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ARTICLE INFO ABSTRACT

This manuscript was handled by Emmanouil The use of hydrologic models to assess long-term watershed condition through repeated simulations of runoff

Anagnostou and erosion is one common approach for rangeland health evaluation. However, obtaining vegetative data of
Keywords: appropriate spatiotemporal resolution for model parameterization can be difficult. The goal of this research was
Rangeland Hydrology and Erosion Model to assess the utility of using time-varying, Landsat-derived vegetative values to parameterize an event-based,
KINEROS watershed-scale hydrologic model. This study was conducted on a small, instrumented grassland watershed in
Landsat

the USDA Agricultural Research Service operated Walnut Gulch Experimental Watershed in southeastern,
Arizona. Cloud-free Landsat scenes were acquired over the watershed for the years 1996-2014. The Soil
Adjusted Total Vegetation Index (SATVI) was calculated for each image and calibrated using ground measured
data to produce a time series of satellite-based foliar cover rasters. These values were used to parameterize the
Rangeland Hydrology and Erosion Model (RHEM) for 26 rainfall-runoff events with corresponding observed
data. Three parameterization scenarios using these data aggregated to different temporal resolutions (static,
long-term mean, annual mean, and intra-annual values) were compared to a static literature-based scenario for
evaluation. The linear relationship between field-measured foliar cover and SATVI showed statistically sig-
nificant agreement with R? = 0.85 and p < 0.05. Simulated runoff volume and peak flow rate using the three
remotely sensed parameterization scenarios improved upon that of the literature-based scenario, with the annual
mean scenario performing the best of the three temporal aggregations. The methodological framework outlined
here provides a means for improved parameterization for watershed-scale modelling where vegetative data may
be scarce or unobtainable for long-term analysis.
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Surface runoff
Ecohydrology

1. Introduction

The acceleration of rangeland degradation has emerged as a major
environmental concern in recent decades (MEA, 2005; Reynolds et al.,
2007; Schlesinger et al., 1990). It is estimated that 10-20% of global
rangelands have been severely degraded, reducing the capacity to
provide many valuable ecosystem services including agricultural and
livestock production, carbon sequestration, and biodiversity (Asner
et al., 2004; Havstad et al., 2007). Rangelands are generally limited by
water and soil nutrients, and exhibit great spatial and temporal varia-
bility in productivity (Havstad et al., 2007). Vegetative condition in
these regions can vary greatly with time, as vegetation is easily di-
minished and the recovery time can take decades (Pilgrim et al., 1988).

Strong relationships between ecological and hydrological processes
exist in these semiarid environments (Ludwig et al., 2005). Shifts in

vegetative composition and productivity from natural and anthro-
pogenic pressures include: woody species encroachment on native
grasslands (Asner et al., 2003; Scholes and Archer, 1997); increases in
invasive grasses (DiTomaso, 2000; Polyakov et al., 2010); drought in-
duced vegetative die-off (Breshears et al., 2005; Moran et al, 2014); and
mortality from land mismanagement (Greene et al., 1994; Mclvor et al.,
1995). These changes in vegetation can ultimately lead to increased
surface runoff and soil erosion through: reduced infiltration rates
(Dadkhah and Gifford, 1980; Dunne et al., 1991); decreased surface
roughness (Cerda, 1997; Ludwig et al., 2005; Weltz et al., 1992); de-
creased canopy interception (Burgy and Pomeroy, 1958; Thurow et al.,
1987); and degraded aggregate stability of the soil (Barthes and Roose,
2002; Cantoén et al., 2009; Holifield Collins et al., 2015).

Plot-scale studies have played an important role in gaining under-
standing of hydrologic processes within these environments. It has been
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widely reported that as vegetative cover decreases, surface runoff and
erosion rates increase within a rangeland environment (Nearing et al.,
2005; Puigdefabregas, 2005; Rogers and Schumm, 1991; Zuazo et al.,
2008). There is general agreement that a threshold of 30-50% grass
cover is needed to significantly deter runoff and soil erosion in semiarid
environments (Gutierrez and Hernandez, 1996; Holifield Collins et al.,
2015; Pan and Shangguan, 2006).

While plot-scale experiments offer a great deal of control, they lack
representation of the complexities of the natural system in which they
exist. There is a growing need for information on the large-scale eco-
hydrological effects of climate induced alterations of vegetation and
precipitation regimes (Newman et al., 2006; Seyfried and Wilcox,
1995). Scaling up in size from plot studies to catchment size studies
introduces a more realistic representation of the ecological system, with
the heterogeneities in vegetation, topography, soil and climate re-
presented. However, the large spatial extent and spatiotemporal het-
erogeneity of these regions have made monitoring and quantitatively
assessing the large-scale effects of these ecohydrological landscape
changes a challenge.

Hydrologic models are one practical tool for quantifying runoff and
erosion rates in rangelands (Hernandez et al., 2013; Nearing et al.,
2011). Modelling allows for relationships and processes observed at
small scales to be extrapolated spatially and temporally to a larger
scale, enabling studies that may not be physically or economically
feasible by traditional field methods (Nearing et al., 1989; Wainwright
et al., 2000). The ability to predict runoff and erosion using measurable
biophysical model inputs provides land managers with scientifically-
based information for land management decisions. The Rangeland
Hydrology and Erosion Model (RHEM) was developed specifically for
hillslope-scale use in rangeland environments, adapting the central al-
gorithms from the Water Erosion Prediction Project (WEPP) model to
the unique hydrologic characteristics of these semiarid regions
(Hernandez et al., 2017; Nearing et al., 2011). Parameter estimation
equations in RHEM utilize physically quantifiable inputs including soil
texture, slope characteristics, vegetation cover, and ground cover (Al-
Hamdan et al., 2013; Al-Hamdan et al., 2017; Hernandez et al., 2017).
These commonly measured inputs allow for intuitive simulation of
vegetation or ground cover changes due to management or disturbance
(Hernandez et al., 2013; Nouwakpo et al., 2016a; Williams et al.,
2016a). Watershed-scale modelling with RHEM can be achieved by
routing hillslope simulations through a network of channels using the
KINEROS2 (K2) model within the Automated Geospatial Watershed
Assessment Tool (AGWA) geospatial environment (Ross, 2013).

The use of models in long-term, watershed-scale hydrological
monitoring is limited by the availability of corresponding vegetative
data of sufficient spatiotemporal resolution for input. While localized
transect-based vegetation measurements are appropriate for modelling
at the hillslope scale, these measurements are often prohibitive at the
watershed scale due to time and cost constraints. Furthermore, the
existence of such data with historic or replicated measurements for
long-term monitoring or comparison purposes is sparse. These data
limitations are a key obstacle for large-scale hydrologic modelling in
arid and semiarid regions (Goodrich et al., 2012; Pilgrim et al., 1988;
Seyfried and Wilcox, 1995).

A common approach for watershed-scale model parameterization is
to associate literature-based parameter values with land cover classes
based on national land cover geospatial data sets, e.g., the National
Land Cover Database (NLCD) and the North American Lands Change
Monitoring System (NALCMS) (Goodrich et al., 2012; Hernandez et al.,
2000; Miller et al., 2002; Niraula et al., 2012; Norman et al., 2010).
Deriving detailed vegetative parameters from these sources can be
problematic, as land cover classes are often generalized across many
plant communities and can cover large areas.

