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Abstract As the atmosphere gets warmer, rainfall intensification is expected across the planet with
anticipated impacts on ecological and human systems. In the southwestern United States and
northwestern Mexico, the highly variable and localized nature of rainfall during the North American
Monsoon makes it difficult to detect temporal changes in rainfall intensities in response to climatic change.
This study addresses this challenge by using the dense, subdaily, and daily observations from 59 rain gauges
located in southeastern Arizona. We find an intensification of monsoon subdaily rainfall intensities
starting in the mid‐1970s that has not been observed in previous studies or simulated with high‐resolution
climate models. Our results highlight the need for long‐term, high spatiotemporal observations to detect
environmental responses to a changing climate in highly variable environments and show that analyses
based on limited observations or gridded data sets fail to capture temporal changes potentially leading to
erroneous conclusions.

1. Introduction

Intensification of precipitation extremes is expected as the climate warms and the atmosphere's capacity to
hold water increases (Allan & Soden, 2008; Fischer & Knutti, 2016; O'Gorman & Schneider, 2009; Trenberth
et al., 2003). Increases in daily rainfall extremes have been reported during the instrumental record at the
global and continental scales (Donat et al., 2016; Fischer & Knutti, 2015; Kunkel, 2003; Wasko & Sharma,
2015). There is strong evidence that subdaily intensities in water‐limited environments have increased in
observations (Panthou et al., 2018; Wasko et al., 2015; Wasko & Sharma, 2015) and climate model simula-
tions (Fischer & Knutti, 2016; Min et al., 2011; Prein et al., 2016). Changes in rainfall intensities are crucial,
especially in regions like the southwestern United States where a few high‐intensity and short‐duration
storms are responsible for the majority of the annual precipitation and critical for ecosystem health
(Friedman & Lee, 2002; Huxman et al., 2004; Stromberg et al., 2017). Rainfall intensities are also the critical
determinant of runoff in semiarid regions that can result in flash floods with devastating consequences for
human life (Ashley & Ashley, 2008; Morin et al., 2006; Osborn & Lane, 1969; Saharia et al., 2017; Syed et al.,
2003). However, in water‐limited regions, substantial spatial rainfall variability can exist across scales of a
few kilometers that is not captured by isolated rain gauges or represented within typical climate model com-
putational grids, which can mask the signals of heavy rainfall (Borodina et al., 2017). In the southwestern
United States and northwestern Mexico, where most rainfall results from highly localized convective storms
from the summertime North American Monsoon (NAM), the natural low‐frequency climate variability has
led to contradictory findings with respect to trends in rainfall intensities. For instance, statistically signifi-
cant increases in daily monsoon rainfall over specific periods of record have been reported
(Arriaga‐Ramirez & Cavazos, 2010; Nichols et al., 2002). However, their analyses did not include the latest
drought that began in the mid‐1990s (Scott et al., 2015; Udall & Overpeck, 2017). Similarly, increases in daily
rainfall with a 20‐year return period have been documented during the last half of the twentieth century
(Kunkel et al., 2013). In contrast, no statistically significant increases in total rainfall or in storm frequency
(Anderson et al., 2009; Goodrich et al., 2008; Keefer et al., 2016; Stillman et al., 2013) or decreasing trends
(Muschinski & Katz, 2013) have been reported for the region. It is worth pointing out that periods of
droughts and pluvials are expected in the NAM region, so temporal trends need to be carefully interpreted
in the context of the time period of record. A recent study suggest that observed rainfall intensities in
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southeastern Arizona have decreased in the second half of the twentieth century (Singer & Michaelides,
2017) and that those decreases might negatively impact ephemeral river runoff. However, that analysis
did not include the most recent drier conditions (Woodhouse et al., 2010).

