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ABSTRACT

Hershenhorn, J. and Woolhiser, D.A., 1987. Disaggregation ofdaily rainfall. J. Hydrol., 95:299-322.

A parameter-efficient model for disaggregating daily rainfall into individual storms is presen

ted. This model allows simulation of the number of rainfall events (storms) in a day, and the

amount, duration, and starting time ofeach event, given only the total rainfall on that day and on

the preceding and following days. Twenty-three years of data for July and August, from a gage on

the Walnut Gulch Experimental Watershed, were used to find the appropriate model structure and

to estimate parameters. Statistical tests indicate that simulated sequences of storms compare

favorably with observed sequences, and that the disaggregation model structure and parameters

identified for one gage provide a satisfactory fit for three stations within a 121 km radius where

elevation differs by as much as 244 m, and mean annual rainfall differs by up to 76 mm.

INTRODUCTION

Greater emphasis is being placed on the use of physically-based infiltration

models to estimate surface runoff, and these models are sensitive to the distri

bution ofrainfall amounts in time periods as short as 5 min. "Breakpoint data",

the observed time patterns of rainfall intensity, can be used to provide input to

infiltration models, however, such data are not always readily available.

One method of obtaining short-time period rainfall data is to disaggregate

daily rainfall amounts into individual showers, and to further disaggregate the

showers into intensity patterns. Daily rainfall data are readily available for

many locations, and simulation procedures are well advanced. If spatial and

seasonal variability can be accounted for in the daily process, and the disag

gregation processes are relatively spatially invariant, they can be applied over

climatologically-similar areas, subject to minor modifications.

In this paper, we describe a parameter-efficient model to simulate the number

of rainfall events (showers) in a day, and the amount, duration, and starting

time of each event, given only the total amount of rainfall on that day and on

the preceding and following days. When used in conjunction with a daily
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Duration of a complete event

Duration of the nth complete event

Duration of the Ath event in a day

Simulated duration of the ftth event in a day

Duration of the nth event

Duration of a partial event

Cumulative distribution functions

Year index

Day index

Total number of complete and partial events in a day

Random variable with values of 0 or 1 indicating occurrence of a partial event

on day j

Number of complete events in a day

Number of partial events in a day

Number of complete events on day j of year t

Number of partial events on day ; of year i

Parameter in shifted negative binomial distribution

Parameter in shifted negative binomial distribution

The ratio of the amount of the first event of the day to the daily total amount

on days in which two events occur

The ratio of the sum of the amounts of the second plus third events to the daily

total on days in which three events occur

The ratio of the amount of the second event to the sum of the amounts of the

second plus third events on days in which three events occur

The ratio of the amounts of the sum of the third plus fourth events to the daily

total amount on days in which four events occur

The ratio of the amount of the first event to the sum of the amounts of the first

plus second events on days in which four events occur

The ratio of the amount of the third event to the sum of the amounts of the third

plus fourth events on days in which four events occur

Dummy variable

Time in cumulative hours from an arbitrary ( 0

Ratio of event starting time to 24 h

Process representing time of day (h)

The starting time of the Ith complete event (h)

Starting time of Atth event in a day (h)

Integer part of the number x

Total amount of rainfall in the nth event

Amount of the Atth event in a day (mm)

Simulated amount of the Ath event in a day (mm)

The amount of a complete storm event

Transformed event amount: Yc' = Yc - 0.229 (mm)

The amount of the nth complete event

The amount of a partial event

y_ - 0.229 (mm)

Daily total rainfall due to complete events

Transformed daily total rainfall for complete events (Z'r Zc - 0.229 mm)

Total rainfall on day j of year i
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Greek

a Parameter in Weibull distribution and beta distribution

V Parameter in Weibull distribution

P Parameter in beta distribution

0 Parameter in beta Fourier distribution

l(t) Simulated rainfall process of storm amounts and durations
{(0 Precipitation intensity process

lit) Simulated precipitation intensity process

!„ Time of beginning of nth event

i* Time of ending of nth event

e Normally distributed random variable

u> Weighting parameter in the mixed beta distribution

occurrence model and an intrastorm intensity model, this model enables the

simulation of short-time period ("breakpoint") rainfall data.

BACKGROUND

Little research has been carried out on rainfall disaggregation modeling.