The use of satellite-based remote sensing on rangelands has been
shown effective for quantifying vegetative parameters including bio-
mass, leaf area index, and foliar cover (Booth and Tueller, 2003; Hunt
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et al., 2003; Qi et al., 2002; Wallace et al., 2006). The Landsat earth-
observing satellites are particularly appropriate for ecological mon-
itoring and vegetation change detection at the regional or watershed
scale (Vogelmann et al., 2012). These data offer the necessary spatio-
temporal and spectral resolution for characterizing vegetation typical of
rangelands and capturing both long-term trends and intra-annual
variability across large regions (Huete, 1988; Marsett et al., 2006;
Purevdorj et al., 1998; Xie et al., 2008). The release of a free Landsat
archive (1984-present) to the public provides a cost effective, easily
obtainable resource for long-term vegetation monitoring (Markham and
Helder, 2012; Masek et al., 2006; Wulder et al., 2012). Recent studies
using Landsat data have shown advancements in identifying degraded
grasslands (Fassnacht et al., 2015); improved change detection of
grasslands (Tarantino et al., 2016); detection of grazing effects and
management practices in grasslands (Guo et al., 2015; Xu et al., 2018;
Sibanda et al., 2016); and identifying plant communities in rangelands
(Villarreal et al., 2016).

The incorporation of remotely sensed data into spatially distributed
hydrological models provides a means for model parameterization at
large spatial scales and with improved temporal frequency. Spatially
distributed, watershed-scale, vegetative model inputs allow for a more
realistic representation of the distribution and structure of vegetation
that govern rangeland hydrology (Cadaret et al., 2016; Nouwakpo
et al., 2016b; Puigdefabregas, 2005; Williams et al., 2016a). Ad-
ditionally, long-term, dynamic vegetative data records facilitate ana-
lyses of hydrologic response to landscape change and disturbance such
as fire, grazing and plant community alterations (Ebel and Martin,
2017; Flerchinger et al., 2016; Park et al., 2017; Spaeth et al., 2016;
Williams et al., 2016b). However, uncertainty remains in how large-
scale spatial and temporal variability may affect model results (Seyfried
and Wilcox, 1995; Reynolds et al., 2017; Urban, 2005). The goal of this
research was to evaluate whether the inclusion of time-varying,
Landsat-based foliar cover estimates improves runoff prediction within
a RHEM/K2 modelling framework. Thus, the specific objectives of the
study were to: 1) quantify watershed-scale vegetation and ground cover
for model parameterization and calibration of a remotely-sensed foliar
cover dataset; 2) develop a 20-year time series of field-calibrated,
Landsat-based foliar cover for the study area; and 3) evaluate model
performance for a default literature-based parameterization approach
versus three parameterization scenarios incorporating the remotely
sensed vegetative estimates of varying temporal aggregation.

2. Methods
2.1. Site description

This research was conducted on the Kendall grassland located
within the USDA Agricultural Research Service (ARS) Walnut Gulch
Experimental Watershed (WGEW) in southeastern Arizona (Fig. 1). The
climate of the region is semiarid, with a mean annual temperature of
18 °C and mean annual precipitation of 315 mm (1961-2015) across the
WGEW. Approximately 65% of the annual precipitation occurs between
July and September during the North American Monsoon. Monsoon
precipitation is dominated by high-intensity, spatially localized, con-
vective thunderstorms from which large amounts of runoff and flash
flooding can occur. Winter precipitation is dominated by large-scale,
low-intensity frontal storms that generally do not produce surface
runoff in the WGEW.

The Kendall subwatershed is located in the upper portion of the
WGEW (31.74°N, 109.94°W). The watershed has a drainage area of
0.02km? and average slope gradient of 12.3%. The soils are an Elgin
(50%)-Stronghold (40%) complex with a fine, gravelly sandy loam
upper horizon and clay components below 2.5 cm (Breckenfeld et al.,
1995). The watershed drains into a densely vegetated swale near the
outlet of the watershed through concentrated flow paths. The swale
serves as a deposition zone at which increased infiltration and sediment
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Fig. 1. The Kendall watershed study site and sparse cover calibration locations at Walnut Gulch Experimental Watershed (WGEW) with watershed boundary and

detail with topography and instrumentation.

storage occur (Nearing et al., 2005). Kendall is instrumented with a
weighing type rain gauge, V-notch weir, pump sediment sampler, and
meteorological station with Delta-T ThetaProbe soil moisture sensors at
5 and 15 cm depth (Goodrich et al., 2008; Keefer et al., 2008; Nichols
et al., 2008; Stone et al., 2008a).

The vegetation of the watershed has historically been dominated by
native bunchgrasses (Scott et al., 2010). Following an extended period
of drought, many of the native grasses and shrubs died in 2006 and
were replaced with forbs. Since then, the watershed has been domi-
nated by the invasive bunchgrass Eragrostis lehmanniana (Lehmann
lovegrass). The main period of vegetative productivity occurs from
July-October in response to warm temperatures and monsoon pre-
cipitation. A short growth period for annual grasses and forbs may
occur in early spring if winter precipitation is sufficient.

2.2. Methods workflow overview

The following sections describe the process in which a field-cali-
brated, remotely sensed foliar cover dataset was generated and
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integrated into the hydrologic model for precipitation-runoff simula-
tions (Fig. 2).

2.3. Landsat image acquisition

Multispectral imagery from Landsat 5 Thematic Mapper (TM)
[1984-2012], Landsat 7 Enhanced Thematic Mapper Plus (ETM+)
[1999-2015], and Landsat 8 Operational Land Imager (OLI) [2013-
present] were used in this study. This series of satellites was designed to
provide a continuous series of multispectral earth observations for
global land surface monitoring at a spatial resolution of 30-m ground
measured distance (Markham and Helder, 2012). The satellites have a
repeat cycle of sixteen days, with each satellite in orbit offset by 8 days
(e.g., TM and ETM+ or ETM+ and OLI). The definition of spectral
bands varies slightly between satellites, but the data series can largely
be considered continuous if atmospheric corrections are applied (Bryant
et al., 2003, Roy et al., 2014). Surface reflectance data were used to
minimize some of these differences and allow for time series analysis
(Flood, 2014). No adjustments or calibration between satellites were
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Fig. 2. Flowchart describing the methodological approach for integrating field
calibrated, Landsat-based vegetative parameters into rainfall-runoff simula-
tions.

performed and data obtained from the three satellites were considered
to be a continuous data series in this study.

Cloud-free Landsat surface reflectance scenes (1996-2015) were
acquired between April and December for World Reference System
(WRS-2) Path: 36, Row: 38 through the United States Geological Survey
(USGS) EarthExplorer (http://earthexplorer.usgs.gov) and Google
Earth Engine (http://earthengine.google.com). TM and ETM + surface
reflectance products were processed using the Landsat Ecosystem
Disturbance Adaptive Processing System (LEDAPS) method (Masek
et al., 2006). The OLI surface reflectance product was calculated using
the provisional Landsat Surface Reflectance Code [LaSRC] (Vermote
et al., 2016). All ETM + scenes were visually screened for the presence
of scan line correction data gaps in the region immediately surrounding
Kendall. The images were subsequently archived into a time series of
surface reflectance scenes over the study domain.

2.4. Field data collection

Ten transects were established across Kendall to monitor vegetative
and ground cover over the course of the 2015 growing season.
Transects were arranged within 3 60 m X 60m sampling blocks de-
signed to register with four Landsat pixels (Fig. 3). Each sampling block
contained three 80-m transects. The transects spanned the length of two
Landsat pixels (60 m) with 10 m of extra length at each end to account
for GPS error (transect locations were logged using a handheld GPS
device with + 5m accuracy). Two-by-two-pixel sized blocks were
chosen as the sampling area to compensate for uncertainty in regis-
tration during ground validation (Congalton, 1991, Stehman and
Czaplewski, 1998).

