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Abstract

The classical methods for interpolating and spatial averaging of

precipitation fields fail to quantify the accuracy of the estimate. On

the other hand, kriging is an interpolation method for predicting values

of regionalized variables at points (punctual kriging) or average values

over an area (block kriging).

This paper demonstrates the use of the kriging method for mapping

and evaluating precipitation data for the state of Arizona. Using 158

rain gage stations with 30 years or more of record, the precipitation

over the state has been modeled as a realization of a two dimensional

random field taking into consideration the spatial variability

conditions. ■

Three data sets have been used: (1) the mean annual precipitation

over the state; (2) the mean summer rainy season; and (3) the mean

winter rainy season. Validation of the empirical semi-variogram for a

constant drift case indicated that the exponential model was appropriate

for all the data sets. In addition to a global kriging analysis, the

data have been examined under an anisotropic assumption which reflects

the topographic structure of the state.

Introduction

Several interpolation techniques such as arithmetic mean, linear

interpolation or the nearest neighbor (Thiessen Weight) method, have

been widely used for areal mapping of precipitation fields (Hall and

Barclay, 1975). Other techniques have been reviewed by Creutin and

Obled (1982). A relatively new technique is presented and evaluated in

this paper referred to as kriging (after D. G. Krige) . This technique

was originally developed for geoscience applications. It has been
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applied recently in a few cases to the mapping of precipitation fields
(Delfiner and Delhomme, 1975; Montmollin et al., 1980; Chua and Bras,

1982; Bastin et al., 1984; Obley and Creutin, 1986).
Matheron (1971) coined the term "regionalized variable" to describe

variables which can be characterized from a certain number of

measurements which identify spatial structure. The optimal estimator

(in the current case for the average areal precipitation) is a linear

minimum variance unbiased estimator which requires knowledge of the

variogram of the random variable (precipitation) as a function of space.

Therefore a theoretical variogram model must be chosen and its

parameters have to be estimated prior to the interpolation.

The kriging technique, which was adapted from various resources

(Delfiner and Delhomme, 1975; Journel and Huijbregts, 1978; Delhomme,

1978), is briefly introduced below.

Theoretical Background

Let x. , x« x be the sample locations with given precipitation

values of ZTCx.,), Z(x«)n. .. ,Z(x ) and xQ is the unsampled location. Then
the value or precipitation in the unsampled location, Z(xQ), is

estimated as a linear weighted combination of n known surrounding data,

depending on distance from the unsampled location:

N

Z* fxQl - V Ax Z fxj 1 - l...n (1)
i - 1

where the weights X. are determined such that Z (xQ) is an unbiased est

imate of Z(x~):

E [ Z*N - ZN ] - ° (2)
and the estimation variance is minimum:

E Z*(x0] * Zfxo] minimum (3)

where E[«] is the expectation. Substituting equation (1) into equations

(2) and (3) yields:

N

Z\ 7 fv ^ - 7 fv 1 - 0 (4)
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E ■f
i - 1

which leads to the following system:

N

) Ai C[Xi' y
i - 1

N minimum (5)

" C(x0'

N

i - 1

At-1 (6)

where C(x,), Z(x.) - E[Z(x,, x.)] is the covariance and n is a Lagrange

multiplier which-'was employed io obtain the weights.
In the kriging system the estimation variance is written in terms

of differences between two sample locations. The minimization yields

the replacement of C(x,, x.) by i/(x., x.):

N

i - 1

N

V[XL>

i - 1

which yields the semi-variogram equations:

Vj (7a)

(7b)

-1 E2 E z (x + h) - Z(x) )"]
or:

i/(h) - | var fz (x + h) - Z(x)

(8a)

(8b)

where e(h) is the semi-variogram function, h is the distance between

sample locations (also called the lag) and var(>) is the variance. The

semi-variogram i/(h) is a graph which relates the differences or incre

ments of the regionalized variable Z to the distance h between the data

points. When there is a trend or drift in the data set, the residuals,

R(x), are used in Eq. 8 instead of the realizations, Z(x) , to estimate

the semi-variogram. An empirical semi-variogram, v , can be calculated

from the given set of observations by using the following numerical

approximation:

i/ —

N

[2NN] I J ) -

where N(h ) is the number of pairs of points a distance h

1975). e

(9)

apart (Olea,
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In order to solve Eq. 7, one of several common theoretical forms of

Eq. 8 must be used in order to visually fit v to i/& (Delhomme, 1979).

