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where m(n) = number of wet days n; n = 1, 2 ••• 365 for the
period of record, unJ = the transformed precipitation for the
y'th wet day for day n.

Each parameter in (9)—(11) is expressed in the finite Fourier
series form as specified by (4). Let 8,,, 8^, and 8M be vectors
whose elements are the coefficients of the Fourier series de

scribing the parameter set for the dry-dry transitions, the wet-
dry transitions, and the mixed exponential distributions, re
spectively. The objective is to find the estimate d of 8 that
maximizes log L in (9H11)-

The likelihood ratio test [cf. Hoel, 1971; Mielke and John
son, 1973] was used to determine if an added harmonic was
significant. For example, to determine if the first harmonic is
significant in describing the seasonal variation in p00{k), we
test the null hypothesis

H0: 0d = 8/ = (y10) (12)

against the alternative

#,: 6d= (y10, Cn, <pu) (13)

Let L(x, 9/) be the maximum likelihood function when H0
is true and L(x, Qd) be the maximum likelihood function under
the alternative hypothesis. Under certain regularity con
ditions, the statistic, —2 log, {L(x, 8/)/L(x, 8d)} has a distri
bution that approaches the chi square distribution with 2 de:
grees of freedom for large sample size. We accepted the null
hypothesis if the probability of obtaining a greater test statis
tic was smaller than 0.05. As Woolhiser and Pegram [1979]
have noted, the true level of significance is somewhat different
because of repeated testing and problems with dependence
between parameters.

It can be shown that the amplitudes and phase angles of the
significant harmonics for each parameter are not independent.
Furthermore, the parameters a, B, and 5 are also not indepen
dent. For this reason, the order in which the parameters are
analyzed will affect which harmonics are declared significant
by the likelihood ratio test and also the final log-likelihood
value. Because one goal of this research is to present a re
gionalized precipitation model, it is important that consistent
procedures be followed. Accordingly, three stations were ana
lyzed in detail using different optimization sequences. The se
quence leading to the highest final log-likelihood value was
selected. The order in which parameters were included was <5,
P, and a for both harmonics. The order for the Markov Chain
parameters is not important, because they are independent.
The first through the fourth harmonics were included for each
parameter in that order.

The means of the Markov chain parameters (y10, y20) need
not be optimized simultaneously, because they are indepen
dent; however, they are not independent of their associated
amplitudes and phase angles. Therefore a three-parameter
(mean, amplitude, and phase angle) optimization was made
when the first harmonic was studied. If the first harmonic was

not significant, the mean was studied along with the second
harmonic. If the first harmonic was significant, the mean was
fixed, and subsequent optimizations included only the ampli
tude and phase angle of higher harmonics. No improvement
was obtained by optimizing the mean along with all harmon
ics, but the computer time was increased.

Estimation of the three mixed exponential distribution pa
rameters y30, y40, y50 is more difficult because the three mean
values are not independent. Likewise, the mean value of each
parameter is not independent of its associated amplitudes and
phase angles. Thus a large number of procedures can be fol

lowed in the optimization process. Woolhiser and Roldan
[1982] demonstrated that the best procedure is to optimize
the three means simultaneously and then to sequentially opti
mize the amplitude and phase angle of each harmonic. We
found that the procedure described by Woolhiser and Roldan
[1982] led to biased estimates of the expected annual precipi
tation as calculated by (5) but that this bias could be nearly
eliminated by a second round of optimization retaining all
parameters previously declared significant.

Spatial Characteristics of the Local Daily

Precipitation Process

The spatial (geographical) character of the local daily pre
cipitation process can be described by the random fields yi0(u),
c(/u), and #,/u), where u is the vector of spatial coordinates
o = (x, y), i = 1, 2 •• • 5, and ;* = 1, 2 ••• mt. Because precipi
tation measurements are made at points in space, we must
infer the properties of the continuous random fields from the
parameter estimates at M stations with coordinates um = (xm,
ym){m= 1, 2, ••• M). It should be emphasized here that we are
considering only the spatial variability of the local daily pre
cipitation process, X, Y„ as evidenced by the spatial character
of the fields describing the seasonal variation of parameters of
this process. The more difficult time-space daily precipitation
processis beyond the scope of this investigation.

Creutin and Obled [1982] presented a comprehensive review
and evaluation of mapping techniques for rainfall fields. The
parameter fields under discussion here must be viewed in the
context of a single realization, and therefore the mapping tech
niques must be selected from those that they classified as spa
tial methods rather than climatological methods. Included in
this category are

1. The nearest neighbor method: The estimated value of
any given point is taken as the observed value at the nearest
neighboring station.

2. The arithmetic mean: It is assumed that the parameter
is constant over a particular region and can be estimated by
the average of the observed values within the region.

3. Spline-surface fitting: This consists of finding the sur
face interpolating the observed points, which also satisfies an
optimal "smoothness" criterion. If only three observed points
are considered, this method reduces to a linear interpolation.

4. Kriging method: The value at an ungaged point is esti
mated as a linear combination of n surrounding observed
values, which minimizes the estimation variance.