Foliar cover and ground cover were measured at 0.5m intervals
along each transect using the line-point intercept method (Herrick
et al., 2005). Canopy hits were classified by plant life-form as grass,
shrub or forb as well as senescent or green. Ground cover hits were
classified as bare soil, rock, litter or basal area by life-form (senescent or
green).
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Eight iterations of transect measurements were conducted between
April 22, 2015 and October 28, 2015 on Kendall. Four additional
transect locations (WG1-4) within WGEW were measured in grassland
areas with sparse cover surrounding Kendall for use in Landsat cali-
bration (Fig. 1). One transect block at each of these sites was measured
between December 2, 2015 and December 7, 2015. The collection dates
at all sites were designed to fall between Landsat 7 and Landsat 8 sa-
tellite overpasses to maximize the potential for acquiring a cloud-free
satellite image with close proximity to ground measurements for cali-
bration (Table 1).

2.5. Development of Landsat-based foliar cover

Three vegetation indices were calculated and evaluated for foliar
cover estimation from the acquired Landsat surface reflectance scenes:
the Normalized Difference Vegetation Index (NDVI), the Soil Adjusted
Vegetation Index (SAVI), and the Soil Adjusted Total Vegetation Index
(SATVI). NDVI is a commonly used vegetation index used for measuring
green or photosynthetically active vegetation calculated as:

NDVI = PNIR ~ PrED
(@)

where py, is surface reflectance in the near infrared band and pg, is
surface reflectance in the red band. This vegetation index functions
under the premise that live green vegetation absorbs energy in the red
wavelengths and reflects in the near infrared (NIR) lengths (Tucker,
1979). However, when used in areas with sparse vegetative cover soil
reflectance from the underlying soil can inflate the index values erro-
neously (Huete, 1988). SAVI incorporates a soil adjustment factor (L) to
account for this phenomenon and is calculated as:

Pnir T Prep

PNIR — PRED
Pnir + Prep + L

SAVI = @+ L),

(2)
where py, is surface reflectance in the near infrared band, pgg, is
surface reflectance in the red band, and L is the soil adjustment factor.
By varying the L factor between 0 (high vegetation density) and 1 (low
vegetation density) the vegetation index can be calibrated to minimize
the effect of background soil reflectance (Huete, 1988). An L factor of
0.5 was used here, representing moderate vegetative cover.

While NDVI and SAVI are measures of green vegetation, SATVI is a
measure of both green and senescent vegetation (Marsett et al., 2006).
SATVI is calculated as:

SATVI = —_Pswiri ~ Prep a+1)— psv;/uez

Pswirt + Prep + L 3

where pgyr, is surface reflectance in the first shortwave infrared band,
Pswir, is surface reflectance in the second shortwave infrared band, oy,
is surface reflectance in the red band, and L is the soil adjustment
factor.

Linear regression analyses were performed between the total foliar
cover (green and senescent) measured in the Kendall and WGEW blocks
and the vegetation index images corresponding with the ground mea-
surement dates (Table 1) to establish if any significant relationships
existed (Hagen et al., 2012; Marsett et al., 2006). A spatial average of
vegetation index values was calculated for the four Landsat pixels in-
tersecting each study block for use in the regression analysis. The
strength of correlation for each regression was evaluated using the
coefficient of determination (R?), Mean Absolute Error (MAE), and Root
Mean Squared Error (RMSE). A time series of total foliar cover values
(FCgs), including green and senescent vegetation, was then produced by
applying the best-performing vegetation index versus foliar cover re-
lationship to the Landsat vegetation index data set.

In addition to foliar cover, basal and litter cover are required inputs
for parameterizing the model. However, in this environment it is dif-
ficult to discern these values using downward-looking remotely sensed
data. Therefore, allometric relationships were developed from the
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Fig. 3. Transect orientation and study block locations within the Kendall watershed. Approximate Landsat pixel locations are shown in gray. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Field data collection dates and Landsat satellite overpass dates (bold dates
denote scenes selected for calibration).

Field Site Field Collection Date ETM + Overpass Date OLI Overpass Date
Kendall 4/22/2015 4/15/2015 4/23/2015
Kendall 5/18/2015 5/17/2015 5/25/2015
Kendall 6/22/2015 6/18/2015 6/26/2015
Kendall 7/24/2015 7/20/2015 7/28/2015
Kendall 8/14/2015 8/5/2015 8/13/2015
Kendall 8/28/2015 9/6/2015 8/29/2015
Kendall 9/28/2015 9/22/2015 9/30/2015
Kendall 10/28/2015 10/24/2015 11/1/2015
WG1 12/2/2015 11/25/2015 12/3/2015
WG2 12/2/2015 11/25/2015 12/3/2015
WG3 12/7/2015 12/11/2015 12/3/2015
WG4 12/7/2015 12/11/2015 12/3/2015

transect data to estimate litter and basal cover from foliar cover values.
A data set was compiled of foliar, litter, and basal cover values from
each transect block (Kendall and WGEW) on all collection dates
(n = 28). Regression analysis was conducted between foliar cover and
basal cover, and foliar cover and litter cover. The resulting Egs. (4) and
(5) were used to estimate basal (BCgs) and litter (LCgg) cover from FCgs.

BCgs = 0.37FCgs — 0.18 @

2.6. Hydrologic modelling environment

A suite of models and tools were used to conduct the precipitation-
runoff simulations in this study. The following section briefly describes
the tools used and how they were incorporated into the simulation
process. In depth documentation can be located at the URLs provided in
the sections below.

2.6.1. KINEROS2 (K2)

K2 (http://www.tucson.ars.ag.gov/kineros/) is an event-oriented,
physically-based model for simulating interception, infiltration, surface
runoff, and erosion for small agricultural, rangeland, and urban wa-
tersheds (Goodrich et al., 2012; Miller et al., 2007; Smith et al., 1995).
Watersheds in K2 are represented as a network of geometrically
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simplified, one-dimensional flow elements. Hortonian overland flow
elements are represented as rectangular planes or curvilinear surfaces
over which runoff is routed into trapezoidal channel elements that
cascade to the outlet of the watershed. Infiltration is modeled using the
Smith and Parlange (1978) approximation, and kinematic wave equa-
tions are used for overland and channel flow. Rainfall can be distributed
across elements from multiple gauges and unique parameter sets can be
applied to each of the elements, allowing for representation of spatial
heterogeneity in the watershed (Miller et al., 2007). K2 was used in this
study to route surface runoff from multiple hillslope simulations
through a channel network to the outlet of the Kendall watershed at
Weir 112.

2.6.2. Automated Geospatial Watershed Assessment tool (AGWA)

Determination of watershed geometry and initial model para-
meterization were conducted using AGWA version 3.6.1 (www.tucson.
ars.ag.gov/agwa/) within the ESRI ArcGIS (version 10.4) environment
(Goodrich et al., 2012; Miller et al., 2007). AGWA allows for rapid
model parameterization and data propagation from nationally available
data sources (e.g., soils, elevation, land cover, and precipitation) within
the ArcGIS geospatial environment. Tools within AGWA allow for the
delineation of watershed boundaries, discretization of model elements,
model parameterization, model execution, and visualization of results.
The GIS environment provided the ability to distribute geospatial and
remotely sensed data across discrete model elements representing the
structure of the watershed.

2.6.3. Rangeland Hydrology and Erosion Model (RHEM)

RHEM is a process-based, hillslope-scale model for estimating runoff
and soil loss within rangeland environments (Hernandez et al., 2017;
Nearing et al., 2011). RHEM v2.3 is available for use as a web-based
decision support tool (http://apps.tucson.ars.ag.gov/rhem/) and is in-
corporated into AGWA to work in conjunction with K2, used for
channel routing, to perform watershed-scale simulation. The hydrology
component of RHEM is similar to K2, but incorporates unique para-
meterization equations that utilize quantifiable measures of vegetative
and ground cover across multiple vegetative communities (e.g., foliar
cover, litter cover, basal cover, rock cover and cryptogam cover). RHEM
was developed for use at the hillslope scale as a soil loss estimation tool
for use specifically on rangelands.
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2.7. Model parameterization

A unique set of model parameters was created for each rainfall-
runoff event. Additionally, four parameterization scenarios were eval-
uated in which a default parameterization in AGWA was compared to
three FCrs-based scenarios at varying temporal resolutions. The para-
meterization procedure within AGWA used to create the default sce-
nario is outlined in Sections 2.7.1-2.7.3. Modifications to this proce-
dure using the remotely sensed data to produce the FCgg-based
scenarios are discussed in Section 2.8.