Betson et al. (1980) described a model to disaggregate daily rainfall into hourly

rainfall, and hourly rainfall into 5 min amounts. Their approach requires the

estimation of a large number of transition probabilities, however, and does not

explore the possibility of a dependency between storm duration and amount, or

between the amounts ofsuccessive rainfall events on a given day. Valencia and

Schaake's linear disaggregation model (1973) does not address the intermit-

tency associated with the daily process and, therefore, is not directly appli

cable to the disaggregation of daily rainfall. Srikanthan and McMahon (1985)

developed a model for generating rainfall at 6 min intervals based upon a daily

rainfall model and an hourly model. A time-dependent, two-state second order

Markov Chain, conditioned on the amount of daily rainfall, describes the

occurrence of hourly rainfall, and up to a seven-state transition probability

matrix is used to generate hourly amounts. The 6 min model is conditioned

upon four types of wet hours, and requires up to a seven-state transition

probability matrix. Both the hourly and 6 min models require separate para

meter estimates for each month. The number of parameters required for this

approach is very large (5000-6000), demonstrating the need for a more

parameter-efficient approach.

While storm models based on aggregation techniques are available to

simulate short-time period rainfall sequences (Pattison, 1965; Grace and

Eagleson, 1966; Todorovich and Yevjevich, 1969; Austin and Claborn, 1974;

Raudkivi and Lawgun, 1974; Bras and Rodriguez-Iturbe, 1976; Nguyen and

Rousselle, 1981), it would be difficult to adjust the parameters of these models

to maintain daily statistics at locations other than those for which the models

were developed.
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DESCRIPTION OF THE RAINFALL PROCESS

Let £(t) denote the continuous process of precipitation intensity at a point

in space. c,(t) will be equal to, or greater than, zero, and will take on positive

values over random time intervals (Fig. 1).

If the starting time of the nth shower is denoted by tn in cumulative hours

from some arbitrary time, t = 0, and the ending time by t*, then the total

amount of rainfall in the nth event is X, where:

K =

The duration of the nth event is Dn = r* - rn. Define a complete event as one

which begins and ends on the same day, and a partial event as one which begins

on one day and ends on the next (Fig. 2). Let k represent the total number of

events in the day. Then k = JVC + Nv, where Ne is the number of complete

events, and Np is the number of partial events (Nf = 0, 1, 2). To represent

phenomena occurring within the day, let t represent time, in hours, from some

arbitrary midnight, t = 0. Define the random variable £7(0 such that:

[7(0 = * - {W24J24}

where [t/24] represents the integer part of the number </24. This function

represents the beginning time ofa shower in hours from midnight and is shown

in Fig. 3. Note that, for each time of beginning rn, there is a corresponding

£7(tb), where 0 < 17(tJ < 24.

>**

A
•- 'o -*1

D.

Fig. 1. Possible sample function of the rainfall intensity process.

COMPLETE PARTIAL
EVENTS EVENT

. A.
doyj j + l j + 2 j + n j+n+l

TIME (DAYS)

Fig. 2. Definition sketch of complete and partial events.
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t(HRS.)

i=2

Fig. 3. The function l/«).

The rainfall process is assumed to be stationary, with possible cyclic varia

tions on a seasonal basis. That is, the sample functions of the rainfall process

for each year are assumed to be repeated samples of the same underlying

process.

THE DISAGGREGATION PROCESS

Let Zjj represent the total rainfall on day j of year i:

r"ij I
;j= 1,2,..., 365 represents a sequence of dailyThen Zu for i = 1, 2, 3,

rainfall amounts.

Associated with each day that rain is observed are the random variables Zy,

NCjj, Nfjj, Uk; k = 1, 2, 3, . . . , (NC(. + NPj.), and the amount Xk and duration Dk

of each complete or partial event in the day. The model described in this paper

provides a method of simulating the number of events per day, as well as the

amount, duration, and starting time of each event given a simulated or observ

ed sequence of daily rainfall amounts. The simulated rainfall process £(*) will

then consist ofa sequence ofpulses taking on positive values over random time

intervals, as shown in Fig. 4. The intensity of each pulse is %klt)k, and:

The final step in the process is to disaggregate the storms into intensity

patterns leading to the process £(t), as shown in Fig. 5. An intrastorm model

that would transform the process £(*) into |(0 for thunderstorm rainfall has
been developed by Woolhiser and Osborn (1985). When combined with an

intrastorm intensity model, the disaggregation model, described herein,

provides a reasonable estimate of short-time period rainfall.

J
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X,/D,

n

Fig. 4. The simulated storm rainfall process.

Fig. 5. The simulated rainfall intensity process.

DATA ANALYSIS

Twenty-three years of summer breakpoint data, for the months of July and

August, 1954-1976, were obtained from gage number 5, a weighing-recording

rain gage on the Walnut Gulch Experimental Watershed operated by the U.S.