Each of these methods may be used to estimate point
values. The point values estimated by methods 3 and 4 could
be used to prepare maps of parameter isolines to provide a
regional description of the daily local precipitation process. As
we have pointed out previously, some of the parameter fields
under consideration are not independent; however, as a first
approximation, we will neglect this dependence in the follow
ing analyses.

Spatial Characteristics of Parameters: South Dakota

Precipitation data for the state of South Dakota were used
to examine the spatial variability of the* Fourier coefficients
describing the MCME parameters. This region is ideal for
such a study because there is a substantial gradient of precipi
tation from southeast to northwest and orographic effects
should be minor, except in the Black Hills region in the south
western corner of the state.

Figure 1 is a map of the state of South Dakota showing the
16 stations used for parameter estimation and the four sta-
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tions used for testing alternative interpolation methods. Isohy-
ets of mean annual precipitation calculated from National
Weather Service daily data are also shown. Except for Martin,
Gettysburg, and Long Valley, these means are based on a
40-year period of record beginning March 1, 1928, and ending
February 28, 1959. The observation time, total number of wet

days, mean annual number of wet days, mean precipitation on
wet days, and elevation above sea level for all stations are
shown in Table 1. The data from Aberdeen and Rapid City
are from recording gages; all other stations had 8-inch (20.3
cm) standard rain gages read at 24-hour intervals. The means,
amplitudes, and phase angles for the Markov chain parame-

TABLE 1. Meteorological Information for Stations Analyzed (1928—1959 Except as Noted).

Mean

Precip Mean Mean

Obser Total itation Annual Annual

vation Number on Wet Number Eleva Precip
Time, of Wet Days, of Wet tion, itation,

Station LT Days mm Days m mm

Base Stations

Aberdeen 0000 3270 6.20 82 395 507

Academy 1800 2324 8.74 58 511 508

Brookings 0700 3137 6.27 78 500 492

Camp Crook 1700 2439 5.64 61 951 344

Cottonwood 1700 2592 5.99 65 736 388

Lead 1 E 1800 4602 5.33 115 1916 613

Martin (1934-1973) 1700 2559 6.22 69 1089 430

Milbank 0700 3027 7.34 76 349 555

Newell 0800 3492 4.65 87 875 406

Oelrichs 1800 2009 8.53 50 1017 428
Pierre 0000 3282 5.11 82 529 419

Pollock 1900 2200 7.04 55 498 387

Rapid City 0000 3788 4.52 95 965 428

Red field 1800 2702 6.76 68 395 457

Redig SS 2881 4.78 72 936 344

Yankton 0700 3256 7.11 81 387 579

Test Stations

Gettysburg (1931-1970) 1800 2696 6.36 67 634 428

Long Valley (1927-1966) 1800 2559 7.52 69 753 481

Mitchell 2 SW 0700 3341 6.45 84 539
Onida 4 NW 1800 2132 7.52 53 564 400

SS, observation time near sunset.
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TABLE 2. Fourier CoefTicients for the Markov Chain Parameter p00

Mean #n. #12» #13> #14.
Station Vio Cn rad C12 rad C13 rad c14 rad

Base Stations

Aberdeen 0.8166 0.0578 2.9906 0.0171 0.3606 * • • *

Academy 0.8645 0.0878 2.7382 0.0146 1.4611 * * * *

Brookings 0.8191 0.0763 2.7852 0.0156 0.9210 m * * *

Camp Crook 0.8652 0.0597 2.9728 0.0145 0.8075 0.0254 0.7695 0.0126 -2.0938

Cottonwood 0.8554 0.0752 2.8645 0.0191 1.2622 0.0120 -0.0408 * *

Lead 1 E 0.7502 0.0626 4.0111 0.0229 1.1149 0.0147 -2.1001 * *

Martin 0.8425 0.0732 2.9288 0.0190 0.6847 • * * *

Milbank 0.8299 0.0769 2.6661 0.0165 0.7123 * * « *

Newell 0.8107 0.0684 3.0760 0.0168 1.4434 * * * *

Oelrichs 0.8849 0.0663 2.8537 0.0144 2.0121 0.0111 -1.8125 * *

Pierre 0.8202 0.0681 3.0101 0.0239 0.5885 0.0124 -0.5478 * *

Pollock 0.8710 0.0599 2.7472 0.0195 0.8586 0.0116 -0.7555 * *

Rapid City 0.7973 0.0837 3.1115 0.0237 0.8546 * * * *

Redfield 0.8453 0.0785 2.6493 0.0181 0.7983 * * * *

Redig 0.8404 0.0695 2.8531 0.0120 1.0363 0.0124 -0.7198 0.0110 -2.3941

Yankton 0.8185 0.0917 2.7340 * * * * 0.0189 -1.441

Test Stations

Gettysburg 0.8463 0.0724 2.8390 0.0187 0.9320 * * 0.0134 -2.2531

Long Valley 0.8700 0.0627 3.1709 * * * * * *

Mitchell 0.8199 0.0835 2.7721 • * * * 0.0126 -1.5337

Onida 4 0.8778 0.0604 2.7861 0.0117 1.2786 0.0095 -0.1680 * *

"Harmonic not significant at 0.05 level.
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ters and the mixed exponential distribution parameters are
presented in Tables 2 through 5.