Once the theoretical semi-variogram has been chosen, four criteria can

be used to determine the correctness of the model and to adjust its

parameters:

(1) mean kriged estimation error:

n

i - 1

n

(10)

i - 1

where c. is the difference between the kriged and the known point value

(this term should approach 0).

(2) mean standardized squared estimation error:

2

1/n

i - 1 - 1

where s. is the estimation standard deviation (this term should approach

1). 1

(3) sample correlation coefficient between the^ estimation values, Z ,

and the standardized estimation values, (Z • Z )/s .

This term should approach 0.

(4) sample correlation coefficient between the estimation values, Z ,

and the known values, Z (this term should approach 1).

Data Collection

Annual average, summer and winter averages of rainfall depth over

the state of Arizona has been adapted from Sellers et al. (1985). The

summer rainy season includes the months of Hay to September and the

winter rainy season includes the months of October to April.

Each of the three data sets are based on 158 rain gage stations

having more than 30 years of record. This reduces the time variability

of the precipitation record which is assumed to be very large in

Arizona.

Figure 1 illustrates the location and the spatial distribution of

the 158 raingage stations over the state.
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STATE OF ARIZONA: LOCATION OF RAINGAGES
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Figure 1: The State of Arizona - location of raingages.

23



Methods

All the variogram and kriging calculations under were computed by

using the BLUEPACK-3D software package implemented on a VAX 11/780 at

the University of Arizona Computer Center. The BLUEPACK-3D is an

integrated geostatistic program, written in FORTRAN, which was developed

jointly by the Center de Geostatistique - Fontainebleau, France and the

BRGM (French Geological Survey).

The variograms were fitted and plotted using VFLOT - a graphic

package developed for the IBM-PC by D. E. Myers and G. J. Jalkanen, the

University of Arizona, Tucson. The kriging maps have been produced by

SURFER - a graphic computer package for two or three dimensional

plotting.

Structural Analysis and Results

The first step in the kriging analysis was to establish the seml-

variograms. The empirical variograms for all three cases (annual,

summer and winter) are shown in Figure 2. Each plot includes the

variogram for the four principal directions of the grid (North-South;

East-West; NE-SW; and NW-SE) and the Onmi direction which is the average

of the former four. For an isotropic phenomenon it is assumed that the

varigram is not a function of the angle of the direction between the

data points. As a result, the theoretical semi-variogram, assuming

isotropy, is calculated only on the Onmi direction. From these plots

the absence of detectable nugget variance can be recognized. All four

semi-variograms start from the origin.

Eq. 9 was used to calculate the isotropic empirical semi-variogram

for a constant drift case. Few theoretical models (Oelhomme, 1978) have

been examined. The final model was chosen as a result of the cross

validation procedure. The exponential and the spherical models produce

about the same results. All three empirical variograms were fitted with

an exponential model of the form:

- CQ + Cx [l - exp (-|h|/a)] (12)

where a is the range, h is the lag, CQ is the nugget variance and CQ +

C. equals the sill. The fitted exponential models are illustrated in

Figure 3 and the value of the parameters together with the cross

validation results are presented in Table 1.

In the next step the kriging interpolation for the maps was

performed. Figures 4, 5 and 6 show the final product of the analysis as

isohyetal maps. One can find these maps very similar to other average

precipitation maps of Arizona (e.g. the map in Sellers et al., 1985).

However, the advantage of the proposed kriging technique is in its by

product.
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AVERAGE PRECIPITATION - ANNUAL
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Figure 4: Isohyetal map of the annual average precipitation depth of Arizona

produced by kriging technique.
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AVERAGE PRECIPITATION - SUMMER
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Figure 5: Isohyetal map of the summer average precipitation depth of Arizona

produced by kriging technique.
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AVERAGE PRECIPITATION - WINTER
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Figure 6: Isohyetal map of the winter average precipitation depth of Arizona

produced by kriging technique.
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TABLE 1: Parameters and cross validation results for exponential model

semi-variogram fitting.

MnnRT. PARAMETERS CROSS VALIDATION RESULTS

ANNUAL

SUMMER

WINTER

0

0

0

.0

.0

.0

0

1

0

.8

.0

.7

0.

0.

0.

18ES

50E4

90E4

NUGGET RANGE SILL LAG 1 2 3 4

0.1 0.02 0.61 0.03 0.84

0.1 0.01 0.76 0.08 0.91

0.1 0.02 0.47 0.05 0.81

1 • mean kriged estimation error.

2 - mean standarized squared estimation error.

3 - correlation coefficient between the estimation values and the

standarized estimation values.

4 - correlation coefficient between the estimation values and the known

values.

