated that the exponential model was appropriate
for all the data sets. In addition to a global kriging analysis, the
data have been examined under an anisotropic assumption which reflects
the topographic structure of the state.

Introduction

Several interpolation techniques such as arithmetic mean, linear
interpolation or the nearest neighbor (Thiessen Weight) method, have
been widely used for areal mapping of precipitation fields (Hall and
Barclay, 1975). Other techniques have been reviewed by Creutin and
Obled (1982). A relatively new technique is presented and evaluated in
this paper referred to as kriging (after D. G. Krige). This technique
was originally developed for geoscience applications. It has been
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applied recently in a few cases to the mapping of precipitation fields
(Delfiner and Delhomme, 1975; Montmollin et al., 1980; Chua and Bras,
1982; Bastin et al., 1984; Obley and Creutin, 1986).

Matheron (1971) coined the term "regionalized variable” to describe
variables which can be characterized from a certain number of
measurements which identify spatial structure. The optimal estimator
(in the current case for the average areal precipitation) is a linear
minimum variance unbiased estimator which requires knowledge of the
variogram of the random variable (precipitation) as a function of space.
Therefore a theoretical variogram model must be chosen and its
parameters have to be estimated prior to the interpolation.

The kriging technique, which was adapted from various resources
(Delfiner and Delhomme, 1975; Journel and Huijbregts, 1978; Delhomme,
1978), is briefly introduced below.

Theoretical Background

Let x,, KgseoerXy be the sample locations with given precipitation
values of Z(x.)5 Z(%,),....2(x_) and x, is the unsampled location. Then
the value o% preéﬁpitatio% in the unsampled location, Z(x,), is
estimated as a linear weighted combination of n known surrounding data,

depending on distance from the unsampled location:

N
z* (xo] - E: A 2 (xi] i=1...n (1)
i=1

where the weights A

{ are determined such that Z*(xo) is an unbiased est-
imate of Z(xo):

E z*[xo] - 2(xo)

and the estimati;n variance is mihimnm:

- 12

E| 2 -z ini (3)
L (xO] [xo] - minimum

-0 (2)

where E[¢] is the expectation. Substituting equation (1) into equations
(2) and (3) yields:

g { 12- lxi 2(xy) - 2(x) | = 0 (%)
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N 2
E Z Aq Z(xi] - Z(xo) minimum (5)
i=1
which leads to the following system:
N N
Lol s) remcfoxy) ) ut @
i=-1 i=1
where C(x,), Z(xj) - E[Z(xi. %;)] is the covariance and u4 is a Lagrange

multiplie% which’was employed to obtain the weights.

In the kriging system the estimation variance is written in terms
of differences between two sample locations. The minimization yields
the replacement of C(xi, xj) by "(xi' xj):

N
Z A u[xi, xj] +pu=- u[xo, xj) vj (7a)
iN- 1

Xi -] (7b)
i=1

which yields the semi-variogram equations:

2
u(h)-%E[[Z(x-ﬁ-h)-Z(x)] ] (8a)

or.
v(h) = % var [z (x + h) - Z(x)] (8b)

where v(h) is the semi-variogram function, h is the distance between
sample locations (also called the lag) and var(e¢) is the variance. The
semi-variogram wv(h) is a graph which relates the differences or incre-
ments of the regionalized variable Z to the distance h between the data
points. When there is a trend or drift in the data set, the residuals,
R(x), are used in Eq. 8 instead of the realizations, Z(x), to estimate
the semi-variogram. An empirical semi-variogram, v_, can be calculated
from the given set of observations by using the E%llowing numerical
approximation:

RV [ZN[he]] ZN 1[2 CELE Z[xi]]z 9)

where N(he) is the number of pairs of points a distance he apart (Olea,
1975).
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In order to solve Eq. 7, one of several common theoretical forms of
Eq. 8 must be used in order to visually fit v to Ve (Delhomme, 1979).
Once the theoretical semi-variogram has been chosen, four criteria can
be ugsed to determine the correctness of the model and to adjust its
parameters:

(1) mean kriged estimation error:

n n
1/n Z [7‘["1] . Z*[xi]] - 1/n Z e, =0 (10)
i=1 {=1

where ¢, is the difference between the kriged and the known point value
(this térm should approach 0).

(2) mean standardized squared estimation error:

2
n p n
1/n Z {Z(xi] . Z*(xi]} /s: - 1/n Z [ei/si]z =1 (11)
{=1 i=1

*
where s 1 is the estimation standard deviation (this term should approach
1).

(3) sample correlation coefficient between thg‘ es&imation values, Z*,
and the standardized estimation values, (2 - Z )/s .

This term should approach 0.