A preliminary analysis revealed that for most stations the
parameter a was constant throughout the year. Therefore no
higher harmonics were considered in all optimizations. This
procedure prevented potentially severe interactions between
harmonics in a and the other ME parameters.

To provide a visual impression of the spatial characteristics
of the Fourier coefficients, isopleth maps of the means, yj0>
i = 1, 2, ••• 5, were prepared by drawing smooth curves
through points obtained by linear interpolation between the
coefficient values for adjacent stations. Parameters estimated
for the test stations were not used in constructing the iso-

pleths. Isopleth maps of the means of p00 and pl0 for the
Markov chain are shown in Figures 2 and 3. It is apparent
from these figures that there are significant spatial variations
in these occurrence process parameters. However, it must be
emphasized that each optimized coefficient includes a sam
pling error term due to the finite length of record and also
includes a measurement error term. The annual mean prob
ability of a wet day following a dry day (1 — p00) is greatest in
the southeast and in the Black Hills region and is lowest in the
northwest and southwest. This is generally true of the mean
wet-wet transition probability (1 — p10), except for the relative
maximum at Pierre, in the center of the state. The trends from
the northwest to the southeast are probably real; however,

TABLE 3. Fourier Coefficients for the Markov Chain Parameter p10

Mean #21. #22» #23. #24.
Station 720 c„ rad c22 rad c23 rad c2A rad

iBase Stations

Aberdeen 0.6332 0.0494 -2.8574 0.0398 2.2510 • * * *

Academy 0.7143 0.0978 -3.0031 0.0815 2.8908 * * * *

Brookings 0.6613 0.0840 -3.1717 0.0653 2.8360 * * * *

Camp Crook 0.6619 0.0769 -3.0811 0.0603 2.2251 * * * *

Cottonwood 0.6843 0.1302 -3.1392 0.0469 2.6142 * *
* *

Lead 1 E 0.5449 0.0809 -2.6774 0.0391 2.1198 * *
* *

Martin 0.6625 0.0860 -2.9634 0.0711 2.4512 0.0535 0.0527 * *

Milbank 0.6444 0.0556 -3.4206 0.0605 2.4631 * * * *

Newell 0.6035 0.0794 -3.3779 0.0653 2.1368 0.0542 0.1564 0.0327 2.5102

Oelrichs 0.7184 0.0688 -2.7602 0.0520 2.4645 * * * *

Pierre 0.6170 0.0586 -2.9438 0.0466 1.9987 * *
* *

Pollock 0.7308 0.0782 -3.3887 0.0412 2.6174 0.0414 -0.0697 • •

Rapid City 0.5786 0.0905 -2.9413 0.0458 2.3506 0.0316 -0.5810 * *

Redfield 0.6755 0.0733 -2.9872 0.0865 2.3667 * * * *

Redig 0.6548 0.0960 -3.5296 0.0553 2.1858 0.0355 -0.0093 * *

Yankton 0.6282 0.0824 -3.0682 0.0465 2.6165 * *
* *

Test Stations

Gettysburg 0.6831 0.0974 -3.1735 0.0639 2.1576 * *
* *

Long Valley 0.7123 0.1018 -3.0390 0.0635 2.2982 * * * *

Mitchell 0.6155 0.0630 -2.9380 0.0446 2.5872 * *
* *

Onida 4 0.7251 0.1048 -3.2027 0.0579 1.8452 * * * *

*Harmonic not significant at 0.05 level.
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TABLE 4. Fourier Coefficientsfor the Mixed Exponential Distribution Parameters a and ft

a

y3o

P

V40. C*,. #41. C42. #42. c43, #43. Q4. #44.
Station mm mm rad mm rad mm rad mm rad

Base Stations

Aberdeen 0.3873 1.084 0.652 -0.3361 * * • * • *

Academy 0.6034 5.158 0.844 -0.6221 * * * * * *

Brookings 0.4061 1.190 0.805 -0.9419 * * * * * *

Camp Crook 0.5135 1.998 1.116 -0.5970 * * * * * *

Cottonwood 0.5135 1.752 0.378 -0.4025 * * * * * *

Lead 1 E 0.5777 1.985 0.031 -0.5084 0.2797 -1.2888 * * * *

Martin 0.6233 2.378 0.639 -0.5896 * * * * * »

Milbank 0.4482 2.323 * • * * * * • *

Newell 0.4568 0.916 0.478 -0.7552 0.1311 -1.4224 * * * *

Oelrichs 0.8484 5.965 1.830 -0.4766 0.8197 -0.9568 0.7493 -2.606 * *
Pierre 0.4462 0.816 0.465 -0.7626 0.0996 -0.8102 * * * *

Pollock 0.6290 3.964 1.511 -0.3202 * * * * * *

Rapid City 0.4197 0.696 0.408 -0.5410 0.0950 -0.6382 0.1072 -2.942 * *
Redfield 0.5332 2.199 0.986 -0.4850 * * 0.3922 -2.858 * •

Redig 0.5027 1.610 * * * * * * * •

Yankton 0.4988 1.364 0.573 -0.6232 * * * * * *

Test Stations
Gettysburg 0.5629 2.539 0.835 -0.3344 * * • * * *

Long Valley 0.6589 4.553 1.426 -0.4382 * * * * * *

Mitchell 0.3857 0.934 3.597 -0.5935 • * * * * *

Onida 4 0.6240 4.605 1.245 -0.3849 * * * • * *

*Not significant at 0.05 level.

some of the differences may be due to the observation time or
to the possibility that some cooperative observers are report
ing too few wet days.