Department of Agriculture, Agricultural Research Service (USDA-ARS). The

watershed is located in southeastern Arizona, and includes the city of Tomb

stone (Fig. 6). The elevation of gage number 5 is 4200 ft (1280 m).

A shower is arbitrarily defined as any period in which the total rainfall is

> 0.01 in (0.254 mm), which contains no intervening periods of zero intensity

exceeding 10 min in duration. Any period of greater than 10 min, in which no

increase in precipitation is measured, signifies an event ending. A day is

defined as that 24 h period beginning at midnight. This definition of a shower

was chosen so that the model would provide input suitable for simulation on

very small watersheds where a 10 min cessation of rainfall is highly significant.

It should be noted that independence of shower amounts is not required in this

model.
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Fig. 6. Location map of the Walnut Gulch Experimental Watershed and rain gage locations.

The data set consisted of 695 storms. Of these, 659 (94.82%) were complete

events, and 36 (5.18%) were partial events. Some general statistics are presen

ted in Table 1. As the two groups differ statistically, they were analyzed

separately.

MODEL OF COMPLETE EVENTS

The 659 complete events were distributed over 450 rainy days. The majority

(308) occurred as a single storm in a day, and the largest number ofoccurrences

observed in a day was six.

TABLE 1

Statistics on duration and amount for summer thunderstorms on the Walnut Gulch Watershed (23
years of data)

Type of event:

Number

Amount

Mean

Standard deviation

Range

Duration (min)

Mean

Standard deviation

Range

Complete

659

in mm

0.199 5.06

0.307 7.80

0.01-2.99 0.25-75.94

66.38

71.26

1.99-510.0

Partial

36

in mm

0.442 11.24

0.413 10.48

0.02-1.36 0.50-34.54

226.36

157.42

70.02-668.99

J



Joint distribution of number of events per day and daily amount

The joint distribution of the number ofevents per day, and the daily amount,

can be written as a product of the conditional and marginal distributions:

HNcXc{n,z) = GNiK(n\z)F^(z) (1)

As the lower threshold ofobservation is O.Olin (0.254 mm), all calculations were

performed on a transformed daily amount, Zc' = Zc - 0.009 (Zc - 0.229 mm).

The value of 0.009 was used, instead of 0.01, because it was desired to maintain

these values in the data set as occurrences of small, positive rainfall amounts.

Five distributions were compared for the marginal distribution of daily

amount, FZc(z): the exponential, lognormal, Weibull, mixed exponential (Rider,

1961) and beta-kappa (Mielke and Johnson, 1974). Parameters were estimated

using analytic or numerical maximum likelihood techniques. The Weibull

distribution had the maximum likelihood function value and minimum Akaike

Information Criterion, or AIC (Akaike, 1974), and was selected as the best

choice. The marginal distribution of daily rainfall amount is written as:

Frc(z) = l-exp^-yj (2)

where a = 0.2399 in (7.617 mm),)' = 0.7364, and z > 0. A chi-squared goodness-

of-fit test indicates that this hypothesis cannot be rejected at the 95% level.

This significance level is approximate, because the data were used to choose

the distribution function, and, therefore, some uncertainty is involved in esti

mating the degree of freedom.

It now remains to determine an expression for the conditional distribution

of number of events per day given a daily amount, GNJiZc(n\z). The truncated

Poisson (truncated at one, as we are not interested in the occurrence of zero

events) and geometric distributions were tried. Both tended to overpredict the

occurrence of one, and underpredict the occurrence of two events per day.

However, the geometric worked well in the range of lower rainfall amounts;

thus, it is desirable to find a distribution that approaches the geometric at the

lower limit. The shifted negative binomial distribution (SNBD) possesses this

property (Buishand, 1977). The probability mass function is written as:

P(NC = n) = (" + r_ ~ 2)pr(l - p)-\ n = 1, 2, . . . (3)

When r = 1, this reduces to the geometric distribution.

The parameters p and r were allowed to vary with daily amount. The lower

limits were set such that, given the minimum observable daily rainfall amount

(0.01 in, or 0.254 mm), the probability of the occurrence of one event in that day

is a certainty. To determine the upper limits, p and r were estimated over the

two classes of highest daily rainfall amount using numerical maximum likeli

hood techniques. An investigation showed that exponential curves are appro-
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priate for points between, and these parameters were estimated using a modi

fied version ofRosenbrock's parameter optimization method (Palmer, 1969; Fig.

