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EFFECTS OF RAINFALL INTENSITY ON RUNOFF CURVE NUMBLRS

by
Richard H., Hawkins

ABSTRACT

The runoff curve number rafnfall-runoff relationships may be defined in two ways: (1) by formula,
which uses total storm rainfall and a curve number, but not intensity or duration descriptors; and (2)
rainfall loss accounting using a ¢ rate and a specific intensity duration distribution of the function
i(t) = 1.5P(5(1+424t/T)"%=1)/T, where i{t) is the intensity at time t for a storm of duration T. Thus,
the curve nurber method is found to be a special case of § index loss accounting, The two methods are
reconciled through the identity 1.2S = aT, leading to the relationship CN = 1200/(124¢T). The effects of
rainfall intensity on curve number are felt through deviations from the necessary causative intensity-
dyration curve. Some sample alternate distributions are explored and the effects on curve mumber shown.
Limitations are discussed.

INTROODUCTICH

BACKGROUND

Runoff curve mumbers are coefficients used in the calculation of "direct storm runoff” by a method-
ology first pioneered by and still strongly identified with the U.S. Soi) Conservation Service (SCS).
The primary reference on the subject matter §s their National Engineering Handbook, Section 4, Hydrology
(10), herein abbreviated “NEH-4." Direct storm runoff {s taken to be a function of antecedent rainfall,
storm rainfall depth P, and a storage index S (variable with antecedent rainfall and land condition}), in
accordance with the equation

Q= (P - 0.25)2/(P + 0.85) ()

where P, Q, and S are in inches depth, and P > 0.25. The general algebraic and geometric relationships
in £q. (1) are shown in Figure 1. Note that as P increases, P-Q approaches 1.25.

The storage index S is an indicator of land condition, and may vary from 0 (an impervious watershed;
Q = P) to infinity (a completely absorbent wateshed; @ = 0), with virtually all realistic values falling
in between. To create a more intuitively pleasing expression of S, and to "lincarize” the relationships
(10), S was transformed by the equation:

CN = 1060/(1045) ' (2}

to define “curve number,® CN. It is dimensionless and varfes from 100 (completely impervicus; Q = P) to
0 (completely absorbent; Q = 0). .

The technique is normally applied in a design mode, using a hardbook estimate of CN in accordance
with soil, vegetation type, 1and condition and moisture status, and a design frequency storm. Runoff
hydrographs may be subsequently calculated via a standard unit hydrograph procedure. It is, of course,
also possible to determine S, and thus CN, from any real P and Q data pair by solution of Eq. 1 for S to

s = 5(P + 20 aQ" + 5PQ) (3)
PROBLEMS IN APPLICATION

The very simplicity of the methcdology which makes it universally appealing becomes the point of con-
tention when the technique 1s taken beyond the fafthful applicaticn suggested in NEK-4. Real world
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Figure 1. The SCS rainfall-runoff relationship standardized on the
storage fndex S,

exceptions to the watershed “model” in Eq. 1 are not difficult to find (6, 8). Also, the complaint is
often ajred that Eq. 1 makes no recognition of rainfall intensity, although explanation diagrams in
NEH-4 suggest an infiltration process. Smith (9) has elaborated in detail on the topic:

“). The CN methodology cannot respond to differences in storm intensity...It cannot distin-
guish between the effect of 4 inches of precipitation in 1 hour, and 4 inches in 12
hours, although both the infiltration amounts and runoff rates will be considerably
different.

2. Closely related to the above, the SCS methodology does not properly predict initial
abstractions (Ia) for shorter, more fntense storms, since it assumes (Ia) to be constant.

3. The CN method cannot be extended ‘to properly predict infiltration patterns within a storm.
.. Attempts to use the CN Method within a storm have highlighted its physical invalidity
- the resulting infiltration decay curve (P > Iy) s forced to rise and fall with rafn-
fall rate, rather than be controlled by soil condfticns as in nature.

4. The CN method postulates a meximm depth of infiltration (S), after which all rainfall
becemes runoff. Selection of an S to approximate response to short storms can produce
poor results for extended storms. Existence of such an S #s not physically supported.”