(4) sample correlation coefficient between the estimation values, Z*,
and the known values, Z (this term should approach 1).

Data Collection

Annual average, summer and winter averages of rainfall depth over
the state of Arizona has been adapted from Sellers et al. (1985). The
summer rainy season includes the months of May to September and the
winter rainy season includes the months of October to April.

Each of the three data sets are based on 158 rain gage stations
having more than 30 years of record. This reduces the time variability
of the precipitation record which is assumed to be very large in
Arizona.

Figure 1 illustrates the location and the spatial distribution of
the 158 raingage stations over the state.

22



STATE

OF ARIZONA: LOCATION OF RAINGAGES
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Figure 1: The State of Arizona - location of raingages.
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Methods

All the variogram and kriging calculations under were computed by
using the BLUEPACK-3D software package implemented on a VAX 11/780 at
the University of Arizona Computer Center. The BLUEPACK-3D is an
integrated geostatistic program, written in FORTRAN, which was developed
jointly by the Center de Geostatistique - Fontainebleau, France and the
BRGM (French Geological Survey).

The variograms were fitted and plotted using VPLOT - a graphic
package developed for the IBM-PC by D. E. Myers and G. J. Jalkanen, the
University of Arizona, Tucson. The kriging maps have been produced by
SURFER - a graphic computer package for two or three dimensional
plotting.

Structural Analysis and Results

The first step in the kriging analysis was to establish the semi-
variograms. The empirical variograms for all three cases (annual,
summer and winter) are shown in Figure 2. Each plot includes the
variogram for the four principal directions of the grid (North-South;
East-West; NE-SW; and NW-SE) and the Onmi direction which is the average
of the former four. For an isotropic phenomenon it is assumed that the
varigram is not a function of the angle of the direction between the
data points. As a result, the theoretical semi-variogram, assuming
isotropy, is calculated only on the Onmi direction. From these plots
the absence of detectable nugget variance can be recognized. All four
semi-variograms start from the origin.

Eq. 9 was used to calculate the isotropic empirical semi-variogram
for a constant drift case. Few theoretical models (Delhomme, 1978) have
been examined. The final model was chosen as a result of the cross
validation procedure. The exponential and the spherical models produce
about the same results. All three empirical variograms were fitted with
an exponential model of the form:

v(h) = C0 + Cl [1 - exp (-|h|/a)] (12)

where a is the range, h is the lag, C, is the nugget variance and C0 +
C, equals the sill. The fitted exponengial models are illustrated in
Figure 3 and the value of the parameters together with the cross
validation results are presented in Table 1.

In the next step the kriging interpolation for the maps was
performed. Figures 4, 5 and 6 show the final product of the analysis as
isohyetal maps. One can find these maps very similar to other average
precipitation maps of Arizona (e.g. the map in Sellers et al., 1985).

However, the advantage of the proposed kriging technique is in its by
product.
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AVERAGE PRECIPITATION — ANNUAL

115.00 114.00 113.00 112.00 111.00 110.00 109.00

| I | ] | T
37.00 ~ 37.00
36.00 — 36.00
35.00 - 35.00
34.00 < 34.00
33.00 ~ 33.00
O
00 SO 0 100 200 «i=§§\ BIINSS
| — . ] —
| | | KM | | |
31.00 31.00

7115.00 114.00 113.00 112.00 111.00 110.00 109.00

Figure 4: Isohyetal map of the annual average precipitation depth of Arizona
produced by kriging technique.
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AVERAGE PRECIPITATION — SUMMER
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Figure 5: Isohyetal map of the summer average precipitation depth of Arizona
produced by kriging technique.

32



AVERAGE PRECIPITATION — WINTER
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Figure 6: Isohyetal map of the winter average precipitation depth of Arizona
produced by kriging technique.
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TABLE 1: Parameters and cross validation results for exponential model
semi-variogram ficting.

—MODEL PARAMETERS '/ RES
NUGGET RANGE SILL me 1 2 3 4

ANNUAL 0.0 0.8 0.18E5 0.1 0.02 0.61 0.03 0.84
SUMMER 0.0 1.0 0.50E4 0.1 0.01 0.76 0.08 0.91
WINTER 0.0 0.7 0.90E4 0.1 0.02 0.47 0.05 0.81

1 - mean kriged estimation error.

2 - mean standarized squared estimation error.

3 - correlation coefficient between the estimation values and the
standarized estimation values.

4 - correlation coefficient between the estimation values and the known
values.