7). The final forms forp and r as functions of daily rainfall amount z (mm) are:

p = 0.7228 + 0.2772 exp(- 0.2281 z)

r = 2.3097 - 1.3097 exp(- 0.3776 z)

and the conditional probability is written as:

(4)

P(NC = n\Z = z) = (" +nr_ x 2jp'(l - pf-\ n = 1, 2, ... (5)

with parameters as given in eqn. (4).

With the functional forms for p and r given by eqn. (4), the expected value

function E{NJZ} begins at one for z = 0 and asymptotically approaches a

constant. Although this form is satisfactory for the Walnut Gulch rainfall data

an analysis of data from three midwestern states shows that this is a special

case and the more general form of E{NC\Z} would asymptotically approach a

straight line with positive slope.

Utilizing eqns. (1H3), the joint distribution function of number of storms

and transformed daily amount can be written as:

_ , , , , „ _, , „ , x , /n + r - 2\
t

wherep and r are given by expression (4). Equation (6) was integrated numeri

cally to obtain theoretical probabilities for 19 joint classes of Nc and Zc\ A

chi-squared goodness of fit test indicated that the null hypothesis could not be

rejected at the 0.05 level:

X2 = 15.0365(^,0 = 18.307)

A comparison of the histograms of the marginal distribution of number of

in
in

3 3.0
?

£ 2.0

u

a
t 1 0
a

2

0 ■ ■

VALUES

■

VALUES

'ma, ■Z-3097

10 15 20 25 30

Z'c (mm)

Fig. 7. Functional relationship between the parameters in the shifted negative binomial distribu

tion and the transformed daily rainfall, Z'c.
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events per day also showed close agreement between the observed and

simulated data.

Disaggregating daily rainfall into individual storm amounts

Given a daily rainfall amount Zc and the number of storms Nc where Nc = 2,

3, .... 6, the next step is to disaggregate Zc into Nc amounts of 7Cl, YC2,. . , YC[I

such that:

I Yc = Zc (7)
i-l

Note that if only one rainfall event occurs, further storm event disaggregation

is unnecessary.

Define the random variables /?, through R2 as follows:

(a) two events per day:

„ _ amount of first event YCi

Kl daily total Te (8)

(b) three events per day:

Y + Y Y

"2 - ~ . "3 - it—;—rr w
A lc, + *c,

(c) four events per day:

Y + Y Y Y

Ki - t > «5 - v , v » "6 = v v

Distributions are fit to the cumulative distribution functions (CDF's) of the

storm ratios defined above. To simplify matters, it is assumed that R2 and R3 are

independent for days with three events, and R2, R3. . . R6 are independent for

days with four events. While this assumption may not be strictly valid, it makes

the problem tractable, and gives reasonable results. Note that although the

ratios defined above are assumed to be independent, the showers obtained by

the disaggregation process will be dependent due to eqns. (7M10).

A beta distribution was fit to the CDF's of Rt and R2 using maximum

likelihood techniques. The fit, while satisfactory, was significantly improved

by the addition of a Fourier series term:

f(r) = T*"'(1 " r)" ' + 0sin2jtr' a'p > 0> ° * r * x

0 must be defined so that:
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Under this constraint fR(r) > 0, 0 < r < 1. This distribution has three

parameters, a, /?, and 6, and will be referred to as the beta-Fourier. The likeli

hood ratio test (Hoel, 1971) was used to test the hypothesis of a common

parameter set for fSl(r) and fRs(r). At a = 0.05, the hypothesis is not rejected.

Thus, the density functions of i?, and R2 can be described by eqn. (11) with

parameters as follows: a = 1.2514, /? = 0.9045, and 0 = 0.0819. The CDF is

obtained by numerically integrating eqn. (11). It was also hypothesized that the

CDF's of the random variables R3, Rt,Rh, and Rs are uniform. In each case, at

a = 0.05, a Kolmogorov-Smirnov (K-S) test indicates the hypothesis cannot be

rejected.

Due to a lack of data for the classes of five and six events per day (three and

one occurrences, respectively), some ad hoc assumptions are necessary to

describe the disaggregation process. The first is that, on days in which five

events occur, the distribution of the ratio of the sum of the amounts of the first

and second events to the daily total is uniform. It is further assumed that the

sum of the first and second amounts can be disaggregated in the same manner

as the first and second amounts on days in which two events occur, and that

the third, fourth, and fifth amounts follow the scheme developed for the first,

second, and third amounts on days in which three events occur. For days in

which six events occur, it is assumed that the distribution of the ratio of the

sum of the first three events to the daily total amount is uniform. Each set of

three events is then disaggregated according to the scheme already developed

for three events per day. A maximum of six events was observed in any day at

Walnut Gulch gage number 5, so there is no historical basis for disaggregating

Zc into more than six events. In Monte Carlo simulations from eqn. (5), if

Nc > 6 was generated, it was set equal to 6.