Climate model simulations of the NAM are challenged by the coarse model spatial resolution that does
not allow for a detailed representation of convective processes that often leads to contradictory and
unreliable simulations (Tripathi & Dominguez, 2013). For instance, decreases in summer rainfall of
~40% have been simulated with a coarse resolution model (0.5° land and atmosphere grid; Pascale
et al., 2017), while high‐resolution simulations using a convective‐permitting (4‐km) model simulations
showed increases/decreases in intense rainfall events in the last 60 years in southwestern/southeastern
Arizona, respectively (Luong et al., 2017). Since the model spatial and temporal resolution can dramatically
influence the projected positive changes in extreme precipitation that are projected for the region (USGCRP,
2017) and those changes are difficult to validate due to the limited availability of long‐term observational
records, the scientific community for climate studies often relies on heavily interpolated, gridded rainfall
data sets that are based on sparse network of rain gauges. Barbero et al. (2017) showed that trends in rainfall
extremes are more easily detected in daily rather than in hourly time series, perhaps because of the limited
spatial extent of summer storms in the NAM region (Syed et al., 2003). Thus, assessing temporal changes in
rainfall intensities in the NAM region requires working at subdaily temporal scales and from a network of
rain gauges able to successfully capture the spatial characteristics of monsoon storms. To address this need,
in this study, we evaluate the temporal and spatial changes in subdaily and daily NAM rainfall intensities in
southeastern Arizona. We compare the results obtained using observations from a dense network of rain
gauges for a 57‐year (1961–2017) study period with daily gridded and point rainfall from two independent
data sets.

2. Data and Analysis

TheWalnut Gulch Experimental Watershed (WGEW), now part of the Long‐Term Agroecosystem Research
network (Kleinman et al., 2018), was established in the 1950s by the United States Department of
Agriculture (USDA) Agricultural Research Service (ARS) to support soil and water research in a semiarid
environment (Figure 1). With an area of 149 km2, WGEW is equipped with a rich network of rain gauges
(approximately one gauge per 1.5 km2) to accurately capture the characteristics of the highly localized
NAM storms (supporting information Text S1). Average summer rainfall, May through September, over
the watershed for the 1961–2017 period has been approximately 293 mm (112‐ to 370‐mm range), which
represents approximately 60% of the annual total (Figure 1a). Summer storms frequently occur early in
the afternoon (Goodrich et al., 2008; Stillman et al., 2013). Summertime total rainfall anomalies show
decadal‐scale variability with generally wetter‐than‐average conditions in the 1960s, 1980s, and 2010s and
drier‐than‐average summers beginning in the 1970s, 1990s, and 2000s (Figure 1c). Average annual tempera-
ture is 17.7 °C, and it has steadily increased on average 0.22 °C per decade during the 57 years (Figure 1d). In
addition to the WGEW data set, 18 grids from the ~6‐km resolution gridded daily precipitation product by
Livneh et al. (2013) (hereafter Livneh), and 16 rain gauges from the Global Historical Climatology
Network (GHCN; Menne et al., 2012) data set are used for the analysis (supporting information Text S1).

Summer subdaily and daily rainfall intensities over the study period are obtained from breakpoint observa-
tions available at 59 rain gauges. Subdaily data are first interpolated to 1‐min time steps and then binned into
larger duration intervals D = 0.5, 1, 1.5, 2, and 24 hr. Daily values are included to compare the results with
the Livneh and GHCN data sets. For each day with nonzero totals, the maximum rainfall intensity (Io) for
each D is selected using a moving window over 24 hr. Additionally, hourly data are interpolated into a reg-
ular 100 × 100‐m grid using a multiquadric‐biharmonic interpolation method (Garcia et al., 2008).

Two approaches are used to generate time series of Io: annual maximum series (AMS) and partial duration
series (PDS). To create the AMS time series, the largest Io is selected for each D and year. For the PDS
approach, all Io values that exceeded the 95th percentile are included in the time series. The 95th percentile
value (assumed invariant in time in a nonstationary climate) is computed for all nonzero intensities at each
individual gauge which results in an average sample size of 1.6 events per year (supporting information Text
S2 and Figure S1). Percentiles ranging from the 90th to the 98th have been used to define what constitutes an
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extreme event (Begueria et al., 2011; Groisman et al., 2005; Villarini et al., 2013). A 24‐hr window is imposed
between events to ensure the statistical independence of PDS rainfall intensities.