Figure 7 presents the associated kriging errors map in terms of
kriging variance. The kriging errors are a function of the sample site
density and depend only on the geometrical location of the measured
points. Errors are common when using an irregular grid such as rainfall
gage stations and are a good measure of the precision of the
interpolation (Delhomme, 1978). In this study the kriging variance is
generally greater than 50 and less than 125. It can be seen that the
kriged map is relatively precise in the middle of the state, however the
errors become greater towards the edges of the map specially towards the
north-west corner of the state as a result of fewer data points close to
the state borders (refer to Figure 1).

Bastin et al., (1984) suggested to look on the variance as
depending exclusively on the location of the rain gages. Thus, it is
possible to compute the error variance associated with any set of
hypothetical data points without getting actual data at these points.
The above authors demonstrate the use of the kriging variance as an
efficient tool for solving rain gage allocation problems.

' So far discussed, it was assumed that the variation of the
precipitation over the state was much the same in all directions.
However, one of the features of the experimental semi-variograms
presented in Figure 2, is evident anisotropy because of the semi-
variograms sill. In all cases, annual, summer and winter, the sill
differs appreciably within the four principal directions. When the
variability is not the same in every direction and there is a greater
spatial dependence in one direction the phenomenon is said to be
directional (or zonal) anisotropic (Journel and Huijbregts, 1978).

Table 2 summarized the structural analyses of the anisotropic
cases. Only those pairs of points lying within a particular interval
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KRIGING VARIANCE
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Figure 7: Error map ;n kriging variance of the average precipitation depth of

Arizona.
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are used in Eq. 9 to calculate empirical semi-variogram for that
corresponding angle-of-direction interval. A separate theoretical semi-
variogram is fitted for each direction. As can be recognized from Table
2, the semi-variograms can be grouped into two; the N-S and the NE-SW
semi-variograms indicate lower sill, and the E-W and the NW-SE semi-
variograms are characterized by higher sill. Note that in all the three
cases the exponential model has been used and that all the other
variogram parameters: the range, nugget and lag remain unchanged.

TABLE 2: Parameters of anisotropic semi-variograms.

— MODEL, PARAMETERS
DIRECTION NUGGET RANGE SILL LAG
ANNUAL
EAST - WEST 0.0 0.8 0.18E5 0.1
NORTHEAST - SOUTHWEST 0.0 0.8 0.22E5 0.1
NORTH - SOUTH 0.0 0.8 0.25E5 0.1
NORTHWEST - SOUTHEAST 0.0 0.8 0.18E5 0.1
GLOBAL 0.0 0.8 0.21E5 0.1
SUMMER
EAST - WEST 0.0 1.0 0.40E4 0.1
NORTHEAST - SOUTHWEST 0.0 - 1.0 0.60E4 0.1
NORTH - SOUTH 0.0 1.0 0.60E4 0.1
NORTHWEST - SOUTHEAST 0.0 1.0 0.50E4 0.1
GLOBAL 0.0 1.0 0.50E4 0.1
WINTER
EAST - WEST 0.0 0.7 0.07E4 0.1
NORTHEAST - SOUTHWEST 0.0 0.7 0.10E4 0.1
NORTH - SOUTH 0.0 0.7 0.12E4 0.1
NORTHWEST - SOUTHEAST 0.0 0.7 0.07E4 0.1
GLOBAL 0.0 0.7 0.09E4 0.1

Figure 8 presents the theoretical semi-variogram for both the N-§
and E-W directions. The unisotropic phenomenon of the precipitation
fields in Arizona can be explained by the topographic structure of the
state disregarding the storms origin and direction (for more detailed
discussion see Karnieli and Osborn in this issue). This can be
concluded also by the similar unisotropic structure for the annual,
sunmer and the winter cases. The Mogollon Rim which stretches in the
middle of the state, oriented from NW to SE provides a significant
orographic effect on the precipitation. Consequently, the variation of
the precipitation is greater in the N-S and NE-SW directions
(perpendicular to the Mogollon Rim) than in the E-W and NW-SE
directions.
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On the other hand, the presented zonal unisotropic can be
interpreted as a spatial drift which have not been observed by the
current computer package. In this case a polynomial drift should be
fitted in order to be eliminated from the kriging algorithm. Chua and
Bras (1982) and Neuman and Jacobson (1984) describe various of methods
for dealing with this problem.

Conclusions

Kriging is an advanced interpolation technique in which the
estimator is a linear minimum variance unbias estimator. This paper has
proposed the application of kriging method for contour mapping as well
as for estimating the average areal rainfall over large regions such as
the State of Arizona with irregular rain gage network.

The kriging variance contour map (Figure 7) indicates that the
predicted spatial structure agrees fairly well with the actual spatial
structure. However, for better results stations surrounding the state
borders, have to be taken into consideration. Furthermore, the error
map can help the National Weather Service in selecting the optimal

location of additional rain gages in order to increase the network
accuracy.
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