Isopleth maps for the means of a, p\ and <5 for the mixed
exponential distribution are shown in Figures 4, 5, and 6. The
parameter a shows significant spatial variation with a range
from 0.4 to 0.8. Both P and 5 show significant spatial vari
ations as well.There is some similarity between the patterns of
the isopleths for a and the mean values of P and S. Because of
their dependence, this is to be expected. Concentrations of

isopleths are apparent near Oelrichs and Academy, suggesting
either rapid changes in the distribution of amounts or signifi
cant measurement errors.

Comparison of Selected Techniques
for Estimating Parameters

at Ungaged Locations

Fourier coefficients for each of the five parameters in the
MCME model were estimated for the four test stations shown

in Table 1. The following techniques were used: (1) nearest

TABLE 5. Fourier Coefficients for the Mixed Exponential Distribution Parameter 5

7so. c5,. #51. ci2, #52. cS3, #53. C54. #54.
Station mm mm rad mm rad mm rad mm rad

Base Stations
Aberdeen 8.915 5.161 -0.8031 • * ♦ * * *

Academy 11.814 7.008 -0.8322 * * * * * *

Brookings 8.963 5.878 -0.8724 * * * * • *

Camp Crook 8.307 5.385 -0.7437 * * * * * *

Cottonwood 8.830 3.797 -0.7052 * * * * • *

Lead 1 E 9.792 6.358 -0.7911 0.6553 --1.8196 0.6248 -3.0335 * •
Martin 11.361 10.777 -0.6848 * * * * * *

Milbank 10.279 4.732 -0.7504 * * * * * *

Newell 7.084 4.737 -0.7033 * * 0.5893 -2.7910 * *

Oelrichs 16.187 14.636 -0.8286 • * * * * *

Pierre 7.716 4.206 -0.6764 0.6553 0.1056 * * * *

Pollock 9.901 8.423 -0.8750 * * 1.5443 -3.0897 * *
Rapid City 6.741 4.463 -0.6862 0.4191 --0.7159 0.5105 -2.868 * *
Redfield 9.797 4.097 -0.7270 * * • * * *

Redig 6.292 3.620 -0.6661 • * * * * *

Yankton 10.958 5.027 -0.8480 * * * * * *

Test Stations
Gettysburg 9.705 6.322 -0.6921 * * * * » *

Long Valley 11.059 10.112 -0.6451 * * * * * *

Mitchell 9.029 4.892 -0.7556 * * * * * *

Onida 4 10.879 10.302 -0.8079 * * * * * •

*Not significant at 0.05 level.
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Fig. 2. Isopleth map of annual mean p00(710).

neighbor, (2) the arithmetic mean of the six nearest stations,
(3) a spline-surface fit to the six nearest stations using the
technique described by Creutin and Obled [1982] and at
tributed to Duchon [1976] and Paihua and Utreras [1978],
and (4) a linear interpolation using the three nearest stations
defining a triangle that includes the station.

The estimated coefficients, using each of the above methods,
are shown for the Markov chain and the mixed exponential
distribution in Tables 6 and 7, respectively.

.70 .70 .68 .66 ^ ee
30 ° 3Q r r

kilometers

The techniques were compared by calculating the log-
likelihood functions using the estimated coefficients and (9)-
(11) with precipitation data for each test station. The maxi
mum likelihood (ML) functions for each test station can be
utilized to test the following hypothesis:

H0: ©t-Oi') to2 = (02')

against the alternative

Hx: co, =(6,) co2 = (62)

Fig. 3. Isopleth map of annual mean p10 (y20).
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Fig. 4. Isopleth map of mean a (y30).

where the subscripts 1 and 2 refer to the occurrence process S are allowed one harmonic, and a is described only by the
and ME distribution, respectively, and 8/ and 82' refer to mean value).
parameters estimated by one of the four techniques discussed The likelihood ratio statistic
previously; 6, and 62 are the parameter vectors estimated
from the actual record at the test station by ML techniques
with the constraint that each parameter of the MCME model is approximately chi square with 10 degrees of freedom for the
will have no more harmonics than the neighboring stations Markov chain and 7 degrees of freedom for the mixed ex-
(i.e., both Poo and P|0 are allowed two harmonics; both P and ponential distribution.

X, = -2 loge {L(x, 9,.')/L(x, 9,)} 1=1,2

KILOMETERS

Fig. 5. Isopleth map of mean P{yM), mm.
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Fig. 6. Isopleth map of mean S (yJ0), mm.