2.7.1. Hydrologic inputs and storm selection

Twenty-six runoff-producing rainfall events occurring in July,
August, and September were used for simulation and validation.
Precipitation breakpoint data measured at WGEW Raingage 82 were
input into RHEM/K2 for each event. Since the model does not have an
inter-storm component, an estimate of the pre-storm initial relative soil
saturation (SI) is required to quantify the antecedent soil moisture
(Goodrich et al., 1994). SI was calculated using volumetric water con-
tent (VWC) measurements from the soil moisture sensors located at
5cm depth near the meteorological station at the beginning of each
event. Soil moisture data were not available prior to 1996, which
limited the study to the years 1996-2015. Gauged runoff volume and
peak flow rate data measured by a V-notch weir at the outlet of the
watershed (WGEW Weir 112) were associated with each precipitation
event and used as model validation criteria. Only storms in which the
ratio of runoff to precipitation was greater than 5% were used for si-
mulation (Table 2). These data are available from the USDA ARS
Southwest Watershed Research Center via a web interface at http://
www.tucson.ars.ag.gov/dap/.

2.7.2. Watershed delineation and discretization

The delineation of the Kendall watershed boundary was performed
with the AGWA watershed delineation tool using a LiDAR-based, 0.5 m
DEM and the point location of the outlet of the sub-watershed at Weir
112. The watershed was then broken into discreet hillslope and channel

Table 2
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Fig. 4. Hillslope and channel modelling elements for the Kendall watershed.
Different colors denote a unique set of model parameters for each hillslope or
channel reach. (For interpretation of the references to color in this figure le-
gend, the reader is referred to the web version of this article.)

reach elements using the AGWA discretization tool. Default channel
element width and depth are estimated in AGWA using empirical hy-
draulic-geometry relationships as a function of contributing area for the
top and bottom of each channel reach (Miller et al., 2007). The initial
AGWA-calculated channel widths at the top and bottom of each reach
were refined with field-measured data.

The “user-defined pour points” option was used in AGWA to de-
scribe the channel network and create the watershed elements. This
method allows the user to manually set the initiation points of channels
and subdivide channel reaches with different characteristics using GIS
point features. Channel initiation points where placed at the beginning
of two main channels that drain into the vegetated swale at the base of
the watershed. Internal pour points were placed at the initiation of the
swale to separate the two main upland channels from the channel in the
swale. The channel within the swale was further subdivided to re-
present changes in soil type and channel width. Based on the definition

Precipitation-runoff events selected for model simulation shown with gauged precipitation and runoff values. I3 is the peak 30-minute rainfall intensity and SI is the
relative soil saturation. The runoff ratio is defined as total runoff depth (Q) divided by total precipitation depth (P).

Precipitation Runoff
Storm ID Date Duration (min) Depth (mm) I3 (mm/hr) SI Depth (mm) Peak Rate (mm/hr) Runoff Ratio (—)
1 8/27/1996 105 26.9 44.3 0.22 6.2 26.1 0.23
2 7/14/1999 75 23.1 42.3 0.22 2.0 11.8 0.09
3 7/21/1999 217 28.5 37.9 0.34 2.9 11.8 0.10
4 7/27/1999 24 8.4 16.8 0.31 0.8 4.3 0.09
5 8/5/1999 67 11.9 21.5 0.36 2.0 9.2 0.17
6 9/19/2004 143 17.7 22.1 0.27 0.9 3.4 0.05
7 8/3/2006 123 19.3 36.3 0.27 5.4 30.5 0.28
8 8/6/2006 27 16.9 33.8 0.34 4.0 23.6 0.24
9 8/10/2006 111 27.8 42.8 0.34 9.6 25.1 0.35
10 8/11/2006 68 17.9 34.9 0.36 8.2 36.7 0.46
11 8/12/2006 14 4.8 9.7 0.36 0.5 3.0 0.11
12 8/13/2006 141 11.3 13.3 0.31 2.9 11.6 0.25
13 8/16/2006 27 7.5 15.0 0.29 1.8 8.1 0.25
14 8/17/2006 50 10.2 19.0 0.36 3.9 17.9 0.38
15 9/4/2006 32 8.6 16.9 0.20 0.5 2.8 0.06
16 7/20/2007 245 57.0 72.6 0.20 14.1 37.6 0.25
17 7/23/2007 14 9.7 19.3 0.33 1.0 6.6 0.10
18 8/6/2007 59 12.3 18.3 0.34 0.7 2.8 0.06
19 8/27/2008 58 38.4 71.6 0.14 10.7 43.3 0.28
20 8/27/2008 65 28.3 335 0.23 4.2 13.7 0.15
21 8/28/2008 34 28.6 61.0 0.27 12.9 34.9 0.45
22 8/13/2009 9 9.8 19.6 0.27 2.1 10.2 0.21
23 8/23/2009 67 28.8 45.0 0.22 1.7 5.6 0.06
24 7/29/2011 68 30.1 47.0 0.34 3.7 16.6 0.12
25 9/5/2012 101 33.0 57.2 0.27 7.4 22.9 0.22
26 7/25/2014 52 32.8 54.6 0.18 2.0 7.0 0.06
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of these pour points, the watershed was broken up into hillslope ele-
ments that contributed to each channel reach (Fig. 4).

2.7.3. Initial model parameterization

Once the watershed was split into discrete elements the initial
model parameterization for each element was conducted using the
AGWA parameterization tool. This tool requires the input of geospatial
layers representing soils data, land cover classification, elevation, and
vegetation life-form and cover (RHEM only). The resulting parameter
file generated from these data sets provided the necessary watershed
parameters to execute the RHEM/K2 model.

Soils data were obtained from the NRCS Soil Survey Geographic
Database (SSURGO). The SSURGO spatial map was intersected with the
watershed to obtain the spatial distribution of soil types. AGWA de-
termines a soil texture for each hillslope element from the SSURGO
tabular data using a weighting scheme based on spatial distribution of
soils within an element; proportion of soil components within a com-
plex; and soil horizons to 22.9 cm depth (Miller et al., 2007). The tex-
tural classification (USDA) of the soil across Kendall was described as a
sandy clay loam, composed of 46.7% sand, 23.0% silt and 30.3% clay.
This texture was applied to all hillslope elements. Soil parameters in-
cluding saturated hydraulic conductivity (K}), percent rock, suction
head, and porosity were estimated based upon the soil texture classi-
fication using pedo-transfer functions, lookup tables, and algorithms
within AGWA. (Hernandez et al., 2017; Rawls et al., 1982; Rawls et al.,
1998).

Channel elements are given default soil characteristic and hydraulic
roughness parameters values based upon the assumption of a sandy
bed. This assumption produces high transmission losses within the
channel (Miller et al., 2007). The two upland channels were not incised
and no noticeable change in soil texture or vegetation composition from
the adjacent hillslopes was seen, therefore the same soil texture used for
adjacent hillslope elements was applied to these channel elements. The
channel reaches in the swale region contained large amounts of coarse
sediment deposition, creating a sandy upper horizon. The soil texture
for these reaches was left defined as a sand soil texture class.

