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(LTAR) site managed by the USDA-Agricultural Research Services (ARS) Southwest Watershed Research Center for which high-
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massive data set are a major challenge. We present the analysis of 50 years of data sets to develop a strategy to identify errors and
inconsistencies in historical rainfall and runoff databases. A multiple regression model was developed to relate rainfall, watershed
properties, and the antecedent conditions to runoff characteristics in 12 subwatersheds ranging in area from 0.002–94 km2. A regres-
sion model was developed based on 18 predictor variables, which produced predicted runoff with correlation coefficients ranging from
0.4–0.94 and Nash efficiency coefficients up to 0.76. The model predicted 92% of runoff events and 86% of no-runoff events.
The modeling approach is a complement to existing quality assurance and quality control (QAQC) procedures and provides a
specific method for ensuring that rainfall and runoff data in the USDA-ARS Walnut Gulch Experimental Watershed database are
consistent and contain minimal error. The model has the potential for making runoff predictions in similar hydroclimatic environments
with available high-resolution observations. DOI: 10.1061/(ASCE)HE.1943-5584.0001825. © 2019 American Society of Civil
Engineers.
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Introduction

Watershed and natural resource research observatories such as the
USDA, Agricultural Research Service (ARS), and Forest Service
Experimental Watersheds, Critical Zone Observatories (CZO—
Brantley et al. 2017), German Terrestrial Environmental Observa-
tories (TERENO—Zacharias et al. 2011), and National Ecological
Observatory Network (NEON) sites with ongoing or planned long-
term operations are on the rise. Quality control and quality assur-
ance of the data collected at these observatories are critical for
research and analyses relying on them. The densely instrumented
USDA-ARS Walnut Gulch Experimental Watershed (WGEW)
long-term agroecosystem research (LTAR) site has been in opera-
tion since the mid-1950s, collecting an array of hydroclimatic
observations. Quality Assurance and Quality Control (QAQC)
procedures for the WGEWand USDA-ARS Watershed Experimen-
tal Network have evolved as observations transition from those
made by analog (Brakensiek et al. 1979) to digital instrumentation
(Moran et al. 2008a). The Data Access Project (DAP) for the
WGEW was initiated shortly after the transition from analog to
digital instrumentation in 2000 (Nichols and Anson 2008).

The DAP revisited prior QAQC procedures and developed new
QAQC procedures applicable to the digital collection and transmis-
sion of hydroclimatic observations. The database consists of data
available for public use that have passed through specific quality
checks. Historically, hydrographs with problematic recession curves
and erroneous time stamps associated with analog clocks were typ-
ically corrected before entering the database. However, errors are
not uncommon in DAP because several versions of equipment were
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used and as personnel changed over time, human errors were inevi-
table at various levels of data reading, storage, and digitizing paper
charts. The current challenge is to find new ways to improve data
quality by identifying and correcting errors within the large number
of rainfall and runoff events since the 1950s.

The fundamental role that the spatiotemporal distribution of rain-
fall plays in semiarid runoff generation (Osborn and Hickok 1968;
Osborn et al. 1980) is exploited to further improve QAQC for both
rainfall and runoff observations. Precipitation properties such as the
total depth, intensity, duration, and precipitation scale with respect to
thewatershed contributing area and its spatial structure across the ba-
sin are important for quantifying watershed response such as runoff
rate and the timing of peak flow. The dense recording rain gauge net-
work in WGEW provides high temporal and spatial resolution data
sets (e.g., Goodrich et al. 2008a, b; Keefer et al. 2008) to draw upon.
Syed et al. (2003) analyzed the correlation between spatially interpo-
lated rainfall data and basin runoff response from the WGEW and
found that the size of the storm core, the area with intensities greater
than 25 mmh−1, and the position of the storm corewith respect to the
watershed outlet were good predictors of runoff volume and rate.

WGEW provides long-term rainfall and runoff data and more
than half a century of investigations and experiments conducted
across the nested watersheds in hydrology, ecology, and rangeland
studies, which provides a broad set of data and proxies related to
rainfall-runoff relations. The database has been used extensively
by the hydroecological modeling community for watershed and pro-
cess model validation (Costa et al. 2012; Duan et al. 2006; Goodrich
et al. 2004, 2012; Niu et al. 2014; Scott and Biederman 2017) and by
the remote sensing community (ground and satellite) as a key ground
validation site for retrieval algorithm validation (Amitai et al. 2012;
Das et al. 2008; Houser et al. 1998; Knipper et al. 2017; Kolassa et al.
2018; Moran et al. 2008b; Morin et al. 2003). Therefore, it is critical
that its observational database be as free of errors as possible.