TABLE 6. Fourier Coefficients for Test Stations: Markov Chain

973

''oo Pio

Estimation Mean #n. #12. Mean #21' #22. #23. Log
Technique yio C,i rad c12 rad y2<> c2l rad c22 rad C23 rad Likelihood

Long Valley Station
1 (Martin) 0.8425 0.0732 2.9288 0.0190 0.6847 0.6625 0.0860 -2.9640 0.0711 2.4512 0.0549 0.0527 -6014.54
2 0.8441 0.0757 2.9178 0.0191 1.1439 0.6625 0.0886 -2.9586 0.0573 2.4617 -6009.55
3 0.8449 0.0742 2.9042 0.0193 0.7787 0.6682 0.1013 -3.0405 0.0649 2.5028 -6008.41
4 0.8390 0.0754 2.9184 0.0200 0.6443 0.6598 0.1072 -3.0758 0.0653 2.5138 -6029.44
ML 0.8700 0.0627 3.1710 * * 0.7123 0.1018 -3.0391 0.0635 2.2982 -5952.78

Mitchell Station
1 (Academy) 0.8645 0.0878 2.7382 0.0146 1.4611 0.7143 0.0978 -3.0031 0.0815 2.8908 * * -7479.54
2 0.8329 0.0799 2.7629 0.0158 1.0407 0.6568 0.0753 -3.0991 0.0645 2.5286 -7304.78
3 0.8353 0.0821 2.8404 0.0151 1.2818 0.6669 0.0878 -2.9932 0.0627 2.6796 -7315.81
4 0.8432 0.0845 2.7528 0.0137 1.3295 0.6847 0.0910 -3.0796 0.0713 2.8336 -7347.85
ML 0.8198 0.0835 2.7721 * * 0.6154 0.0630 -2.9380 0.0446 2.5872 -7283.02
ML 4th harmonic 0.0126 -1.5336

Gettysburg Station
1 (Redfield) 0.8453 0.0785 2.6493 0.0181 0.7983 0.6755 0.0733 -2.9872 0.0865 2.3667 * * -6575.26
2 0.8413 0.0715 2.8003 0.0183 0.7966 0.6692 0.0688 -3.0643 0.0594 2.4313 -6572.04
3 0.8372 0.0678 2.8345 0.0206 0.6340 0.6593 0.0653 -2.9579 0.0595 2.2244 -6579.63
4 0.8053 0.0546 3.1664 0.0211 0.2978 0.6024 0.0438 -2.8508 0.0217 2.0336 -6716.52
ML 0.8463 0.0724 2.8390 0.0187 0.9320 0.6831 0.0974 -3.1735 0.0639 2.1576 * * -6561.01
ML 4th harmonic 0.0134 -2.2531

Onida Station

1 (Pierre) 0.8202 0.0681 3.0101 0.0239f 0.5885t 0.6170 0.0586 -2.9438 0.0466 1.9987 * * -5929.50
2 0.8455 0.0712 2.8333 0.0187 0.8882 0.6758 0.0812 -3.0174 0.0571 2.4565 -5778.14
3 0.8190 0.0626 3.0476 0.0234 0.4892 0.6192 0.0517 -2.9363 0.0372 2.0130 -5944.24
4 0.8328 0.0672 2.9270 0.0225 0.6612 0.6452 0.0638 -2.9951 0.0486 2.1564 -5828.23

ML 0.8778 0.0604 2.7861 0.0117 1.2786 0.7251 0.1048 -3.2027 0.0579 1.8452 * * -5703.85
ML 3rd harmonic 0.0095 -0.1680

1, Nearest neighbor; 2, Arithmetic mean; 3, Spline; 4, Linear interpolation; ML, Maximum likelihood.
*Harmonic not significant at 0.05 level.
tThird harmonic for Pierre; AMP, 0.01238; PHS, -0.54779.
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TABLE 7. Fourier Coefficients for Test Stations: Mixed Exponential

a

P 5

• Log
Estimation 730 y^o. Q„ #41. C42. #42. C43. #43. ySo. cs,. #51. cS2. #52. Likeli
Technique mm mm rad mm rad mm rad mm mm rad mm rad hood

Long Valley Station
1 (Martin) 0.6233 2.3779 0.6388 -0.5896 * * * * 11.3622 10.7775 -0.6848 * * 591.93
2 0.5757 2.7940 0.7620 -0.5657 * * * * 10.4419 7.4828 -0.7356 * * 724.18
3 0.5689 1.9533 0.4623 -0.5457 * * * * 10.1752 8.0264 -0.6833 * * 609.07
4 0.5332 1.3945 0.2896 -0.5376 * * * • 9.3599 7.1933 -0.6635 * * 512.32
ML 0.6589 4.5527 1.4257 -0.4382 • * * * 11.0589 10.3010 -0.8079 * * 772.05

Mitchell Station
1 (Academy) 0.6035 5.1580 0.8443 -0.6221 * * * * 11.8140 7.0089 -0.8322 * * 1485.68
2 0.4893 2.1742 0.6681 -0.7007 « * * * 9.9212 5.1613 -0.7844 * • 1826.08
3 0.5059 2.5883 0.7417 -0.7462 * * * * 10.0254 6.0274 -0.8263 * * 1779.50
4 0.5244 3.3274 0.7925 -0.7260 * * * * 10.7696 6.3576 -0.8475 * * 1686.01
ML 0.3857 0.9337 0.3597 -0.5935 * * * * 9.0279 4.8913 -0.7555 * * 1921.90