Land cover classification was defined using the 2011 National Land
Cover Database (NLCD). The NLCD is a Landsat-derived land cover
classification map covering the conterminous United States. Each 30 m
pixel is classified as one of sixteen land cover classes, consistent with
previous NLCD releases (Homer et al., 2015). A lookup table in AGWA
associates a literature based foliar cover value (in this case 25%) and an
associated interception depth parameter value with each land cover
class. Canopy interception (In) in RHEM/K2 is reflected as the average
depth of rainfall captured by the vegetation on a hillslope. The In
parameter is calculated by reducing the rainfall rate by the cover
fraction (based on percent foliar cover, FCgs, in this study) until the
amount retained reaches the user defined maximum interception depth
(Smith et al., 1995). This value was applied to all hillslope elements.

Plant community, foliar, basal, litter, rock and cryptogamic cover
values are needed to calculate the effective saturated hydraulic con-
ductivity (K.) and the Darcy friction factor (f;) parameters in RHEM.
The K. parameter modifies the initial estimate of saturated hydraulic
conductivity (Kp,) based on soil texture, as outlined above, to account
for the effects of increased infiltration with an increase of vegetative
cover or change in composition (Hernandez et al., 2017; Nearing et al.,
2011). The K. parameter is calculated as:

Kg[_ — Kb,' e[pi(litter+basal)] (6)
where Kj; is the 25% percentile saturated hydraulic conductivity for
each soil textural class (i); p is the natural log of the ratio of the 75% to
the 25% percentile values of saturated hydraulic conductivity; litter is
percent litter cover; and basal is percent basal cover (Hernandez et al.,
2017). This parameter is further adjusted by applying a multiplier
based on the dominant plant life-form (e.g., bunch grass: 1.0, sod grass:
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0.8, forbs: 1.0, shrub: 1.2). The f, parameter represents hydraulic
roughness in RHEM. It incorporates ground cover and slope measure-
ments and has been shown to be negatively correlated with bare
ground, with basal cover being the most influential ground cover factor
(Al-Hamdan et al., 2015). The f; parameter is calculated as:

log(f;) = —0.109 + 1.425litter 4+ 0.442rock + 1.764(basal + crypto) + 2.068S,
)]

where litter is the fraction of area covered by litter to total area (m?
m ™ 2); rock is the fraction of area covered by rock cover to total area (m?
m~32); basal + crypto is the fraction of area covered by basal plus
cryptogam cover to total area (m? m~?); and S is slope (m m~ 1Y) (Al-
Hamdan et al., 2015).

The plant life-form group for Kendall was defined as bunch grass
dominated, determined from field observations. Transect-measured
rock cover was applied to individual elements based on the element’s
proximity to a given transect and remained static for all simulations.
Cryptogam cover did not exist in the watershed and was assigned a null
value. Basal and litter cover were calculated by applying Egs. (4) and
(5) to the foliar cover value obtained from the NLCD lookup table.

This set of parameters defined using AGWA and the literature-based
foliar cover value served as the a prioi parameterization scenario
(Scenario 1) for all precipitation-runoff simulations. Additional model
calibrations were performed using the remotely sensed data, wherein
the foliar cover value used in Scenario 1 was replaced with Landsat-
based FCgs values. The intrinsic characteristics of the watershed (e.g.,
topography, watershed geometry, porosity) were left as static values for
all event simulations. However, the In, K, and f; parameters in RHEM/
K2 were altered using FCrs and the derived BCgs, and LCgs data.

2.8. Model parameterization integrating remotely sensed foliar cover

Three additional parameterization scenarios were developed using
the FCgg time series. The three FCrg-based scenarios (Scenarios 2-4)
were designed to evaluate the effects of temporal variability of foliar
cover on model performance, as well as to assess the value of spatially
localized data in comparison to Scenario 1.

Foliar cover values were calculated for each hillslope element by
using a weighted average of all intersecting 30 m Landsat pixels within
the boundary of the element. Basal and litter cover were calculated
using Egs. (4) and (5) using the mean foliar cover value from each
hillslope element. These values were then input into the RHEM para-
meterization Egs. (6) and (7) to calculate K., and f; and the foliar cover
value was applied to In. The remaining static parameters for each
hillslope and channel element were calculated as outlined in the pre-
vious section.

Scenario 2 was based on a long-term mean foliar cover value from
1996 to 2015, representing the assumption that foliar cover during the
growing season remained constant over time. The mean of FCgrs values
between July and September of each year were calculated. The mean of
these values was then calculated, resulting in a static, long-term esti-
mate of foliar cover for the study period. The long-term mean was
calculated in this fashion in order to minimize the influence of the
varying number of images available during the monsoon period each
year. This calculation was performed for each Landsat pixel intersecting
Kendall, resulting in a spatially distributed grid of foliar cover values.

Scenario 3 was based on an annually varying mean foliar cover
value, representing the assumption that foliar cover remained constant
during any given monsoon season, but varied between years. This value
was determined by taking the mean of all FCrs values between July and
September of each year. This resulted in a dynamic series of 15 annual
foliar cover grids that were then associated with all precipitation events
that occurred in that year.

Scenario 4 was the most temporally localized of the three FCgs-
based scenarios. FCgs values acquired within the closest temporal
proximity to a selected precipitation event were associated with that
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event. No FCrgs images were acquired more than 10 days before or after
a given precipitation event.

2.9. Model execution and performance evaluation

RHEM/K2 precipitation-runoff simulations were executed for all
selected events (Table 2) using the four parameterization scenarios.
Runoff volume and peak flow rate for all storms were evaluated as a
lumped data set, including the values from all 26 simulated events. The
RMSE-observations Standard Deviation Ratio (RSR) and Percent Bias
(PBIAS) were the performance metrics used in this study, as outlined by
Moriasi et al. (2007). RSR standardizes the RMSE with the standard
deviation of the observed data, with an optimum value of 0. RSR is
calculated as:

RMSE [V, (Y = Y]

RSR = = ,
STDEV,s [\/ZL] (YiObS _ YmeanobS)Z]

(8)

where Y is the ith observation of the measured data, Y™ is the ith
observation of the simulated data, and Y"™¢"bs js the mean of the ob-
served data (Moriasi et al., 2007). PBIAS is a measure of the tendency of
a model to over- or under-estimate values compared to the observed
data (Gupta et al., 1999). PBIAS is calculated as:

Zn

PBIAS — - (Yiobs _ Yl_siM) % 100

Z?:l (YiObS) (9)

where Y is the ith observation of the measured data and Y™ is the ith
observation of the simulated data. The optimal value of PBIAS is 0, with
values of lower magnitude representing more accurate simulation. Po-
sitive values indicate a model underestimation bias and negative values
indicate a model overestimation bias.

)

3. Results and discussion
3.1. Field-based characterization of the watershed

The invasive Eragrostis lehmanniana (Lehmann lovegrass) was the
dominant species measured within all Kendall transect blocks (68% of
watershed vegetation). Other species with notable presence were:
Hilaria belangeri (Steud.) Nash (curly-mesquite grass) (14%); Calliandra
eriophylla Benth. (fairyduster) (3%); Bouteloua curtipendula (Michx.)
Torr. (sideoats grama) (3%); Acacia constricta Benth. (whitethorn
acacia) (2%); and Pleuraphis mutica Buckley (tobosagrass) (2%). All
other species present represented less than one percent of the total
vegetative composition and were comprised of annual forbs, perennial
grasses, shrubs, and cactus. Composition for the three study blocks were
similar, with Lehmann lovegrass dominating the composition, followed
by native grasses, shrubs, and forbs. The vegetative composition within
the swale differed slightly from the uplands in the watershed with a
greater amount of annual forbs (17%) and less native grass (4%)
compared to 2% and 22% respectively in the uplands.