The joint distribution of event duration and amount

It is now necessary to simulate the durations DC], DC}, . . . , DCN associated

with each event amount, YCl, YCI Yctl. The joint density function of event

amount and duration is written as a product of the conditional and marginal

density functions:

hyc.Dc(y,d) = gDBr(d\y)frt(y) (12)

where Yc' is the transformed event amount: Yc' = Yc - 0.009 (Yc - 0.229 mm).

The random variable Yc is obtained from the storm ratios and the daily rainfall

amounts. In identifying a form for the conditional distribution, it is assumed

that the distribution of the duration, given an amount, is the same for all

complete events.

Define two new random variables: let y" = loge /, and d' = logo d. Assume

that the conditional density of d', given y", is normal, with an expected value

function which is a linear function of y":

J
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E[d'\f) = A + By (13)

The following parameter estimates were obtained by linear regression:

A = 4.646 (d in inches); A = 3.415 (d in mm); B = 0.3785; standard error of

estimate = 0.8885; and r2 = 0.2478. A correlation ratio test (Kendall and

Stuart, 1979) was used to test the hypothesis of linearity of the regression. The

hypothesis cannot be rejected (a = 0.05). To test the hypothesis that the con

ditional density of d', given y", is normal, the values of the y" were separated

into four classes based on magnitude, and a chi-squared test was run on the

residuals, d' - E[d'\y"\, for each class. The hypothesis could not be rejected

(a = 0.05) in each case.

Thus, the conditional density is written as:

+ 4.646 + e(0,0.8885) (in)

o.3785;y" + 3.415 + e(0, 0.8885)(mm)

A transformation is performed to obtain the duration Dc as follows:

Dc = exp(Dc') (15)

Distribution of event starting times

The time interval between storms is controlled by the time distribution of

event occurrence within the day, and is an important input to infiltration

models, because antecedent soil moisture conditions affect infiltration rates.

Let UCl, I — 1, 2, . . . , Nc, represent the starting time of the /th complete event

in a day in military hours. Then the ratio:

T " i

takes on the values zero through one, inclusive, representing this starting time.

As summer thunderstorm rainfall in southeast Arizona exhibits a high fre

quency of occurrence in the late afternoon and just before midnight, a flexible

distribution is needed to describe event starting times. The beta distribution

was tried, but the fit is highly unsatisfactory (Fig. 8), and it appears that more

than two parameters will be needed. The mixed beta distribution has five

parameters, and is written as:

«l a2. /?i. /?2» >0; 0 < co < 1; 0 s$ t «S 1 (17)

Parameter estimates were obtained for the class of all complete event starting

times using numerical maximum likelihood techniques, (Hershenhorn, 1984)
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STARTING TIME Tc (HRS/24)

Fig. 8. Beat fit of beta distribution to storm starting times.

and are as follows:

a, = 0.6389

0, = 3.2895

a2 = 6.2318

2.3816

0.1483

P2

The fit obtained is much better (Fig. 9).

We wish to test the hypothesis Ho that the mixed beta distribution describes

the observed CDF's of starting times for the classes of one, two, three, and four

1.00
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.80
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- -60
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.10
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-

MIXED BETA

OBSERVED

-

..■■■rp^rJ

I I 1 1 1 1

/:0/
//

.00 .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00

STARTING TIME Tc (HRS/24)

Fig. 9. Best fit of mixed beta distribution to storm starting times.
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events per day. The hypothesis could not be rejected for two, three, and four

events per day using the K-S goodness-of-fit test at a = 0.05. Although the

hypothesis is rejected at this level for the class of one event per day, it is not

rejected at a = 0.01. It was decided not to reject Ho under these conditions.

The second hypothesis Ho we wish to test is that on a day in which n events

occur, the starting times are independent, and can be obtained using order

statistics. Let FT,(t) represent the CDF of the starting time of the rth event on

a day in which n events occur. The general form is:

n!

Fr'{t) ~ (r - l)!(n - r)\

(n-r)

i.FT )i+ri + r Tt
(18)

where FTc is the CDF of all event starting times as given by eqn. (17) (Kendall

and Stuart, 1979, p. 347).