Figure 7 presents the associated kriging errors map in terms of

kriging variance. The kriging errors are a function of the sample site

density and depend only on the geometrical location of the measured

points. Errors are common when using an irregular grid such as rainfall

gage stations and are a good measure of the precision of the

interpolation (Delhomme, 1978). In this study the kriging variance is

generally greater than 50 and less than 125. It can be seen that the

kriged map is relatively precise in the middle of the state, however the

errors become greater towards the edges of the map specially towards the

north-west corner of the state as a result of fewer data points close to

the state borders (refer to Figure 1).

Bastin et al., (1984) suggested to look on the variance as

depending exclusively on the location of the rain gages. Thus, it is
possible to compute the error variance associated with any set of

hypothetical data points without getting actual data at these points.

The above authors demonstrate the use of the kriging variance as an

efficient tool for solving rain gage allocation problems.

So far discussed, it was assumed that the variation of the

precipitation over the state was much the same in all directions.

However, one of the features of the experimental semi - variograms

presented in Figure 2, is evident anisotropy because of the semi-

variograms sill. In all cases, annual, summer and winter, the sill

differs appreciably within the four principal directions. When the

variability is not the same in every direction and there is a greater

spatial dependence in one direction the phenomenon is said to be

directional (or zonal) anisotropic (Journal and Huijbregts, 1978).

Table 2 summarized the structural analyses of the anisotropic

cases. Only those pairs of points lying within a particular interval
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KRIGING VARIANCE
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Figure 7: Error map in kriging variance of the average precipitation depth of

Arizona.
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are used in Eq. 9 to calculate empirical semi-variogram for that
corresponding angle-of-direction interval. A separate theoretical semi-
variogram is fitted for each direction. As can be recognized from Table
2, the semi-variograms can be grouped into two; the N-S and the NE-SW
semi-variograms indicate lower sill, and the E-W and the NW-SE semi-
variograms are characterized by higher sill. Note that in all the three
cases the exponential model has been used and that all the other
variogram parameters: the range, nugget and lag remain unchanged.

TABLE 2: Parameters of anisotropic semi-variograms.

MODEL PARAMETERS

ANNUAL

SUMMER

WINTER

DIRECTION

EAST - WEST

NORTHEAST - SOUTHWEST

NORTH - SOUTH

NORTHWEST - SOUTHEAST

GLOBAL

EAST - WEST

NORTHEAST - SOUTHWEST

NORTH - SOUTH

NORTHWEST - SOUTHEAST

GLOBAL

EAST - WEST

NORTHEAST - SOUTHWEST

NORTH - SOUTH

NORTHWEST - SOUTHEAST

GLOBAL

NUGGET

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

RANGE

0.8

0.8

0.8

0.8

0.8

1.0

• 1.0

1.0

1.0

1.0

0.7

0.7

0.7

0.7

0.7

SILL

0.18E5

0.22E5

0.25E5

0.18E5

0.21E5

0.40E4

0.60E4

0.60E4

0.50E4

0.50E4

0.07E4

0.10E4

0.12E4

0.07E4

0.09E4

LAG

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

Figure 8 presents the theoretical semi-variogram for both the N-S

and E-W directions. The unisotropic phenomenon of the precipitation

fields in Arizona can be explained by the topographic structure of the

state disregarding the storms origin and direction (for more detailed

discussion see Karnieli and Osborn in this issue). This can be

concluded also by the similar unisotropic structure for the annual,

summer and the winter cases. The Mogollon Rim which stretches in the

middle of the state, oriented from NW to SE provides a significant

orographic effect on the precipitation. Consequently, the variation of

the precipitation is greater in the N-S and NE-SW directions

(perpendicular to the Mogollon Rim) than in the E-W and NW-SE

directions.
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On the other hand, the presented zonal unisotroplc can be

interpreted as a spatial drift which have not been observed by the

current computer package. In this case a polynomial drift should be

fitted in order to be eliminated from the kriging algorithm. Chua and

Bras (1982) and Neuman and Jacobson (1984) describe various of methods

for dealing with this problem.

Conclusions

Kriging is an advanced interpolation technique in which the

estimator is a linear minimum variance unbias estimator. This paper has

proposed the application of kriging method for contour mapping as well

as for estimating the average areal rainfall over large regions such as

the State of Arizona with irregular rain gage network.

The kriging variance contour map (Figure 7) indicates that the

predicted spatial structure agrees fairly well with the actual spatial

structure. However, for better results stations surrounding the state

borders, have to be taken into consideration. Furthermore, the error

map can help the National Weather Service in selecting the optimal

location of additional rain gages in order to increase the network

accuracy.
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