Foliar cover on Kendall (mean value of Block 1, Block 2, and Block
3) ranged from 63% on 6/22/2015 to 82% on 9/28/2015 (Fig. 5). The
annual mean foliar cover on Kendall spanning the growing season was
73% (s = 6%). Lehmann lovegrass inflorescences were first observed on
8/14/2015 and were widespread by the 8/28/2015 collection date. The
large panicle inflorescences mainly accounted for the increased mea-
sure of foliar cover seen in August and early September. The three
Kendall blocks and the swale transect maintained similar foliar cover
values throughout the collection period.

While total foliar cover remained relatively stable over the course of
the growing season, the green and senescent components showed
greater variability. The vegetation was predominantly senescent until
the 7/24/2014 collection date (Fig. 5). Green vegetation during this
period was composed of annual forbs and Lehmann lovegrass.
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Fig. 5. Mean foliar cover of the Kendall study blocks over the 2015 monsoon
season. Error bars denote standard deviation. While total foliar cover remained
relatively constant, the green and senescent components varied over the course
of the season. (For interpretation of the references to colour in this figure le-
gend, the reader is referred to the web version of this article.)

Vegetation greenness responded to the onset of monsoon precipitation
occurring in late June. Greenness stabilized with intermittent rainfall
and peaked after a large pulse of precipitation in early September.
Consistently elevated green foliar cover values were observed in the
swale transect due to the increased presence of forbs and improved
plant available water from upland drainage.

Basal cover was similar between all blocks and remained relatively
constant over the collection period (X =27%, s = 6%) with only a slight
increasing trend visible after the 6/22/2015 monitoring (Fig. 6). The
swale contained slightly lower basal cover values due to a high presence
of forbs. Litter cover also remained relatively constant for the three
Kendall blocks with a slight decrease over the growing season
[X = 33%, s = 4%] (Fig. 6). The swale contained significantly higher
litter cover (t-test, p < 0.05) on all collection dates (X =59%, s = 6%).
Mean rock cover (x=24%, s = 4%) was significantly higher (t-test,
p < 0.05) in the three study blocks than in the swale [X = 5%,
s = 3%] (Fig. 6).

Foliar cover was the most dynamic variable with a slight increase in
foliar cover near peak productivity caused by inflorescence growth.
However, from a hydrological perspective, this small change in foliar
cover would only affect rainfall interception and have a minimum effect
on surface runoff produced from high-intensity monsoon rainfall. The
results also show the importance of sufficient spatial coverage of
transect measurements for representing changes in soils and vegetation
composition. Although little spatial variability was seen in the vegeta-
tive composition or ground cover measurements in the uplands of the
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Fig. 6. Mean foliar and ground cover for the Kendall blocks (solid lines) and
significantly different (t-test, p < 0.05) swale transect cover measurements
(dotted lines). Only rock and litter cover in the swale were significantly dif-
ferent from those in the uplands.
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Fig. 7. Regression analysis between the best performing vegetation index va-
lues, the Soil Adjusted Total Vegetation Index (SATVI), and field-measured
foliar cover for all study blocks and collection dates.

watershed, significant differences were seen in the swale. Increased
litter and decreased rock cover, as well as altered vegetative composi-
tion, in the swale indicated that different hydrologic properties exist in
this portion of the watershed and need to be accounted for in runoff
simulation as K. and f; (Egs. (6) and (7)) are functions of these RHEM
inputs.

Field measured basal and litter cover remained relatively static over
the course of the 2015 growing season, while foliar cover was more
dynamic. Application of Egs. ((4) and (5)) at a sub-annual frequency
could introduce unrealistic fluctuations in the amount of basal and litter
cover. To best represent the static nature of these vegetative compo-
nents, a mean annual value or singular value taken near peak pro-
ductivity is recommended.

3.2. Landsat-based foliar cover calibration

Results from the regression analysis between the vegetation indices
and field measured foliar cover indicated that SATVI (Fig. 7) was the
best predictor of total foliar cover (R® = 0.85, RMSE = 5.37, and
MAE = 4.60) compared to NDVI (R? = 0.66, RMSE = 8.10, and
MAE = 6.61) and SAVI (R?> = 0.57, RMSE = 9.07, and MAE = 7.38).
This result is consistent with Hagen et al. (2012) which showed SATVI
to be the best performing vegetation index of those evaluated across
western rangeland sites. However, the resulting Eq. (10) from the re-
gression analysis differed from the broad-scale rangeland equation de-
veloped in Hagen et al. (2012) which underestimated foliar cover in
this localized grassland environment.

FCgs = 330.86SATVI + 22.04 (10)

The regression analysis reinforces the observations from the intra-
annual vegetation measurements in that herbaceous vegetation within
semiarid grasslands may only be green for a portion of the year.
Therefore, spectral remote sensing techniques must account for both
green and senescent vegetation to accurately quantify total foliar cover.
Greater uncertainty exists in FCrg values below 60% and above 80% as
the dataset is largely composed of calibration data from the Kendall
blocks which fell within this dynamic range. This relationship was de-
veloped using foliar cover values within a localized grassland commu-
nity and therefore, cannot be applied with a high degree of certainty to
landscapes containing different plant communities.

3.3. Allometric relationships for basal and litter cover estimation
The linear relationship between foliar and basal cover showed sig-

nificant (R*> = 0.57, p < 0.05) correlation (Fig. 8). The relationship
makes physical sense within this bunchgrass dominated vegetation
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Fig. 8. Linear regression between a) foliar cover and basal cover values and b)
foliar cover and litter cover values from all study blocks and collection dates.

community in that an increase of basal area would result in an increase
in foliar cover with zero basal cover resulting in approximately zero
foliar cover (b = —0.18). The correlation between foliar and litter
cover was weak, but significant [R? = 0.29, p < 0.05] (Fig. 8). This
relationship is generalized and is based on the assumption that with
greater amounts of foliar cover, a greater potential for litter cover ex-
ists. The relationship ignores many complex physical and temporal
factors that affect litter presence over time. Furthermore, while the
swale contained a significantly higher amount of litter than the up-
lands, the equation shown in Fig. 8 was applied to all model elements
for simplicity. Additional, long-term data collection is required to de-
velop more robust models for these relationships. However, these
simple relationships provide a conceptual foundation for research in
this context moving forward.

3.4. Landsat-based foliar cover time series

The FCgrs time series produced by the application of Eq. (10) is
shown in Fig. 9. The lower image frequency occurring from 1996 to
1999 and in 2012 was the result of only one Landsat satellite in orbit
during that period. Better representation of phenology and periods of
peak productivity were seen in the periods where two satellites were in
orbit. However, high frequency variability between consecutive FCrg
values was apparent in periods where foliar cover was below 60%. This
may be a result of differences between satellite measurements (e.g.,
Landsat 5 and Landsat 7 or Landsat 7 and Landsat 8) or physical
changes in vegetation or moisture content. Further research needs to be
conducted to determine the source of this variability. A cross-platform
calibration of bands would need to be done if the variability is sourced
to differences in satellite measurements.

Evidence of the drought-induced vegetation change in which the
watershed was occupied by forbs in 2006 and transitioned to a
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Fig. 9. Time series of remotely sensed foliar cover (FCgs). The values shown are a spatial average of all pixels intersecting Kendall. Three-month summer and winter
Standardized Precipitation-Evapotranspiration Index (SPEI) values are shown for context. Positive values of increasing magnitude indicate increasingly wetter
conditions. Negative values of increasing magnitude indicate increasingly dry conditions. SPEI values are based on a record from 1901 to 2014 and provided at a 0.5°
spatial resolution (Vicente-Serrano et al., 2010). Data were accessed from the Global SPEI Database (http://sac.csic.es/spei/database.html).