Smith's specific comments reinforce the intuitive notion that a runoff coefficient should incorpor-
ate infiltration characteristics, which then must bring rainfall intensity into consideration as well,

Associating intensity and infiltratfon to curve number could lead to greater utf)ization of exist-
ing field measurements of infiltration. For example, Gifford and Hawkins have summarjzed grazing
influences in Infiltration (3). While not on a watershed-wide reference basis, these measurements do
represent a sample of the real world, and may be used, with appropriate caution, in decisicn making and
process models (4). Unfortunately, there is no docuzented relationship between infiltration rates and
curve number, and, thus, the body of infiltration data is not fully usable.

ANALYSIS
The problems described above arise from the lack of a time dimension in the basic mechanics of the
method. Without time considerations, neither infiltration nor intensity can be incorporated. The time
concept must be introduced through new relationships or assumptions. A brief foray into such follows.
Through expansion of the numerator and polynomial divisson, €q. 1 may be expressed as

o-p-s[l.z-n-%ﬁ] (4)
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This may be seen as a form of hydrologic accounting
Q= P - Losses {42)
so that

Losses = S[I.Z - D‘TSO“E] (5)

Denoting Losses as "L“, acknowledging S to be a constant, and differentiation with respect to time
yields:

dL _ dpP s B (6)
dt dt |[F+0.88

The time rate of toss is dL/dt or infiltraton rate f, while dP/dt is simply rainfall intensity,
i. Thus,

e [FTg_ﬁ]Z "

where P is the cunulative rainfall, A dimensionless expression, standardized on f/i and P/$S is showm

in Figure 2. Eq. 7 supports Smith’'s contention that “...infiltration... is forced to rise and fall

with rainfall rate...” which was also observed by Aron et al. (1) in a digital model using the SCS
method. Also, Simanton, Remard, and Sutter (8) found that observed curve numbers varied with storm
intensity. Eq. 7 will give a reasonable and credible infiltration relationship with accumulated rainfall
if the intensity is constant; otherwise, it produces erratic results. This matter will not be further
pursued in this paper.
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Figure 2. Dimensionless expression of infiltration rate from the
SCS equation,

SYNTHESIS

As suggested above, rainfall intensity considerations are meaningful only when infiltratfon is also
introduced. Horton's equation is perhaps the most widely used and easily visualized expression of
infiltration, although it is pragmatic rather than analytic, and dependent on time only. Despite ite
empirical nature, it is a good fllustration and reference model:

£ty = £y (1, - f ekt )

where f,, fc, and k are coefficients representing respectively the initial infiltration rate (at t » 0),
the long-term residual rate (as t + =), and a recession constant describing the rate that f{t) approaches
fc from fo. The f¢ descriptor is used here as a reference concept: a residual long-term or constant
rate of water intake, In fact, a constant rate is often approached in field situations of i > T In very
modest time frames such as 20 - 40 minutes, although this is certainly not a universal statement,

PHI IHDEX

An average storm infiltration rate, called the $ (phi) index has been commonly used to determine
rainfall excess for generating composite unit hydrographs. Although it represents the combined effects
of infiltration, intercepticn and depression storage, it is functionally identical to average infiltra-
tion rate as taken from most plot studies., It requires the further simplifying assumptions of a cone
stant rate process, and uniform distribution across the watershed area, As Justification, it may be
eavisioned as either (1) a storm long average of an adnittedly more complex phenomenon; (2) a real
expression of fc with the early low intensity storm bursts satisfying initial moisture demands and draw-
ing Lhe rate down to near fc, or (3) a pragmatic assumption necessary to proceed without undue fuss.
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Phi indexes have also been used in investigative situations. Arteaga and Rantz (2), and Lane and
Wallace (7) have amalyzed rainfa)l-runoff data for small semiarid watersheds, and found 4 to vary pos{-
tively with storm intensity, This was Interpreted as an expression of a variable source area, with
accompanying variable loss rates.