Observations using 88 weighing rain gauges and runoff obser-
vations from 16 flumes across a range of nested watershed sizes in
WGEW provided a unique opportunity to derive potential predictors
for quantifying runoff and identifying observational inconsistencies
(see Fig. 1 for the location of the rain gauges and flumes). Here, we
show how long-term, high-resolution, continuous rainfall and runoff
data at hourly time steps was used to develop a regression-based
predictive model for WGEW that can be used to identify observa-
tions that are inconsistent or erroneous with the observed rainfall-
runoff responses of the watershed. The systematic removal or

correction of erroneous data will improve analyses that usually rely
on these data such as increasing consistencies in rainfall-runoff
model parameterization and minimizing error in water balance–
related analysis. This work includes descriptions of 22 parameters
related to rainfall, watershed, and antecedent conditions obtained
from the WGEW database and other national databases. These data
sets allowed the development of multiple predictors of runoff related
to precipitation and watershed properties, antecedent conditions, and
the temporal information of events such as the diurnal and seasonal
properties of the rainfall fields. Because dominant, high-intensity,
runoff-producing precipitation occurs in the summer at the WGEW,
the focus of the study was limited to summer data (June–October).

Regression-based hydrologic predictions are one of the oldest
tools in predictive hydrology (e.g., Bridges 1982; Chow 1964;
Cochran et al. 1979; McCain and Jarrett 1976). Polyakov et al.
(2010) used the detailed observations of rainfall and runoff in Santa
Rita Experimental Range watersheds to develop watershed-scale
sediment yield predictive models. Using data fromWGEW, Osborn
and Lane (1969) developed a regression model using 10 rainfall
gauges, antecedent conditions, and watershed parameters to show
how rainfall properties explain runoff volume, duration of flow, and
lag time. Lane et al. (1971) also applied a regression model to
describe routing and channel transmission losses using input and
output hydrograph parameters derived from WGEW data sets. Re-
gression models using rainfall characteristics, watershed properties,
and antecedent conditions have also been applied in many regions;
for example, watersheds in India and Oman (e.g., McIntyre et al.
2007; Sharma and Murthy 1996, 1998) used regression-based mod-
els to predict hydrologic transmission losses, runoff volume, peak
flow, and time to peak. In recent years, different techniques such as
machine learning, adaptive data analysis methodology, artificial
neural networks, and computational intelligence (e.g., Fotovatikhah
et al. 2018; Haupt and Kosovic 2015; Taormina et al. 2015; Wu and
Chau 2011; ASCE 2000a, b) have been successfully applied to a
wide range of hydrologic problems and may also show function-
ality in QAQC of hydrologic databases. Despite the computational
efficiency and ease of implementation of regression models, their
use for QAQC has not been explored. An additional goal is to
provide a well-tested QAQC approach that could benefit other
experimental watershed observatories with similar data sets, for
example, H.J. Andrews, Coweeta, Casper Creek, Little Washita,
Little River, Reynolds Creek, and so on, for curating long-term
hydroclimatic data.

Fig. 1. Walnut Gulch Experimental Watershed (WGEW). Colors and textures represent the subwatershed data sources used for the development of
the regression model. Watersheds on the map are referred to as WS06 instead of 63.006, and so on.
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The goal of the study was to develop multiple regression models
using long-term high-resolution data sets with the primary objectives
of using the regression models (1) to identify erroneous precipitation
and runoff events in the WGEW database, and (2) to improve the
quality of legacy data sets as a preparatory step to process-based sim-
ulation studies by ensuring consistent rainfall and runoff relations.