Given that n events occur in a day, it is only necessary to generate n values

of the random variable r distributed according to eqn. (17), order these from

lowest to highest, and multiply by 24 to get the appropriate starting times. The

empirical distribution functions were compared with the theoretical distribu

tion given the assumption of independence, eqn. (18). See Table 2 for math

ematical expressions for the distributions of starting times obtained using

order statistics.

K-S goodness-of-fit tests were run to test the hypothesis that event starting

times are independent. With the exception of the first event on days in which

three events occur, this hypothesis is not rejected at a = 0.05. However, the

hypothesis is not rejected at a = 0.01 for the first event of three per day.

Therefore, it was decided not to reject the hypothesis.

Not only is there a diurnal variation in the time of occurrence of showers,

there also is a diurnal variation in the expected depth of a shower given the

time of occurrence. This variability is not accounted for explicitly in the

TABLE 2

Distributions of event starting times obtained by using order statistics

Number of events

per day

2

3

4

Order of

occurrence

1st

2nd

1st

2nd

3rd

1st

2nd

3rd

4th

Cumulative distribution

function

Fn = 2F -

f" = 3F -
Fn = 3F2

Fn = 4F -

Fjj = 6F2

Fn = 4F3

- F2

- 3F2 + F3

- 2F3

- 6FJ + 4F3 - F4

- 8F3 + 3F'

- 3F'

F is FT , as given in eqn. (16).
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procedure described above. Some variability in depth given time of occurrence

is implicit for days with two or more showers. For example, the distribution of

/?! (eqn. 11) was not symmetrical. Therefore, the distributions of the first and

second showers of the day given the daily rainfall are not identical.

MODEL OF PARTIAL EVENTS

It has been shown that the occurrence of a partial event at the end of a day

is independent of the sum and product of daily amounts on two consecutive

wet days for summer thunderstorm data from gage 5 at Walnut Gulch

(Hershenhorn, 1984). Let P{Mj = m} be the probability mass function of the

random variable Mj where:

_ j _, if no partial event occurs at the end of the day j

"ft if a partial event occurs at the end of day j

As 36 of the 217 observed W-W (wet-wet) day transitions contained partial

events, P{M = 1} = 36/217 = 0.1659 given two consecutive rainy days. The

number of partial events in a day is limited to zero, one, or two.

The mean amount of a partial event (0.4425 in, or 11.25 mm) is more than

twice as great as the mean amount of a complete event (0.1992 in, or 5.06 mm).

However, each partial event can be separated into two events based on day of

occurrence, producing a new set of 72 events with a smaller mean.

If Yp represents the amount of a partial event (after separation), then let

Yp = Yp - 0.009 represent the transformed event amount. The likelihood ratio

test is u sed to test the hypothesis, Ho, that the marginal distribution of event

amount for partial events, Fyf(y), is not different from the marginal distri

bution of event amount for complete events, Fy^y). At a = 0.05, Ho is not

rejected, and it is assumed that the random variable Yp can be obtained from

the storm ratios in the same manner as the amounts for complete events, Yc see

eqns. (8)-(10).

The joint density function of event amount and duration is also obtained in

the same manner as for complete events. A linear regression between loge(Dp)

and loge( Yp), where Dp is the duration of the partial (separated) event yielded

the following statistics: slope = 0.3296; intercept = 5.1624 (Y^ in inches) (4.096

for Yp in mm); standard error of estimate = 0.7755; and r2 = 0.3066. A correla

tion ratio test was run to test the hypothesis of linearity of the regression. At

a = 0.05, the hypothesis cannot be rejected. The residuals were tested for

normality about the regression, and a chi-squared test indicates this hypothesis

is not rejected.

The conditional density function is written as follows:

^o^i^^dogodllog,/) = 5.1624 + 0.3296 log0Y; + £(0,0.7755)

A transformation is performed to obtain Dp. A partial event has been defined

as either ending or beginning at midnight, so once the duration has been

simulated, the time of occurrence within the day is specified.
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SIMULATION

Input to the simulation program consists of a sequence of daily rainfall

amounts. For each rainy day j the number of events N and the amount,

duration, and starting time of each event are simulated.