Gettysburg Station
1 (Redfield) 0.5332 2.1994 0.9865 -0.4850 * * 0.3922 - 2.8577 9.7973 4.0970 -0.7270 • * 1390.79
2 0.5079 2.5908 0.7976 -0.5492 * • * * 9.7384 5.6058 -0.7773 * * 1401.04
3 0.5023 1.6764 0.9169 -0.4999 * * * # 8.7808 4.8641 -0.7389 * * 1381.16
4 0.3553 0.3785 0.3708 -0.5392 * * * * 7.7216 5.0571 -0.7581 * * 1069.43
ML 0.5629 2.5387 0.8354 -0.3344 * * * * 9.7051 6.3218 -0.6922 * • 1407.48

Onida Station
1 (Pierre) 0.4462 0.8156 0.4651 -0.7626 0.0996 -0.81020 * « 7.7158 4.2075 -0.6764 0.6563 0.1056 390.46
2 0.5188 2.4943 0.8052 -0.4881 * * • * 9.4945 5.4483 -0.7698 * * 652.30
3 0.4374 0.9246 0.5486 -0.6965 * * * * 7.7470 4.9530 -0.7140 * * 440.53
4 0.4911 1.5799 0.7247 -0.6488 * * • * 8.3287 5.0800 -0.7217 • * 560.76
ML 0.6240 4.6050 1.2454 -0.3840 * * * * 10.8791 10.1117 -0.6450 * * 689.25

1. Nearest neighbor; 2, Arithmetic mean; 3, Spline; 4, Linear interpolation; ML, Maximum likelihood.

For the occurrence process, method 2 (arithmetic mean of
six nearest stations) gave the highest likelihood function for
three of the four stations and was second best for the fourth.

However, the null hypothesis was rejected (p = 0.05) for all
techniques for all stations, which means that all estimation
techniques gave Fourier coefficient values that were statis
tically different from those estimated using the real data at the
test station. The arithmetic mean provided the best estimators
for the distribution of amounts for all stations, but the null
hypothesis was rejected for all cases except for the arithmetic
mean estimates at Gettysburg.

Although the number of stations is marginal [cf. Hughes
and Lettenmaier, 1981], the regionalization technique of krig-
ing was also examined. Semivariograms were computed for
the means of the parameters p00 and p,0, using the universal
kriging program described by Skrivan and Karlinger [1979],
and are shown in Figure 7. The variograms are flat for both
parameters, suggesting a significant "nugget" effect. This
rather large nugget variance may be caused by a number of
factors, including real mesoscale differences in the precipi
tation regime at a scale much smaller than the spacing of the
data points, measurement errors, observer bias, time of read
ing the gages, and modeling errors. A normalizing transforma
tion of the form

r, = log PiO

1 - Pm.
i = 0, 1

was also tried, but the shape of the empirical semivariogram
did not change. The rather poor performance of all interpola
tion techniques indicates potentially serious problems. There
fore the factors which may have contributed were examined in
more detail.

Parameter Identifiability

Because all Fourier coefficients are not considered simulta

neously in the optimization process and the coefficients are, in
fact, dependent, it is possible that some of the spatial varia
bility in individual coefficients is due to convergence to a local
optimum. Parameter sampling variability is always present as
well, although it will decrease as record length increases. An
empirical examination of parameter identifiability was per-
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Fig. 7. Semivariograms for Markov chain parameters y10 and y20.
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formed by simulating 10 sets of 40-year records using Fourier
coefficients identified for Pierre. Fourier coefficients were then

estimated for each simulated record. The means and standard

deviations of the Fourier cofficients are compared with the
theoretical coefficients in Table 8.

The statistics presented in Table 8 show that there is little
sampling variability in the Fourier coefficients for the Markov
chain parameters p00 and p,0 and for the mean values of a, P,
and S. However, there is a significant problem in identifying
the Fourier coefficients for the first and second harmonics for
P and 6. Although two harmonics were present for 5 in the
simulation model, the first harmonic was identified as signifi
cant only once, and the second was not identified as signifi
cant for any of the 10 samples. This demonstrates the strong
dependence between the parameters a, p\ and S and indicates
that it is possible to reach local optima. Thus we conclude
that the noise in the Markov chain parameter fields and in the
means of a, p\ and S is probably not due to sampling variation
or problems of parameter identification but that parameter
identification problems could be significant for the second and
higher harmonics for /? and all harmonics for 8 for the ME
parameter fields.

Effects of Observation Time

From Table 1, we see that the observation time is not the
same for each station. If there is a substantial diurnal vari

ation in the rainfall process, differences in the observation
times could cause differences in both the number of wet days
and the distribution of precipitation amounts per day. To in
vestigate this possibility, we obtained hourly precipitation
data for Rapid City and Aberdeen from the National Climatic
Data Center, NOAA.