Methods

Study Site

The study was conducted in the WGEW (Fig. 1), which is also a
long-term agro-ecosystem research site in the southwest United
States managed by the USDA-ARS Southwest Watershed Research
Center, for which high-resolution, long-term hydroclimatic data are
available. The watershed has a total drainage area of 149 km2 with
elevations ranging between 1,190 and 2,150 masl. Mean annual
temperature in the city of Tombstone, located within the watershed,
is 17.6°C, with a mean annual rainfall of 324 mm. Most rainfall
occurs during the summer monsoon months from July through
October. Currently, vegetative cover on the watershed is generally
composed of two main vegetation communities, shrub dominated
(about 20%) and grass dominated (15%), with the remaining con-
sisting of a mixture of grass, shrubs, woodlands, trees, and bare
ground (e.g., King et al. 2008; Skirvin et al. 2008). The spatial dis-
tribution of vegetation is closely linked to soil type and variations in
annual rainfall. The soils are dominantly sandy, gravely loam that
vary from deep, relatively mature, and well-drained soil to thin,
immature soils. The underlying geology is a thick alluvial fan that
drains to the San Pedro River (Osterkamp 2008; Renard et al.
1993). Because of the thickness and extent of the alluvial fill, the
groundwater reserves are substantial and can be found at depths
ranging from 50 to 145 m (Goodrich et al. 2004).

The WGEW has been instrumented since 1953 to quantify
hydroclimatic variables [see 2008 WRR special issue; Moran et al.
(2008a)—introductory paper]. Rainfall and runoff data for this study
were collected from a selected 12 WGEW subwatersheds ranging
from0.002 to94 km2. A dense network of sensors captures the spatial
structure of both rainfall and watershed runoff responses. Currently,
runoff is measured with one v-notch weir, two H flumes, 11 large
supercritical flumes (Smith et al. 1982), and five small supercritical
flumes. Runoff instrumentation is located at the outlets of 16 nested
subwatersheds. A total of 88 weighing-type recording rain gauges
with a precision of 0.25 mm and 1-min time step (for digital data)
are distributed within the watershed at a density of 1.7 rain gauges
per square kilometer (Goodrich et al. 2008a; Stone et al. 2008).
The largest subwatershed contains 56 rain gauges, and the smallest
subwatershed contains 1 rain gauge. Data are curated and accessed
through the Southwest Watershed Research Center—Data Access
Project (SWRC-DAP) database (USDA-ARS n.d., Nichols and
Anson 2008).

Data Sets

Hourly rainfall and runoff data from 1960 to 2016 were used for the
analysis. Event data are available as breakpoint-formatted rainfall
hyetographs and runoff hydrographs that include time and accumu-
lated depth at slope breaks on analog strip charts (Goodrich et al.
2008a). Prior to January 1, 2000, the data were collected using ana-
log instruments, which were upgraded to a digital electronic system
in 2000. Details of the database can be found in Goodrich et al.
(2008a), Keefer et al. (2008), and Nichols and Anson (2008).

A total of 22 parameters describing rainfall and spatially distrib-
uted subwatershed characteristics were logically grouped to create

four subsets of properties that potentially influence runoff (Table 1).
The four subsets were grouped as rainfall properties, watershed
properties, antecedent conditions, and temporal properties, as de-
scribed in the subsequent paragraphs. Most of those variables have
long been understood to affect rainfall-runoff relations, but some of
them, such as season, month, and time of the storm occurrences;
stream density; and stream order, are introduced here as proxies
for runoff quantity. Watershed physical properties such as area,
average slope, flow length, and shape were derived from a 1 × 1-m-
resolution grid that was aggregated from a 0.5 × 0.5-m light
detection and ranging (LiDAR)-derived digital elevation model
or DEM (Kuxhausen 2015). Other spatial data representing average
properties of soil, ephemeral stream networks, sizes of stock pond
contributing areas, and area of the alluvial stream channel were as-
sembled from observations, SWRC-DAP, and national databases
such as SSURGO (USDA-NRCS) and NHD Plus (McKay et al.
2012). The list in Table 1 is not exhaustive because one could come
up with more proxies.

Rainfall event properties: The subwatershed rainfall properties
were represented by (1) conditional mean of hourly rainfall (aver-
age rainfall for observations greater than zero), (2) the maximum
15 min intensity, (3) conditional mean of rainfall duration (average
duration for observations greater than zero), (4) location of the
center of the storm with respect to the subwatershed outlet, and
(5) the storm size as a fraction of the total watershed area. The time
components of the storm event properties were computed for each
of the events. We assigned an event time in one of two ways: (1) for
a rainfall associated with runoff, the event rainfall assumed the time
at which maximum runoff was observed, and (2) in the absence of
runoff, the rainfall time was represented as the hour at which the
maximum depth of rain occurred. Each of the event rainfall proper-
ties (Table 1) was calculated from the continuous hourly data to
associate rainfall properties and values leading up to the generation
of runoff. Based on the general estimates of travel time in the chan-
nels and duration of intense rain, we defined event runoff as the
total runoff depth in mm from the 3 h preceding and following the
maximum observed runoff rate. The event rainfall depth and dura-
tion were calculated as the sum of hourly values from the 3 h
preceding and 1 h following the hour of the event time.