INTENSITY-DURATION

Rainstorms are of naturally varying characteristics, differing in their total depth P, duration 7,
the maximun and minioun intensities, as well as the distribution and sequence of rates within a storm.
If the interna) sequemce is ignored, the individual storm intensities or bursts may be rearranged in
descending order in as small a time increment as desired. The result §s an intensity-duration curve
directly analagous to the flow-duration curves so popular in conventional engineering hydrology. An
explanatory example is seen {n Figure 3.
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Figure 3. An idealized storm intensity-duration function,
with §-index loss rate superimposed, Note that
(0) may be infinite, or that (1) may be zero.
Discrete or discontinuous functions are also
possible,

For descriptive purposes, the distributions mdy be cast as algebraic functions msch as frequency
distributions are in statistics. Indeed, duration curves are forms of frequency or probability dfstri-
butions, although this will not be pursued here. They oay also be portrayed as discrete functions of
finite time intervals. Both approaches will be {llustrated later.

This tactic allows orderly classification of rainstorms without concernfor the temporal sequence
of bursts, and, thus, superimposition of the constant loss rate 4. Two stoms of different cumylative
rainfall appearance may be fdentical when described by thefr intensity-duration characteristics.
STORM RUNGFF: RAINFALL PARTITIONING

The superimpositicn of ¢ on the intensity duration function produces (1) total storm rainfall

excess {or runoff), and (2) the net time duration of the runoff, t(s). The runoff volume is, by
integration ()
t(e

Q- ] 1(t)dt - st(s) 10) » ¢ (9)
0

where t(s) is merely the inverse of i(t), at i = 5. The total storm rainfall P {s
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T
Pa ] 1)de (10)
0

and the average storm intensity is

T
P
1.8 H He)ae an
[
A simple example will illustrate this. Suppose storm intensities occur triangularly distributed, from
a maximum of (0) (at t = 0) to O (at t = !g. Then
i(6) = §(0) (0 - §) 02)
1t is then easily shown that
t{e} = T(1 - ¢/1(0)) (12a)
P = i(0) T/2, and, not surprisingly , (12b)
T = 1(0)/2 (12¢)

Q is then calculated from (9) as
tle)
0= [ WO - ) gt - arte) (124)
o

With appropriate integration and substitution, this yields
Q= (P - sT/2)2/P (13)

This gives storm “runoff” as a function of storm rainfall (P), loss rate (¢), and storm duration
(T) for a rainstorm of the assumed triangular intensity distribution. It §s displayed in Figure 4.
Similar calculations made for several other assumed continuous functions, and for a well known discrete
storm distribution found fn NEH-4, are summarized in Table 1. This approach will be called “rainfall
partitioning,” although it is merely a formalized 4 index rainfall accounting using the notion of storms
with known intensity-duration characteristics.

Table 1. Characteristics of selected intensity-duration distributions and runoff.

Identification i(t) i(0) t{s) Ia Q
Urnformy i(0) = constant P/T undef ined &7 PesT
TrisngularY 10)(1-t/T) 2P/T (1) RY) (P-3T/2)2/P
QuadraticV+ ¥ §10)(1-1/T)? w7 (1™ 8173 P(130 + 203/2)
Exponential s & 4(0)01-t/T)"  (ae))P/T TO-Y" oT/(ne1) PO [n{1-p")41]}
1 1 b
Logar ithnic abed”! Infinite [s/(ab)) BT a P10 s1b) 7D (10)¥
PaT 74
eneM e B Y q(oysre2army>a et TL(5/4041)" 11724 oT/6  (P-0.25)2/(P+0.85)
NEH-4 Design H/A 4.44p/1 /A 0T78.84  t(iwd)at  (i=¢)
{6 hour) P-sT lo<ipin

Notes: 1. for all P>Ia 2 2. Peo/1(0) 3 3. SeeT/V.2 3 4. P<aT/b ; 5. P>3T/b.

SCS EQUIVALENTS

By comparison of Figures 1 and 3 and their assoclated algebra, some {dentities between the two sys-
tems may be written.
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Figure 4. [llustrative example of intensity-duration accounting and resulting rainfall-runoff
relationship.