The presence and magnitude of the trend in Io is measured with the nonparametric Mann‐Kendall test and
Sen's method (Kendall, 1948; Mann, 1945; Sen, 1968) at a 5% and 10% significance level. Additionally, a
running‐trend analysis with a 30‐year time window starting at 1961 is used to assess the impact of time series
length and starting year on trend magnitude. Trends are computed at the beginning of each time window.
Therefore, the last trend value plotted for 1988 corresponds to the period 1988–2017. Trends in Io are com-
puted for watershed average values to reduce the uncertainty introduced from the high natural variability of
rainfall (Fischer & Knutti, 2014; Kunkel, Karl, Easterling, et al., 2013) and to eliminate the impact of spatial
correlation (Douglas et al., 2000; Mascaro, 2018). Trends in Io at each rain gauge are additionally computed
to include an estimation of the spatial variability in the trend results. However, due to the close proximity of
rain gauges, there is a larger chance of detecting a trend due to a problem known as test multiplicity
(Mascaro, 2018).

Changes in Io for 2‐, 5‐, and 20‐year return periods (T) are computed with the nonparametric extreme pre-
cipitation index (EPI, Janssen et al., 2014; Kunkel et al., 2003). The EPI values for each D are chosen with
an empirical threshold associated with the return periods using a partial duration series approach. The
threshold is determined as the number of years in the record divided by T (e.g., for the 57 years of record
and a 2‐year T, the threshold is 29) and used to select the top ranked events. A generalized extreme value
and a generalized Pareto function were fitted to the AMS and PDS time series, respectively (supporting
information S1). Changes (Δ) are estimated as

Δ ¼ Xi−X

X

� �
×100; (1)

where X represents the variable of interest, the subscript i represents the year, and the bar represents the
mean value for the period of interest. All changes are evaluated with theWilcoxon‐Mann‐Whitney nonpara-
metric test (Wilks, 1935) at a 5% significance.

Besides looking at temporal changes of watershed average Io, the study also assesses the occurrence of
changes in the spatial characteristic of rainfall using spatially interpolated (100 × 100 m) 1‐hr rainfall. For
each time step, the area of the watershed covered by rainfall equal or larger than 2.5, 7.5, 12.5, 25, and 50
mm is computed by selecting the grid cells exceeding those thresholds. The thresholds are chosen to cover
the whole range of observed rainfall, ranging from 0 to 90 mm. The mean area covered by storms above a
given threshold is computed for each year. Note that this method includes rainfall cells that might not be
connected in space. Results are compared with the ones from point measurements by computing the number
of times observations exceeded the thresholds in each of the 59 rain gauges.

Figure 1. (a) Total summer rainfall, rain gauges, and Livneh grid nodes included in the study. (b) Geographic location of
the Walnut Gulch Experimental Watershed and approximate spatial extent of the North American Monsoon region
(rectangle). Anomalies, from the 1961–2017 climatology, in watershed average summer (c) rainfall and (d) temperature.
Darker lines show the 11‐year running mean.
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3. Results and Discussion

The mean of rainfall intensities exceeding the 95th percentile have been increasing during 1961–2017 period
for all durations longer than 1 hr at a rate of 0.50 to 0.03 mm/hr per decade for the 0.5‐ to 24‐hr Ds, respec-
tively (Figure 2a). Trends are also found to be statistically significant for intensities above the 90th percentile
(Figure S3). Shorter durations show larger spatial variability, evident in the 5–95% spread, which indicates
the difficulty of drawing accurate conclusions from subdaily trend analyses using a single rain gauge record.
The Livneh and GCHN data set show smaller, not significant trend magnitudes of 0.0005 and 0.005 mm/hr
per decade, respectively. The inset summarizes daily rainfall intensities from the three data sets. The Io aver-
age changes between the 2017 and 1961 are linked to D, with the shortest duration intensity (0.5 hr) increas-
ing by 6% and the longest duration (24 hr) increasing by 11% (Figure 2b). Changes in the Livneh and GHCN
data sets are smaller 0.5% and 3.4%, respectively. Positive, albeit not significant, trends in the average fre-
quency of events above the threshold are observed, and decreasing trends in the day of year and time of
the day when maximum intensities occurred, on average, indicate storms occurring earlier in the day and
in the season (supporting information S1 and Figure S4).