Watershed properties: We quantified several physiographic var-
iables describing each of the subwatersheds in the WGEW. These
are area, shape, slope, flow length, stream density, stream order, size
of stock ponds, channel bed area, saturated hydraulic conductivity,
hydrologic soil group, and land cover properties. Refer to Table 1 for
details of each of the watershed properties and the source of infor-
mation. The area of the channel bed included the area of the swales,
although this was a minor contribution, based on a geographic in-
formation systems (GIS) layer created by Miller et al. (1996).

Antecedent conditions: The antecedent condition represents the
condition of the watershed due to the previous rainfall and runoff
events and has a significant influence on runoff generation, as well
as on the quantity and timing of the runoff. We defined two param-
eters to incorporate antecedent conditions: antecedent moisture
conditions (AMC) and antecedent runoff conditions (ARC). AMC
is a watershed scale categorical wetness index indicating wet, aver-
age, and dry state based on the amount of rainfall received based on
Soil Conservation Service (SCS) threshold in the 5 days prior to a
given rainfall event (SCS 1972), which was represented as AMC
5d. However, because the arid conditions in WGEW result in rapid
evaporation and drying out of the surface soil, we also classified the
wetness condition based on 2 days accumulated rainfall prior to the
time in question, that is, AMC 2d, using the same thresholds given
in SCS (1972). The ARC differentiates between the contributing
area and the channel bed. Based on the amount of flow in the
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channel, 5 days (ARC 5d) and 3 days (ARC 3d) prior, we classified
the ARC into wet “3,” average “2,” and dry “1.” The threshold was
defined based on the distribution of runoff depths recorded in
WGEW since 1967. Wet conditions were set for prior accumulated
runoff with a depth more than 1 mm, and for a dry condition, we
chose a prior accumulation of 0.1 mm or less. Wet ARC values
describe the condition of relatively wet channel bed sediment, thus
limiting transmission losses and encouraging subsequent flow to
reach the outlets.

Temporal properties: The time of rainfall occurrence was charac-
terized at three time scales: season of occurrence (summer or
nonsummer), month of occurrence, and hour of occurrence. The
period of rainfall occurrence helps identify the type of storm received
in the area,which could be indicative of its seasonality.Rainfall events
in theWGEWare characterized seasonally by different frequency and
intensity, and the majority of runoff in the WGEW occurs from
summer convective storms associatedwith theNorth AmericanMon-
soon. These events are episodic and are relatively intense as compared
to precipitation outside the summer months (Renard et al. 1993).
Observations show that early summer rains (July and August) are
typically intense, short-duration, and localized rainfall events. The
high-intensity summer rain rates often exceed soil infiltration rates
and generate runoff via infiltration excess. Long-duration winter
rains, typically originating from frontal storm systems, rarely have
sufficiently high intensities to generate runoff (Renard et al. 1993).

Model Selection

Regression modeling requires the identification of the strength of
predictors that effectively explain the relationship between the rain-
fall and runoff. The rainfall event data and associated predictors
from WGEW range from very small to large values, allowing us
to assess different forms of regression models. We transformed

runoff data using exponential functions for better linear relation-
ships with the predictors and developed a regression equation of
the form given in the following equation:

yki ¼
XM

j¼0

βjxji þ εi ð1Þ

where y = dependent variable (runoff) at the ith event with a trans-
formation function k; β = regression coefficient of the jth variable;
and x = predictor value at the ith observation event. Values of x vary
between events (for time-variant properties) and watersheds (for
watershed properties); i ¼ 1 − N for the number of observations,
j ¼ 0 −M for the number of predictors, and εi is an error term
of the ith event.

We conducted a multiregression analysis systematically. First,
the data were divided into two parts: 85% were used to develop
the regression equations, and the remaining 15% were reserved to
validate the performance of the models. The validation data in-
cluded data collected with both the analog (1991–1996) and digital
(2011–2016) instruments. Second, runoff was modeled based on
combinations of the individual explanatory variables in each of the
four groups of variables (Table 1) using p-values and F-test statis-
tics of the multiple regression model based on transformed runoff
values. After individual explanatory variables were identified, in-
teraction among variables were evaluated to further improve the
performance of the regression models using p-values and F-test
statistics. Seventeen interaction terms were evaluated (Table 2.).