Maximum losses: The maximum possible difference between rainfall and runoff in the SCS method s

1.25. With rainfall partitioning, and for any intensity distribution, this would be &7, or continuous
losses over the storm duration T at rate 6. Thus,

4T = 1,25 (14)
or
oo LB s a4 (M4a)

Thus, loss rate ¢ (an fnfiltration rate?) may be described in terms of S, and, thus, CN and storm
duration. The inclusion of storm duration reaffirms the earlier held principle of the necessity of a
time dimension. By substituting the above into (2)

1200
R o ¢ : (18]

and
LR s
The storm duration (i.e., time) consideration cannot be escaped. CH is not a function of s alone.

“Inftial abstraction.”

The minimum rainfall necessary to initiate runoff in the SCS method is taken as 0.25, a relation-
ship only poorly documented in NEH-4. For P < 0.25, Q = 0. With rainfall partitioning, this threshold
is attatned at ¢ = 1(0). For the triangular distribution example previously described, this can be
shown to be ¢T/2. Equating this to 0.25 is inconscnant with Eqs. 14 and 15: equivalences may be
stated between either the inftial abstractions or the ultimate losses, but not necessarily both. The
latter was used as a standard for comparison because of its key role in SCS hydrology conceptualfzation,

SYNTHESIS OF SCS EQUATION

At this point, the challenge may be issued to discover the intensity~duration function which, with
¢ index loss accounting, will produce the standard SCS runoff equation (Eq. 1). As shown in Table },

this is found to be
,
e} » '_(21[_5_ - 1%
S Wieam (16)

This will be called the "CN" distribution. A derivation for it is found in Appendix II. The runoff

expression from the rainfall partitioning approach reduces to Eq. 1 with the introduction of S = 47/1.2
and 1(0) = 6P/T. Figure 5 shows Eq. IGngrngﬂicaHy. 9 roduct’o o1/
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Figure 5. Intensity-duration distribution necessary to genmerate SCS
rainfall-runoff relationship with ¢-index loss accounting.

EFFECTS OF INTENSITY

STRATEGY

There are now two means of generating storm runoff from storm rainfall to match the conventional
SCS relationships (1) the formula itself, i.e., €q. 1., which inputs only total storm rainfal) and a
curve number; and (2) the described rainfal) partitioning approach, which draws on storm volume and dura-
tion, a constant loss rate, and a fixed distribution of rainstorm intensities. To the extent that the
partitioning approach is valid, the intensity characteristics of other stom distributions may be
examined for the effect on runoff, and, thus, (by equivalence with £q. 1) their effects on curve number
{CH). The question is further reduced to the difference between the intensity.duration distributions,
or more specifically, devijation from Eq. 16, the so-called "CN" distribution.

this places importance on rainstorm characteristics. There {s little literature dealing directly
with rainstorm intensity-duration as used herein. However, the distributions may be inferred from other
standard forms of hydrometeorological presentations, as discussed in 1imited detail in Appendix IV, For
the purposes of discussion here, ejther theoretical or institutionalized design distributions may be
used. Figure 6 shows a 6-hour design distribution found in NEH-4. Differentiation and reordering, as
shown in Figure 6, leads to an intensfy duration plot. It, along with the theoretical triangular dis-
tribution, will be used for example comparisons in the following section.

COMPARISONS
The effects of intensity may now be examined by comparing runoff calculated by rafinfal) partition-
ing against that from Eq. 1. This presumes that rainfall partitioning is the more physically justifi-
able or process documented approach, or is at least the less incredible eption.
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Figure 6. [llustrative description of rainstorm fntensity-duration from design cumulative
rainfall,

Three approaches will be compared: 1) the SCS formula or direct handbook method as a base; and
rainfall partitioning with both 2) the NEH-4 6-hour design storm distributfon and 3) the triangylar
distribution previously set forth. As fixed by the HEH-4 design storm, a 6-hour duratfon is used, as is
an arbitrary example choice of CN = 80. Thus, from €q. 2, S = 2.50 in, and from €q. 15a, ¢ = 0.50 in/hr.

For a storm of P = 3 in, the following results are obtained (See Table 1 for calculating equations).