Trend magnitudes computed with a 30‐year moving window (Figures 2c–2h) are negative prior to the mid‐
1960s, and they become positive, and statistically significant, for durations shorter than 4 hr in the mid‐
1970s. The trends in daily rainfall intensities in the Livneh and GHCN data sets are smaller in magnitude
and not statistically significant. The running trend approach allows incorporating into the analysis natural
rainfall interannual variability (Figure 1c; e.g., periods below the historical mean in the 1970s, mid‐1990s,
and early 2000s), as rainfall intensities still show increasing trends despite lower‐than‐average rainfall totals
observed during the most recent and warmer decades. Similar increasing trends, though not statistically sig-
nificant, are found for the whole study period for the AMS time series (Figures S5 and S6a). The running
trend analysis indicates statistically significant positive increases for short durations (1 to 2 hr), starting in
the 1980s (Figures S4c–S4h). Our results contradict the results obtained by Singer and Michaelides (2017)
using a shorter time series of rainfall from the same network and by Luong et al. (2017) and Pascale et al.

Figure 2. Trend analysis of PDS Io exceeding the 95th percentile: (a) watershed average trend magnitude; (b) average changes in Io between the beginning/end
years; (c–h) 30‐year Io running trends for different Ds. The shaded band represents the trend magnitude 5th and 95th percentiles from the 59 rain gauges.
Livneh/GHCN trends are indicated in green/purple. Filled symbols denote statistically significant trends. The inset in (a) shows 24‐hr average trends ± 1 standard
deviation. GHCN = Global Historical Climatology Network; WGEW = Walnut Gulch Experimental Watershed.
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(2017) using climate and regional model simulations that suggested no changes or decreases in rainfall
intensities in southeastern Arizona. However, the intensification of rainfall with warmer temperatures
agrees with what has been found in observations of other semiarid regions (Panthou et al., 2018; Wasko &
Sharma, 2015) and in climate models in the United States (Prein et al., 2016). The increase in daily rainfall
intensities in semiarid environments since the 1970s has been reported in the Sahelian region in Africa by
Panthou et al. (2018). The high noise‐to‐signal ratio of monsoon rainfall in the region makes the detection
of climatic changes a challenge if the length of the observational record is not long enough or the number
of observations are limited. For shorter records, the length of the time series itself can be a dominant factor
in identification of trends in rainfall intensities, that is, the impact of decadal oscillations on trend analysis of
hydroclimatic variables (Chen & Grasby, 2009).

Figure 3 shows the spatial distribution of Io long‐term trends and 30‐year running trends for the PDS time
series. For the whole study period, the map in each panel shows that between 69% and 88% of the rain gauges
have increasing trends across the watershed for different Ds. Trends obtained with the Livneh data set are
also positive but not statistically significant. The 30‐year moving‐window trend analysis indicates that pre-
dominantly positive trends started in the 1970s (bar plot insets in Figure 3) when the number of rain gauges
reporting positive trends, albeit not always statistically significant, surpasses 50% (see also Figures 2c–2h).
Similar results are found for the AMS time series (Figure S6) with 78% to 90% of the rain gauges observing
positive trends during the study period. The Livneh daily rainfall shows the positive trends starting in the
mid‐1970s, while the GHCN data set fails to capture these trends due to its coarse spatial resolution that
has been argued to be one of the reasons why trends are not detected in the United States (Barbero et al.,
2017). The fact that some rain gauges report negative trends confirms the highly variable and localized nat-
ure of monsoon storms in the region, and it also highlights how crucial it is to use a dense network of rain
gauges to characterize temporal changes in convective storm properties since analysis from isolated rain
gauges can yield erroneous conclusions.