Based on combinations of the individual predictors and interac-
tion terms, three regression models were developed: Model I,
Model II, and Model III. Model I included the 22 individual pre-
dictors, which consist of all predictors in Table 1. The second group
(Model II) included individual predictors plus the interactions
within precipitation properties, that is, the 11 additional parameters

Table 1. Types and list of potential parameters related to rainfall runoff response in Walnut Gulch nested watersheds

Group/class Variable type Unit Definition

Precipitation
properties

Event rainfall depth mm=h Conditional hourly mean rainfall accumulation for 3 h preceding and 1 h following event time of the
watershed runoff.

Maximum rainfall intensity mm=min Average of a conditional maximum 15-min intensity of 3 h preceding and 1 h following an event.
Duration min Total duration of rainfall 3 h preceding and 1 h following an event.
Storm size m2=m2 Areal extent of rainfall event using Theissen polygons normalized by the watershed area.

Storm distance m=m The ratio of flow path from the storm center to the maximum watershed flow path length.

Antecedent
condition

5-day antecedent moisture — Prior moisture condition in the contributing area based on accumulation of rainfall over 5 days.
Dry (<1.27 mm), wet (>5.3 mm), or else average (SCS 1972).2-day antecedent moisture —

5-day antecedent runoff — Prior moisture condition in the channels based on accumulation of runoff over 5=3 days before the
event. Dry ð<0.001 mmÞ, wet ð> 1 mmÞ, or else average.3-day antecedent runoff —

Watershed
properties

Area km2 Watershed contributing area.
Shape m=m The ratio of watershed width (in the direction of main channel flow) to length of watershed.
Slope % Average slope in percent.
Length Km The longest flow path based on D8 algorithm.

Stock pond area km2=km2 Contributing areas of the detention stock ponds in some of the subwatersheds.
Area of channel bottom km2 Miller et al. (1996) measured the channel bottom area of Walnut Gulch channels to estimate

transmission loss.
Stream density m=m2 The ratio of total length of NHD high-resolution stream networks to watershed area.

Stream order ratio m=m The ratio of length of first-order stream network to the total length of stream orders 2 and above.
Hydraulic conductivity mm=h Average watershed scale surface layer property for soil water movement from SSURGO database.
Hydrologic soil groupa — Average soil group showing infiltration ability of the watershed.

Average land productivity — Normal year rangeland production in lbs/acre/yr normalized by average production inWalnut Gulch.

Temporal
properties

Event month 1–12 Rainfall distribution varies significantly within the summer months.
Rainfall hours 0–23 Hours representing the rainfall event time showing the diurnal effects.

Note: A total of 22 parameters were identified to be used as predictors for runoff estimation. The significant parameters of the optimal regression equation are
indicated in bold.
aHydrologic soil groups A, B, C, and D were assigned numeric values 1 to 4, respectively.
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in column 1 of Table 2. The third model (Model III) included all
the predictors in Tables 1 and 2, increasing the total number of pre-
dictors to 39. Each of the models was based on approximately
30,000 summer rainfall and corresponding runoff events measured
based on available information from the 12 subwatersheds.

Each of the three regression models was further evaluated to
identify a single optimal regression model. This was a two-step pro-
cess: First, F-tests were conducted to identify the model that best
fit the population from which the data were sampled using least
squares. All significant parameters and their interaction terms with
p-values <0.05 were used as regression predictors. In this step, the
objective functions were to minimize the deviation of individual
values from the distribution through the sum of squared deviates as
a standard error and the residual of the sum of squares (RSS) to
maximize the adjusted R-squared. The RSS is the measure of how
much the predicted runoff value varies from the observed value for
each data point. Adjusted R-squared shows the fraction of variance
of the error distribution compared to the variance of the dependent
sample variable (runoff volume). We also used the Durbin-Watson
test (Durbin and Watson 1950) to assess the normality of the re-
siduals. The F-test regression runs were also checked for normality
of the error distribution of the signs. Second, we compared the
model predictions of each of the three models to observations in the
training data set to evaluate the accuracy of the predictions. These
prediction accuracy evaluations of the three models were conducted
to shed light on overfitting, limitations, and strengths of the models
in QAQC applications that were not apparent in regression analysis.
Here, the model with the best predictive skills was selected for fur-
ther analysis.