1. SCS formula (Eq. 1) Q=1.25 in
2. NEH-4 design storm Q = 0.95 in
3. Triangular distribution Q = 0.75 in

The 3.0 rainfall and the above runoffs define apparent curve numbers via Eq. 3 as follows:

1. SCS formula CN = 80.0
2. NEH-§ design storm CN = 74.7
3. Triangular distribution CK = 70.8

These calculations may be made for a spectrum of rainfalls. Results for rainfalls up to 5 in are
shown in Figure 7. For these cases, the results indicate that to achieve the same runoffs from rainfall
partitioning by the SCS formula, curve numbers should be reduced accordingly, implying that the NEH-4
forrula (Eq. 1) overestimates runoff.

Other distributions might also be used, drawn on specific local mateorologfical data or on inferred
Tocal design intensity duration functions, as out)ined fn Appendix 1V,

DISCUSSION

USAGE

The rationale and methodology developed in this paper may be applied in two ways. First, as a
guide in the selection of curve number in a design application; the choice should depend on the inten-
sity distribution of the storm at hand as compared to the CN distribution. No rules-of-thumbd are
offerred, but some guidelines may be fplfed from the in-text experfence with the NEH-4 6-hour design
storm.

Second, where conditions merit, the rainfall partitioning approach might be used as an alternate to
the curve number method. As with all untested metheds, it should be applied with ful) user awareness of
the assumptions, and insofar as possible, within the linitations thus imposed and outlined below.

LIMITATIONS

The contrasts made and inferences for curve number influences presume that the ¢ index - rainfall
partitioning method is at least comparable (perhaps superfor) to the runoff curve moaber method. Unfor-
tunately, there is scant documentation to support efther opinfon, Also, rainfall partitioning requires
inputs of intensity-duration informatfon and a ¢ index. The former may be approximated from reduced
meteorologic presentations of depth-duration-lmquency. The latter fs intended to correspond to a con-
stant basin-wide loss rate, or (approximately) residual infiltration rate, fc, for which a large body of
knowledge already exists. Application should be Vimited to situations of homogenecus small watersheds
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Figure 7. Comparisons of runoff and apparent curve number for a
six-hour storm with CN = 80, by HEH-4 method and by
rainfall partitioning for NEH-4 six-hour design storm
and a triangular distribution of stom intensities.
Although differences 1n runoff do exist for the upper
two curves below about P = 1,75 in, the plotting scales
do not permit showing them. The upper plot shows the
apparent CN, or the CN indicated by the P and the Q.

where rainfall intensities are areally constant at any instant. However, distributed forms of the nethod
could also be developed.

FUTURE WORK

The questions raised here may merit more attention. The basic item to be serviced is the appropri-
ate usage of the runoff curve number method, and possible adjustments, augmentations, or replacement.
Thus, the rafnfall partitioning approach developed here should also be examinred and compared to the curve
number method. This rapidly directs attention to intensity-duraticn descriptions of rainstorms, and to
loss rates for various land types. Interpretation to curve number forms will demand transfer information
for soil groups, vegetative types, and land treatment effects.
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APPENDIX 1 - Notation
The following symbols are used

a - one hour rainfall for a specified frequency and location
or one hour intercept in P(t) = atd

characteristic exponent describing rainfall yolume
duration in P(t) = atb

-2
.

CN - runoff curve number 1000/(10 + S inches)
f - infiltration rate (general)

fc - residual) constant infiltration rate

fo - initial infiltration rate

-
’

total infiltrated depth following satisfaction of 1a

Ia - inftia) abstraction, or rainfall depth necessary to initiate
runoff in SCS equation. Equal to 0.25
i(0) - maxfmum ratnfall intensity

i(t) - minioun rainfall intensity

n ~ exponent describing intensity duration function

P - storm rainfall depth

Q - storm runoff depth

T - storm duration ’
t - time
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t(s) - time when o = i(t), total net duration of rainfall excess

S - watershed storage index in SCS equatien
o = #/1(0)
¢ - net constant loss rate

APPEHDIX 11
Derivation of “CN" Intensity Distributions
Referring to Figure II1-1, a generalized rainfall partitioning diagram with a loss rate ¢, the
following may be written:
First, from NEH.4,