Lehmann lovegrass dominated grassland can be seen in the FCgg time
series (Fig. 9). Beginning in 2000, a succession of dry years with below
average winter (2000-2003) and monsoon precipitation (2000-2005)
and high temperatures occurred. Following a late flush of vegetation
productivity in 1999, a decreasing trend in foliar cover was present,
reaching a low point of < 40% in the spring of 2006 (Fig. 9). This trend
is consistent with observed reduced net ecosystem carbon uptake, an
indicator of lower productivity, during these years (Emmerich, 2003;
Scott et al., 2010). Despite above average monsoon precipitation from
2006 to 2008, native species did not fully recover, were replaced with a
flush of annual grasses and forbs in 2006, which was succeeded by
Lehmann lovegrass thereafter (Scott et al., 2010).

Nine of the twenty-six runoff events used in this study occurred
during the 2006 monsoon. Precipitation intensities were not abnor-
mally high for these events, but runoff ratios were generally elevated
during this period (Table 2). Soil erosion resulting from these events
accounted for 42% of the 19-year sediment loss record (Polyakov et al.,
2010). The coincidence of change in vegetation and the spike in runoff
and sediment loss suggest a drastic change in watershed response.
Minimum plant litter was measured in 2007 (Scott et al., 2010) and the
presence of annual vegetation allude to decreased basal cover during
this period. Increased flow velocities and decreased infiltration rates
can be expected from these conditions resulting in higher runoff and
erosion.

While not as well documented as the vegetation die-off in 2006, a
similar response from extremely low to high FCrs values within a
growing is shown in 1999 (Fig. 9). Historic composition data shows a
spike in forb presence in 1999 similar to that of 2006. High annual forb
cover and a decrease in FCgs leading up to 1999 suggest a similar period
of grass die-off. Further data collection needs to be conducted to vali-
date FCgg during these periods of altered vegetation composition.

After 2006 a general increasing trend in foliar cover is present
(Fig. 9). Lehmann lovegrass has largely dominated the watershed’s
vegetation since 2008. While the grass species present on the watershed
have changed, foliar cover appears to have returned to historic levels.
In the period from 2008 to 2015, only 8 significant runoff events oc-
curred (runoff ratio greater than 5%), including 3 events in 2008 when
the grass vegetation was dominated by seedlings (Table 2). The in-
frequency of runoff events in recent years and high foliar, litter, and
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basal cover measurements suggest that the watershed is hydrologically
stable under this vegetative state.

3.5. Foliar cover input scenarios

The remotely sensed foliar cover values based on FCrs (Scenarios
2-4) were higher than the NLCD-based value (Scenario 1) of 25% in all
cases (Fig. 10). Regardless of the temporal resolution, the remotely
sensed data more closely resembled that of the field-measured data,
reinforcing the importance of spatially localized data. The cover values
shown in this section are based on a spatial average of all pixels within
the domain of the watershed for discussion purposes.

Scenario 2 (long-term mean of FCgg from 1996 to 2015) represented
a static FCgg value of 65% and derived BCgrg and LCgg values of 24% and
30% respectively, compared to the corresponding values of 25%, 9%,
and 20% in Scenario 1. These static values were applied to all 26 si-
mulation events.

Scenario 3 (annual FCrg means) showed improved representation of
inter-annual fluctuation compared to Scenarios 1 and 2, and general
trends in FCgg response to climatic variability were visible. FCgg, BCgs,
and LCgs values for Scenario 3 ranged from 58%, 21%, and 29% in
2006 to 73%, 27%, and 32% in 2008 respectively. Phenological timing
and image availability had a large impact on the annual FCrs means.
The timing of vegetation green-up, where FCrg values were largest, was
highly variable between years. The annual mean FCgg value can be
inflated if this green up occurs early, due the inclusion of more high
values in the calculation of the mean (between July and September).
Similarly, the number of available cloud-free images and the dates they
are acquired can affect the annual mean FCgg value.

Scenario 4 values (FCgg value closest to the event date) allow for
representation of intra-annual variability and may be higher or lower
than Scenarios 2 and 3 values within a given year. The greatest varia-
bility of values associated with a runoff event occurred in 1999. FCgs,
BCrs, and LCgg values ranged from 52%, 20%, and 27% respectively on
7/16/1999 to 81%, 30%, and 34% on 9/9/1999. The determination of
BCpgs and LCgs from FCgg for model parameterization using intra-annual
values may be problematic as unrealistic increases in these values could
occur within a year, contradicting the static nature of basal and litter
cover the 2015 transect data suggested (Fig. 5).
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Fig. 10. NLCD-based and FCRS foliar cover input scenarios used for RHEM/K2 parameterization (1996-2014). Error bars show standard error.

3.6. Runoff simulation and model evaluation

The mean simulated runoff volume for the 26 event, lumped data set
was greater than that of the observed dataset, but more accurate for the
remotely sensed scenarios (Table 3). Negative PBIAS in all cases in-
dicated model over-estimation of total runoff volume. However, smaller
PBIAS values were shown in Scenarios 2-3 than for Scenario 1
(—113.27), with Scenario 3 having the smallest PBIAS (—50.33%).
RSR values were also improved using the remotely sensed data value,
with Scenario 3 performing best (0.77) and Scenario 1 performing the
worst (0.95). Moriasi et al. (2007) suggest streamflow model evaluation
criteria for satisfactory performance of + 25% for PBIAS and 0.70 for
RSR. These values may be inappropriate for event-based data, but serve
as a generalized benchmark here. Overall, model accuracy measures
were improved with the incorporation of FCgg, with the best PBIAS and
RSR values shown for Scenario 3 (Table 3).

Agreement between the observed and simulated peak flow rates
data sets were better than those for total runoff volume. Scenario 1
showed model overestimation with a simulated mean peak runoff rate
of 25.72mm/hr compared to an observed mean of 16.43 mm/hr and
PBIAS of —56.56% (Table 3). The remotely sensed scenarios showed
little bias, with PBIAS values less than a magnitude of 5%, with Sce-
nario 3 performing best (0.37%). Smaller RSR values for Scenarios 1-3
indicated better model performance for Scenarios 1-3 compared to
Scenario 1 (0.83), with Scenario 3 performing best (0.70). Based on the

Table 3

Descriptive statistics and performance metrics for the subset of 26 events that
were simulated, total runoff volume (top) and peak runoff volume (bottom), are
shown and categorized by the four foliar cover input scenarios. Simulated
means were not shown to be statistically significantly different (Tukey HSD,
P < 0.05).

Total Runoff Volume (mm)  Scenario 1 Scenario 2  Scenario 3  Scenario 4
Standard Deviation (Obs.) 3.92 3.92 3.92 3.92
Standard Deviation (Sim.) 8.25 7.03 6.83 6.95
Mean (Obs.) 4.32 4.32 4.32 4.32
Mean (Sim.) 9.21 6.67 6.49 6.72

R? 0.53 0.54 0.54 0.53

RSR 0.95 0.78 0.77 0.79
PBIAS (%) —-113.27 —54.53 —50.33 —55.66
Peak Runoff Rate (mm/hr)  Scenario 1  Scenario 2  Scenario 3  Scenario 4
Standard Deviation (Obs.) 12.31 12.31 12.31 12.31
Standard Deviation (Sim.) 20.95 17.35 16.61 16.77
Mean (Obs.) 16.43 16.43 16.43 16.43
Mean (Sim.) 25.72 16.87 16.37 17.16

R? 0.53 0.50 0.50 0.50

RSR 0.83 0.71 0.70 0.71
PBIAS (%) —56.56 -271 0.37 —4.47
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performance metrics, Scenario 3 produced the best simulated peak
runoff rate results.

Slopes and intercepts for runoff volume and peak flow regressions
were not shown to be significantly different (ANCOVA, a = 0.05) be-
tween the four scenarios (Fig. 11). However, relative improvement in
RSR and PBIAS for both simulated runoff volume and peak flow were
shown using the remotely sensed foliar cover inputs (Table 3). Negli-
gible differences in performance were seen between Scenarios 2-4.
Based on the model performance metrics (Table 3) and the analysis of
the field-measured cover data it was concluded that annual im-
plementation of FCgrs, Scenario 3, was most appropriate for model
parameterization.