The frequency of precipitation occurrence during each hour
was estimated for each 14-day period and for the year (see
Figure 8). Three daily records, beginning at midnight, 0700,
and 1800, were assembled from the hourly records for each
station, and the Fourier coefficients were estimated for each
record. Likelihood ratio tests showed that the null hypothesis
could not be rejected at the 5% level for the ME model for
Aberdeen; however, the null hypothesis was rejected for the
occurrence process where (O/) were estimated from the re
cords with 1800 hours starting time and (Oj) were estimated
from the record with 0700 starting time. For Rapid City the
null hypothesis could not be rejected at the 5% level for either
the Markov chain process or the ME model. Thus it appears
that the time of day definition can account for some of the
variability in the parameter fields but is probably not the sole
cause. It should be noted that this method of determining the
effects of observation time on the rainfall process does not
account for the effects of evaporation from the rain gage.

The effects of evaporation and possibly other meth
odological factors can be examined by dividing the stations
into two groups: those with observation time at midnight and
in the morning hours, and those with observation times from
1700 to 1900. Lead was omitted from the analysis because of
major elevation effects. An analysis of the data in Table 1
reveals that the average of the annual precipitation recorded
at the eight stations read at midnight or morning is not signifi
cantly different from the average at the 11 stations with the
afternoon observation time (students t = 0.3275), but the
average number of wet days per year is significantly different
(83.1 versus 62.5 days/year; t = 6.47). Such difference could be
introduced by occasional failure to read the gage on the first

TABLE 8. Parameter Identifiability Statistics: Pierre

Coefficient
Fourier Theoretical Observed Standard of

Coefficients Mean Mean Deviation Variation

yio 0.8202
°00
0.8213 0.0036 0.0043

Cn 0.0681 0.0642 0.0042 0.0657

#u> rad 3.0101 3.0378 0.0891 0.0293

c12 0.0239 0.0195 0.0035 0.1772

#i2. rod 0.5885 0.6080 0.2843 0.4676

C13 0.0124 0.0072 0.0094 1.3156

#13. rad -0.5478 -0.4449 0.3636 0.8173

y2o 0.6170 0.6165 0.0122 0.0197

c2l 0.0586 0.0709 0.0134 0.1897

#21. rad -2.9438 -2.9099 0.1425 0.0490

c22 0.0466 0.0388 0.0158 0.4059
4>22, rad 1.9987 1.9869 0.3582 0.1803

c23 0 * *

#23. rad *

Alpha

•

y3o. 0.4462 0.4348

Beta

0.0213 0.0489

y40, mm 0.8156 0.7782 0.0356 0.0457

C41, mm 0.4648 0.4806 0.0470 0.0978
<pAt, rad -0.7626 -0.8032 0.0594 0.0739

C42, mm 0.0991 0.0345 0.0452 1.3088

#42. rad -0.8102 -1.1318 0.3622 0.3200

C43, mm 0 » •

4>A3, rad * *

C+4, mm 0 0.0081 0.0256 3.1562

$44, rad -0.9318

Delta

t

Vso. mm 7.7158 7.6682 0.2052 0.0268

C31, mm 4.2088 0.1135 0.3592 3.1633

#si. rad -0.6764 -3.6167 t
Cs2, mm 0.6553 * *

#52. rad 0.1056 * *

CS3, mm 0 0.0881 0.2786 3.1614

#53. rad 2.0320

'Harmonic not significant at 0.05 level.
fHarmonic identified as being significant for only one simulation.

of two wet days and by the evaporation of small precipitation
amounts before the gage is read.

Both of these factors could affect the number of wet days
and the distribution of rainfall amounts. Differences should be

most apparent on days with small rainfall amounts, so if the
threshold is raised from 0.254 mm (0.01 inch) to a higher level,
spatial variability of parameters should decrease. To examine
this factor, we analyzed a subset of six stations: Aberdeen,
Pierre, Pollock, Redfield, Gettysburg, and Onida. The MCME
Fourier coefficients were identified for three thresholds, 0.254
mm, 1.27 mm, and 2.54 mm. As the threshold, T, is raised
from 0.254 to 1.27 mm, the variances of the coefficients y,0
and y20 are significantly reduced (F > 5.05 dfx = df2 = 5),
while the coefficients y30, y40, and y50 are not significantly
changed (see Table 9). As the threshold is raised to 2.54 mm,
the variances of the coefficients y10 and y20 are significantly
reduced as compared to the coefficients for T = 0.254 mm, but
the variance of coefficient yso shows a significant increase,
possibly reflecting the reduced number of wet days at the
higher threshold. The effect of the three thresholds on the
mean accumulated number of wet days as a function of day of
the year is shown for the adjacent stations, Pierre and Onida,
in Figure 9. From these analyses we conclude that most of the
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parameter variability is introduced by methodological differ
ences that affect the small precipitation amounts. Observation
time appears to be a significant factor, and its effect can be
attributed to the diurnal variability of precipitation oc
currence and evaporation of small amounts of rain, so that
gages serviced in the P.M. show smaller numbers of wet days
than those serviced at midnight or in the morning. Although