The method examines rainfall amounts on days j - 1, j and j + 1, simul

taneously. If days j - 1 and j are wet and day j + 1 is dry, Monte Carlo

techniques are used to simulate partial event occurrence at the end of day

j - 1, and the results are stored. If all three days are wet, a partial event may

also occur at the end of day j with probability 0.1659 unless the daily rainfall

was 0.01 inch (0.254 mm), in which case only one shower can occur. Next, the

total number of events on day j (NUMT) is generated according to the SNBD,

eqn. (3). The number of complete events is then either NUMC = NUMT -

NUMp, where NUMP is the number of partial events simulated on day j if

NUMT > NUMV, or zero. If NUM7 was smaller than NUMV another random

number was generated until NUMr > NUMP. Thus NUMT was distributed as

the probability mass function P{N = n\Z = zandn 5= NUMP}. Although the

parameters for the SNBD were estimated using only the complete storm set, it

should be a good approximation if partial storms were included as well because

of the small number of days with partial storms (36). This small sample size

precluded a separate estimate of parameters for days with partial storms.

For each of the NUMT events on day j, the storm ratios defined in eqns.

(8)-(10) are used to disaggregate the daily amount into individual storm

amounts. Equation (14) is then used to generate an associated storm duration

for complete storms, and the starting times are simulated from the mixed beta

distribution, eqn. (17), and ordered accordingly. The form of eqn. (14), with

appropriate parameters, is used to generate durations for partial storms. In

each case, the inverse transformation method is applied to transform a uniform

random variable to a variable with the desired distribution.

The program was run on a Digital Equipment Corporation PDP-11/34

computer at the USDA-ARS Southwest Rangeland Watershed Research Center

in Tucson. It took 130 s of CPU time to simulate 23 yr of summer storm data for

the months of July and August. The observed and simulated data are shown in

Figs. 10-12. Two sample Kolmogorov-Smirnov tests indicate that the

hypothesis that the observed and simulated data come from the same popula

tion can not be rejected at a = 0.05 (Benjamin and Cornell, 1970).

EXTENSION OF THE MODEL TO OTHER LOCATIONS

We have shown that various properties of the point rainfall process can be

modeled, and that simulations yield rainfall sequences maintaining the desired

properties, for that location. To be useful, however, two additional criteria

must be satisfied: (1) the model must be applicable over climatologically similar

areas; and (2) the simulated rainfall obtained using this model, and an intra-

storm intensity model, must yield runoff hydrographs which more closely

resemble observed hydrographs than those obtained using other types of
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Pig. 10. Observed and simulated distributions of storm rainfall amounts for complete events.
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Fig. 11. Observed and simulated distributions of storm duration for complete events.
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simulated rainfall input. Research has been carried out concerning the exten

sion of the model to other locations, and the results are presented below.

Further research to measure runoff hydrograph sensitivity is underway.

Application of the model to Walnut Gulch rain gage no. 60

Gage no. 60 is located approximately 10.5 mi (16.9 km) east of gage no. 5, at

an elevation of 4990 ft (1520 m). Osborn, Renard, and Simanton (1979) have

shown that storm rainfall data obtained from gages located greater than 3.7 mi

(6 km) apart on the watershed are independent. Disaggregation model par

ameters, estimated from breakpoint data at gage no. 5, were used with observed

daily rainfall at gage no. 60 to simulate storm amounts, durations, and starting

times.

A comparison of percentages of single and multiple-event days to total rainy

days shows good agreement between the observed and simulated data. The

observed and simulated distributions of event amount, duration, and starting

time are also in close agreement (Figs. 13-15). In each case, the hypothesis of

a common population for the observed and simulated data cannot be rejected

using a K-S two-sample test at a = 0.05.

Application of the model to Safford gage no. 3

The average annual precipitation at Safford, Arizona, located approximate

ly 75 mi (121km) north of Walnut Gulch at an elevation of 3350 ft (1021m), is

7.17 in (182 mm), as compared with 11.0 in (279 mm) at Walnut Gulch gage no. 5.

In this case, a comparison of percentages of single and multiple-event days to

total rainy days shows that a greater number of multiple-event days was

simulated than was observed. Also, the hypotheses of common observed and

simulated distributions of amount and duration for the entire set of daily data

were rejected using the two-sample K-S test at a = 0.05.
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Fig. 13. Observed and simulated distributions of storm rainfall amount for complete events, Walnut
Gulch gage 60.



317

-90
WALNUT GULCH GAGE 60

OBSERVED

SIMULATEO

O 50 100 150 200 250 300 350 400 450 500

EVENT OURATION De (MINUTES)

Fig. 14. Observed and simulated distributions of event duration for complete events, Walnut Gulch

gage 60.
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Fig. 15. Observed and simulated distributions of event starting time for complete events, Walnut

Gulch gage 60.