The comparatively better results for peak flow rate infer that esti-
mates of f; were better than those of saturated hydraulic conductivity
(K,) in this watershed. One factor that likely affected the overestimated
runoff volume was the characterization of the swale. The slope, soil,
and ground cover in this area are different from the surrounding hill-
slopes. Years of sediment deposit in this shallow-sloped region have
produced a coarse, sandy soil texture to depths of at least 1 m. These
conditions have allowed for altered vegetation and significantly higher
litter content. The soil texture in the swale channel elements were
modified to represent a sandy texture within the model. However,
improved, localized soil data is needed to represent the heightened
infiltration in this region of the watershed as soil textural data obtained
from SSURGO soils maps may not represent the actual near surface soil
texture on the Kendall watershed. These texture classes are the basis for
deriving K}, that is then modified by vegetation to calculate K. (Eq. (6)).
Furthermore, the increased litter content seen in the swale transect was
not reflected in the FCrs parameterization data which accounts for an
underestimation of K, and overestimation of runoff volume (Hernandez
et al., 2017).

Further insight was gained when the simulation results were subset
into vegetative life-form groups, i.e., forb-dominated (1999, 2007, and
2007) and grass-dominated (all other years), for visualization purposes
(Fig. 11). Increased model overestimation for runoff volume was seen in
all scenarios for events that occurred when the watershed was grass-
dominated. Overestimation for grass-dominated events was reduced
with remotely sensed foliar cover input. The overestimation of runoff
occurring in grass-dominated events suggests that K. is too low under
grass-dominated conditions and current soil texture. Distinct differ-
ences in the simulated peak flow rate were also seen between vegeta-
tion groups. Model overestimation of peak flow rates occurred for grass-
dominated events, while underestimation was seen in forb-dominated
events. Peak flow rate is largely affected by f;, which suggests that this
parameter is too low under grass-dominant conditions and too high
under forb-dominated conditions. These results indicate that the SATVI
to foliar cover relationship and allometric relationships used to calcu-
late basal and litter cover here should be modified to represent specific



M.A. Kautz, et al.

Journal of Hydrology 575 (2019) 1073-1086

Scenario 1 Scenario 2 Scenario 3 Scenario 4
30 Forb-d d Vi 30
— A @ A Forb-dominated Vegetation
g ,\\/\Q 0 Grass-dominated Vegetation
= N: i A
o A A
£ 20 1 { 1 120
o
>
=
2
€ 10 10
- T T = T =1.20x+0.10 ] - T
€ y=153x+2.61 y= 1322099 v y=128x+1.22
—3 — = V. - 2 = 053
) R2=0.53 _ _ R
n=26 n=26 n=26 5 n=26
|:|A P =2.57x105 P =1.97x10% P =1.72x10"% P = 2.75%10%
0 a4 — 4+ — o, | lea : — 0
0 10 20 30 0 10 20 30 0 10 20 20 30
Obs. Runoff Volume (mm)
80 80
g »(\Q, 4 Forb-dominated Vegetation
£ o o .\\’\ I | ©Grass-dominated Vegetation
£ N
~ 60 T+ T+ T T+ T T+ T T 60
% o o [m] o
e A A O A
5 401 ° 2 40
3 1 1 1 1 1 1l L 1
"; l o | o o o 0 o
3 ° a
o 90 4+ y=123x+544 1 | y=0.99x+0.54 1 L y=097x+0.63 L L M A, y=096x+1461 o0
£ R?=0.53 A R2=050 A8 887 Rezosg R?=0.50
) 7 n=26 L n=26 n=26 n=26
A P =271x10° P =561x105 P =3.50x105 =5 -5
0 {has : : lasg T JasR o bC- Bl 0
0 20 40 60 80 O 20 40 60 80 0 20 40 60 80 0 20 40 60 80

Obs. Peak Flow Rate (mm/h)

Fig. 11. Regression plots comparing simulated total runoff volume (top row) and simulated peak flow rates (bottom row) with observed values for all precipitation-

runoff events. Columns 1-4 represent the different parameterization scenarios.

plant communities. Furthermore, the allometric relationships between
foliar cover and litter used here are rudimentary and need to be im-
proved upon through additional data collection and research. The K,
and f, parameters are sensitive to these inputs and largely affect the
model results. Improved understanding of these complex relationships
would extend the value of the approach outlined in this research and
could further improve model simulation results.

The ability to group the simulated runoff events by dominant ve-
getation was a luxury due to historic species monitoring on the wa-
tershed. Operationally, this type of data may not be available. The use
of remotely sensed foliar cover estimates for the parameterization of
RHEM/K2 improved simulation results compared to Scenario 1.
However, results suggest that in addition to detecting the abundance of
vegetation, it is also necessary to detect the type of vegetation.
Villarreal et al. (2016) showed success in discerning annual forbs,
Lehmann lovegrass, and native grasses using NDVI and SATVIL Im-
plementation of a similar approach could further improve model
parameterization by associating a plant community classification with
FCgs values.

4. Conclusion

The vegetative composition of the Kendall grassland watershed in
2015 was dominated by the invasive, Lehmann lovegrass. Total foliar
cover, basal cover, and litter cover values remained relatively stable
throughout the course of the growing season. High variability in green
and senescent foliar cover was observed over the measurement period.
Due to this fact, the use of SATVI was determined most appropriate for
calibrating field measured foliar cover with Landsat imagery due to its
ability to detect green and senescent vegetation. The resulting time
series of remotely sensed foliar cover showed the ability to detect cli-
mate-based alterations in vegetative cover based on a qualitative
comparison.

The integrated RHEM/K2 model was parameterized using foliar
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cover values from four input scenarios. The first scenario used a lit-
erature based value, while the other three were based on the remotely
sensed foliar cover values of different temporal representation.
Improvement in model performance was seen when the model was
parameterized using the remotely sensed data for runoff volume and
peak flow rate. Temporal resolution (long-term, annual, and sub-an-
nual) had negligible effect on the simulated values. However, based on
the static nature of field observations of foliar, basal, and litter cover
over a growing season and slightly better model performance the an-
nual mean value of FCgrs, Scenario 3, was selected as the optimum
parameterization scheme. These results highlighted the importance of
spatially localized vegetation data for model parameterization.

A well-documented change in vegetation on Kendall occurred
during the period of simulated events. The vegetation transitioned from
native grass-dominated to forb-dominated to its current state of in-
vasive grass dominated. Runoff volume for grass-dominated events
were over-predicted by the model to a greater extent than the forb-
dominated events. Similarly, simulated peak flow rate was over-
estimated for grass dominated events and underestimated for forb-
dominated events.

These results emphasize the importance of not only quantifying the
abundance of vegetation, but also the type of vegetation. Future re-
search should focus on expanding on the methodologies outlined here
to address different vegetation communities. The development of
community-specific vegetation relationships between the vegetation
index and foliar cover as well as improved basal and litter cover esti-
mates could provide better parameter estimates. However, classifica-
tion of vegetation communities using remotely sensed data will be re-
quired for operational implementation of these improvements.

The research presented in this study provides a framework for the
parameterization of the RHEM/K2 model using Landsat-based estimates
for required vegetative inputs. While model performance metrics were
lower than desired, this methodology shows improvement over the
default method of associating literature-based values with geospatial
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land cover classes. Furthermore, no parameter optimization or use of
calibrated multipliers were used to refine parameter estimates. This
allows for improved operational use when data is scarce. This metho-
dology shows the potential for long-term change analysis at the wa-
tershed scale and may be especially useful for detecting changes in
watershed response based on vegetation disturbances.
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