TABLE 9 Effect of Threshold on Variability of Fourier
CoefTicients for Six Stations

Standard

Parameter Coefficient Mean Deviation F

Threshold = 0.254 mm (0.01 inches)
Poo y10 0.8462 0.0252
PlO y20 0.6774 0.0464
a y30 0.5304 0.0971
P y40 2.5343 1.5166
3 y50 9.4856 1.0688
Number of 66.284 12.064

wet days

Threshold = 127 mm (0.05 inches)

Poo y10 0.8887 0.0085 8.79*

PlO y20 0.7507 0.0147 9.96*

a y30 0.6677 0.0610 2.53

P y40 4.4770 0.6952 4.75

5 y50 11.1693 1.1219 1.10

Number of 47.080 3.59

wet days

Threshold = 2.54 mm (0.10 inches)

Poo y,0 0.9126 0.0067 14.17*

PlO y20 0.7885 0.0118 15.46*

(X y30 0.6337 0.1482 2.33

P y40 5.1724 0.8176 3.44

6 y50 11.8786 2.4196 5.12*
Number of 35.699 2.533

wet days

indicates significant difference between variances of coefficient
with threshold = 0.254 mm as determined by F test (p = 0.05).

much of this variability, particularly in the occurrence process,
can be removed by using a threshold higher than 0.254 mm, it
is not clear how one could estimate the parameters for the
process with T = 0.254 mm, given the parameters for a higher
threshold.

Discussion

The fundamental assumption involved in mapping Fourier
coefficients to provide a concise regional description of daily
precipitation is that the model parameters, as represented by
the coefficients, vary smoothly over the region. This is, of
course, the assumption we make when we draw isolines of
mean annual precipitation, so it is intuitively appealing. An
examination of the parameter maps (Figures 2 through 6), the
semivariograms for the mean Markov chain parameters
(Figure 7), and the results of the comparisons of interpolation
procedures, however, shows that there is a substantial vari
ation of parameters in distances of the order of 50 to 100 km.
An important question raised by this investigation is, "How
much of this variability is real, representing true differences in
the precipitation regime, and how much is spurious, intro
duced by measurement errors, operator bias, time of reading
the gages, and modeling errors?" Our investigation revealed
that much of the observed variability could be attributed to
methodological differences which affect the small rainfall
amounts and appear to be most consistently related to time of
observation. However, parameter identifiability and sampling
errors also contribute. Real mesoscale differences in the pre
cipitation regime certainly exist, but this contribution to spa
tial variability of parameters is unknown.

Although we have shown that parameters estimated by four
interpolation schemes were statistically different from parame
ters identified for four test stations, it is possible that, in some
cases, information derived from precipitation sequences simu
lated using the interpolated parameters (for example, water
yield distributions from hydrologic models) may be insensitive
to the differences. This seems especially likely when the differ-
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ences are caused by observation times. It should also be noted
that the observation time for three of the four test stations is

at 1800. The interpolated parameter estimates for these sta
tions were based upon stations which included different obser
vation times. Thus it appears that significant inconsistencies in
data are present and may cause problems of unknown severity
in regionalizing procedures and testing.

Summary and Conclusions

Fourier series are used to describe the seasonal variation of

the five parameters for a stochastic model of daily precipi

tation utilizing the Markov chain-mixed exponential
(MCME) model. Numerical maximum likelihood techniques
were used to estimate the Fourier coefficients, and a likelihood
ratio test of the 0.05 level was used to test the significance of
each harmonic. The weighting parameter, a, in the mixed ex
ponential distribution, was constrained to be a constant
throughout the year.

A concise description of seasonal variations of parameters
for the state of South Dakota has been obtained by using from
15 to 27 coefficients. This procedure provides much more in
formation than, for instance, a listing of the monthly mean
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precipitation and requires only a few more parameters. Spatial
variability of the mean of each parameter has been illustrated
by mapping isopleths.

Semivariograms calculated for the mean Markov chain pa
rameters y10 and y20 showed a "nugget" effect. The source of
the large nugget variance was examined. We found that much
of the observed spatial variability in parameters, at distances
of 100 km or less, may be attributed to real differences in the
precipitation regime and to inconsistencies in the records due
to methodological differences affecting small precipitation
amounts. Time of observation appears to be an important
factor, but parameter identifiability and sampling error also
contribute. This suggests that precipitation records proposed
for use in regional parameter mapping must be carefully
screened to ensure consistency of data.

The MCME parameters for four test stations were more
closely estimated by arithmetic averages of the parameters of
six nearby stations than by three other interpolation tech
niques, including nearest neighbor, spline fitting, and linear
interpolation. This finding is consistent with the variograms
calculated for the mean Markov chain parameters. This sug
gests that this estimation procedure is superior to the com
monly used practice of transposing precipitation records
rather long distances (other factors, such as length of record,
being equal) and that the more complex interpolation pro
cedures, such as kriging or spline fitting, are not justified. We
also found that the interpolated parameters for the four test
stations were significantly different from parameters identified
from precipitation records.

Geographical barriers obviously affect the precipitation
climatology. Therefore the application of this model to a re
gional description is not recommended in mountainous re
gions.
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