QepPo. (Ia + F) (111-1)
in which 'a +F la 4+ S as P » =, and which leads to
52
la +F 1,25 - <085y (111-2)

a result obtained by expansion and polynomial division in Eq. 1.
Second, the rainfall volume under the & rate in Figure III-1, in differential terms is
tdg = d“a +F) (111-3a)
] d -
t a;(laor) (111-3b}
Substituting Eq. 111-2 and § = &7/1.2 (i.e., Eq. 13) in I1I-3b leads to

272
Ia + F ool - T.—z-rrp—;’—mvm (111-4})

Differentiating with respect to & as per Eq. II1-3, and simplifying produces

t-T[l -len%%-g}p] (111-5)

This may be simplified by letting x = t/Tand y = -;- . Solving via the quadratic equation gives

T 5 -1
yosze 1,5[ J— T— (111-6)
P Vl + 24x

We are concerned with the situation of ¢ = 1,; thus, resubstituting x and simplifying yields

p 5 -1
i= f(t) = 1.5 7 [VI—O—Z—C_—{/—T: (1117}

It can be seen that P/T is the mean storm intensity 7, and that when t = 0, i(0} = 6P/T, or that
the maximun intensity is 6 times the mean, t(¢) fs defined by the Eq. [1I-5.

APPENDIX 111

Intensity puration Relationships with Storm Size and Average Intensities

The term “intensity-duration” as used in this paper is intended as analogous to flow duration in
surface water hydrology, except that the time base is storm duraticn, and not an average annual sampling
period. It is a reordering or rearrangement of storm rainfall intensities by descending values. Thus,
two attributes result: (l‘i The slope is nen positive, and (2) the area under the curve is the total
storm rainfall. In functional representaticn, it will be called i(t).

Another form of rainfall, "intensity-duration,” also exists in widespread publicaticns. For
example, U.S. Weather Bureau Technical Paper 25 {11) gives curves of average intensities for duratfions
to 24 hours. These should thus more properly be called "average intensity-duration” curves, to avoid
confusion, [n functional representation here, these will be called T(t).

Also, storm characteristics are sometimes described by total cumulative storm rainfall as a func-
tion of duratfon. A common form (5) is of the structure
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b

P(t) = at 0<be (1v-1)

Naturally, a probability or return perfod fdentification is also made. In €q. IV-1, above, this is
felt through the magnitude of the "a® coefficient. The three forms of storm intensity discussed (P(t),
T(t), and §(t)) are mathematically reldted, as shown in the following.

1N t(s,T)

T A —
T |

INTENSITY AND LOSS RATE

0 ry)
TIME

-

Figure I111-). Reference diagram for derivation of the
intensity distributfon function necessary

to generate the SCS rainfall-runoff rela-
tions.

The average intensity at time t §s achieved from Eq. IV-1 by division by t, or
T(e) « 2ed o b

(1Iv-2)

The intensity-duration function s obtained by differentiation of Eq IV~ with respect to time, so
that

1(2) « SGLED o ypeb! (1v-3)

As is easily seen, the three are related through a serfes of factors involving t and b. Thus, given
any of the three forms, the other two may be cbtained. Adherance to the exponential structure {n Eq.
1v-1 1s necessary for these pleasing relationships. However, using the above logic, segmented or dis-

contfnuous functions can also be treated. Such )iterature {s widespread, although the informatfon s {n
various forms.

As an example, consider the 100-year rainfall for Los Angeles, as given in U.S, Weather Bureau TP
25. The following are scaled from the averu?e {ntensity-duration plot: for 24 hours, T = 0.095 in/hr;
for 1 hour, T = .61 in/hr. From this, subst tuting into Eq. 1V-2, and solving two simultanecus equa-
tions, it can be found that & = .6, and b » .413. Inserting these into 1¥-3 produces

1(t) = .252¢°9-587 (1v-4)

Note that in this form 1(0) is infinite, and thus, any rainfall > 0 will have intensities greater

tm? :ny nen-infinite ¢, and thus some runoff, however small. Also note that 1(T) will always be
positive.
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