To evaluate changes in rainfall extremes for different Ts, the EPI nonparametric measure is evaluated for
two 28‐year subperiods: 1961–1988 and 1990–2017. Changes in EPI between the two subperiods are sensitive
to the duration of the rainfall event and to the return period (Table 1). For the 2‐year T, positive changes

Figure 3. Spatial distribution of trends for the study period (map). The percentage of rain gauges with positive/negative trends is shown between brackets. The
insets show percentage of rain gauges with positive/negative 30‐year running trends. The Livneh/GHCN data sets are shown in green/purple in panel (f),
respectively. Filled symbols denote statistically significant trends (10% level).
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range from 0.6% to 3.6%, whereas for the less frequent intensities (T = 20
years), larger positive changes ranging from 4.9% to 7% indicate an
increase in the magnitude of rainfall intensities in the most recent dec-
ades. These results suggest large events have become more common.
Similar changes were found using the fitted GEV probability function
(supporting information Table S1 and Figures S8 and S9).

Using hourly interpolated rainfall, on average 18% (±20%) of the 149‐km2

watershed is covered when rainfall is larger than 2.5 mm and the coverage
decreases to 4% (±6%) for 25 mm and 1.4% (±1.3%) for 50 mm. The disper-
sion of the rainfall coverage, measured by the interquartile range, shows
large year‐to‐year variability (Figure 4a). There has been a positive
increase in the median area of the watershed covered by 2.5 and 7.5 mm
of rainfall (p < 0.05). Conversely, for larger rainfall thresholds, linear
trends are not statistically significant indicating that the intensification

of subdaily rainfalls is not linked to a detectable increase in storm area (Figures 4c–4e). Differences between
the 28‐year subperiods show slightly larger medians during the most recent period (Figure 4f); however, the
medians are not statistically different at the 5% significance level. Similar results are found using hourly data
at each rain gauge (Figure S10). These results suggest a mechanism of redistribution of moisture within

Table 1
Percentage Changes in Extreme Precipitation Index Between 1961–1988
and 1990–2017 for Different Durations (D) and Return Periods (T)

D
(hr)

T (years)

2 5 20

0.5 3.6** 1.4 4.9*
1 1.6 0.6 6.9*
1.5 1.2 0.2 5.9*
2 1.2 1.4 6.4*
4 3.0 1.6 5.2*
24 0.6 1.9 7.0*

*Statistically significant equal medians at the 5% level. **Statistically
significant equal medians at the 10% level.

Figure 4. (a–e) Boxplots of changes in mean area of the watershed covered by hourly rainfall exceeding the thresholds.
The thick/thin bars show the interquartile/data range. The blue line denotes statistically significant trends (p < 0.05).
(f) Area coverage for periods 1961–1988 and 1989–2017. The cross indicates equal medians (p < 0.05).
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storms since more intense rainfall is not linked to larger storm cells as it has been reported by Wasko et al.
(2016) in semiarid Australia.

4. Conclusions

It is widely documented that extreme rainfall increases with rising atmospheric temperatures around the
world, but how this affects highly variable, in time and space, convective thunderstorms like those found
in the NAM region is not well understood thus leading to contradictory results. One of the main roadblocks
in the estimation of changes in rainfall intensities in these regions is the lack of sufficiently dense rain gauge
networks that can capture the spatiotemporal characteristics of the localized convective monsoon storms.
This roadblock limits interpretations of trends in rainfall intensities to data collected from a few scattered
rain gauges or to simulations using climate models. Based on observations from a network of 59 rain gauges
located in the 149‐km2 WGEW in southeastern Arizona, this study finds clear evidence of an intensification
in summer rainfall intensities in the region beginning in the 1970s across a wide range of subdaily time-
scales. These results contrast with previous climate model simulations and analysis of shorter records of
observation, which suggested no changes or even decreases in rainfall intensities in the region (Luong
et al., 2017; Singer & Michaelides, 2017). Gridded daily rainfall intensities from Livneh et al. (2013) data
set and those from the GHCN stations failed to capture the trends due to their coarse spatial and temporal
resolution. As monsoon storm intensities are getting stronger with warmer temperatures, no temporal
changes in the storm spatial extent were found. The results therefore confirm the need for dense rain gauge
networks observing rainfall at subdaily time steps to characterize changes in convective storm intensity, like
those that occur in the NAM region.
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