Because there is little runoff associated with events in which the total

rainfall is less than 0.25 in (6.35 mm), comparisons were also made using subsets

of observed daily data for days in which the rainfall total equaled or exceeded

this threshold. A two-sample K-S test at a = 0.05 indicates that hypotheses of

common populations for the observed and simulated distributions of event

amount, duration, and starting time for days in which the total rain was

> 0.25 in cannot be rejected (Figs. 16-18).

Application of the model to Santa Rita gage no. 2

Santa Rita gage no. 2 is located at the Santa Rita Range Experiment Station,

located 31.5 mi (50.7 km) west of the Walnut Gulch Experimental Watershed at
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Observed and simulated distributions of storm rainfall amount for complete events,

AZ gage 3.
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Fig. 17. Observed and simulated distributions of storm duration for complete events, Safford, AZ

gage 3.

an elevation of 3400 ft (1036 m). The average annual precipitation is 14.35 in

(364 mm). Data were available for the 8yr period 1975-1982. Simulated data,

using the parameter estimates from Walnut Gulch gage no. 5, were compared

with the observed data (Figs. 19-21). The distribution of the number of sim

ulated storms per day was very close to the observed distribution, and hypoth

eses of common distributions for the observed and simulated event amounts,1

durations, and starting times cannot be rejected at a = 0.05 using the two-

sample K-S test.

DISCUSSION AND CONCLUSIONS

The objective of this research was to develop a parsimonious model to

simulate the number ofstorm rainfall events per day and the amount, duration,
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Fig. 18. Observed and simulated distributions of event starting time for complete events, Safford,
AZ gage 3.
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Fig. 19. Observed and simulated distributions of event amounts, Santa Rita gage 2.

and starting time of each event, given only the daily rainfall amount and the

amounts'on the preceding and following days. A new disaggregation methodol
ogy is proposed to accomplish this objective.

Simulated distributions of number of storms per day and storm amounts,
durations, and starting times compared well with observed data for Walnut
Gulch gage no. 5. The spatial invariance of the disaggregation model structure
and parameter values was investigated by disaggregating daily data for three

additional stations using parameter values identified for Walnut Gulch gage
no. 5 and comparing the simulated distributions with the distributions of

measured data. For Walnut Gulch gage no. 60 and Santa Rita gage no. 2, the

simulated distributions also compared well with the observed distributions.

Null hypotheses of common distributions could not be rejected at a = 0.05 by

the two-sample K-S test. These null hypotheses were rejected for Safford gage
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Fig. 20. Observed and simulated distributions of event durations, Santa Rita gage 2.
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Pig. 21. Observed and simulated distributions of event starting times, Santa Rita gage 2.

no. 3 data, but could not be rejected if the comparison was restricted to days

with rainfall > 0.25 in (6.35 mm). Although this does not constitute a conclusive

demonstration of low spatial variability of disaggregation structure and

parameter values, the results are encouraging, because the differences between

stations in elevation of approximately 800 ft (244 m), and in mean annual

rainfall ofover 3 in (76 mm), are greater than would be encountered over rather

large areas in less-mountainous regions.

Some limitations and inconsistencies in the model are apparent. First, the

distribution of the number of events per day, and the sums of event amounts,

should be consistent with the distribution of the daily amount. That is, in

principle, it should be possible to derive the distribution of daily amounts Z(>

from the distributions of the random variables N^j, Nfij, Uk, and Xk, k = 1,
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2, ... Although we attempted this approach, the mathematical problem was

intractable. Also the procedure cannot preserve the conditional distribution of

shower depth, given daily rainfall amount, for days with only one shower and

does not explicitly preserve this distribution for multi-event days.

Considering the complex nature of the rainfall process, the disaggregation

model described in this paper is parsimonious. However, the model could be

simplified considerably if disaggregation is attempted only for days with rain

fall above some threshold greater than 0.01 in (0.254 mm). For example, an

examination of Fig. 7 reveals that the parameters r and p, in the shifted

negative binomial distribution, are only weakly dependent on daily rainfall

amounts over 0.5 in (12.7 mm), suggesting that the number ofparameters in the

conditional probability mass function of the number of events, given daily

amount, could be reduced from 6 to 2. Research on the sensitivity of derived

quantities, such as peak runoff rate or volumes to the structure of disaggrega

tion models, may lead to further simplifications. For example, does the time

distribution of storm occurrence within the day have a significant effect on

calculated runoff? If not, the distribution of starting times might be approxi

mated with a uniform distribution, reducing the number of parameters by 5.

Further research is underway to examine regional and seasonal variations

in disaggregation structure and parameters, and will be reported in a subse

quent paper. However, it has been found that the general approach described

here is appropriate for more humid regions.
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