Finally, the predictor variables of the model identified as the best
of the three models (Model I) were further evaluated using a multi-
model inference approach that used the Akaike Information Criteria
(AIC; Akaike 1973). Here, the objective was to assess if those pre-
dictors could lead to overfitting, which the F-test does not usually
reveal. The multimodel inference approach compares the relative
quality of models through estimation of information that would be
lost if a particular model consisting of the subset of the predictors
was used. The multimodel was created from the predictor variables
of the best model regardless of their p-values (from the previous
F-test), except for two of the antecedent conditions, to avoid re-
dundancies of the same type of parameters in the model. We then
applied the automated exhaustive searching algorithm (e.g., Saft
et al. 2016). We used only one of each of the AMCs (AMC 2d) and
ARCs (ARC 5d) based on the p-values obtained in the previous
analysis. The exhaustive searching algorithm is known to be robust

(Barto 2017), but also inefficient to generate and fit sets of models
through the repeated evaluation of a subset of the model parame-
ters. The objective function was to minimize the AIC and change
in AIC (delta) values, which are the measure of the goodness of fit
that favors smaller residual error. The analysis then penalizes the
inclusion of more predictor variables if the additional regression
terms contribute little or no additional information to the regression
model (e.g., Marshall et al. 2005).

Model Validation

After the final model was determined by selecting the model with
the lowest AIC value, the model was validated using the 15% of the
observed events withheld for validation. Here, the objective was to
show the performance of the regression model using independent
data not included in the regression training. We used the final
regression equation to predict runoff, and its performance was
evaluated using both categorical (probability of runoff or no runoff
prediction) and numerical statistics such as bias, correlation coef-
ficient, and Nash Sutcliffe efficiency coefficient (NSE) applied
to each subwatershed and all the combined subwatershed data.
These statistical metrics were computed using the untransformed
observed and predicted data.

Results and Discussion

Rainfall Characteristics and Watershed Responses

Runoff-generating rainfall events on the WGEW are dominantly
summer rains. About 12.5% of the summer rainfall events gener-
ated runoff, whereas only 0.5% of the winter rainfall events gen-
erated runoff. Comparison of rainfall events at subwatershed scales
showed runoff-generating storms in WGEW were characterized by
more rainfall depth, higher intensity, larger spatial coverage of the
subwatershed, and slightly longer duration than events that did
not generate runoff. An average of 8.7% of all measured rainfall
events resulted in a runoff at the outlets of the watersheds consid-
ered in this study. The mean rainfall depth and maximum intensity
for runoff-generating events were higher than the overall mean by
about 270% and 140%, respectively (Table 3, rows 6 and 7). The
conditional mean of rainfall duration (duration >0 min) and storm
size for runoff-generating events were 22% and 23% higher than
the overall mean of event duration and storm sizes, respectively
(see Table 3, rows 8–10 and 11). Table 3 shows increasing runoff
depth per event with decreasing area, consistent with the findings

Table 2. List of known interaction terms among the precipitation and watershed properties

Group/class Variable type

Interaction within precipitation
Watershed and precipitation

interaction

1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6

Precipitation
properties

Event depth X — X — X — X X X X X — X — X X X
Max. intensity X X — X — — X X — — X X — — — — —
Storm size — X X — — X X X X X X — — — — — —
Duration — — — X X X — — X X X — — X — — —

Watershed
properties

Hydraulic conductivity — — — — — — — — — — — X — — — — —
Channel area — — — — — — — — — — — — X — — — —

Slope — — — — — — — — — — — — — — X — —
Length — — — — — — — — — — — — — X — — —
AMC — — — — — — — — — — — — — — — X —

Stock pond area — — — — — — — — — — — — — — — — X

Note: The numbers 1–11 and 1–6 show the different interaction scenarios. Including the individual predictors listed in Table 1, the number of total predictors
becomes 39.
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of Goodrich et al. (1997). Average runoff depths per event range
from a minimum of 0.4 mm in watershed 63.006 (94 km2) to a
maximum of 3.23 mm in watershed 63.104 (0.048 km2).

The monthly summary of precipitation over the WGEW (Fig. 2)
reveals the typical characteristics of precipitation over the semiarid
southern Arizona environment. Summer rain in the WGEW is typ-
ically more frequent, shorter duration, highly localized, and more
intense (Fig. 2) than that during the winter period. Fig. 3 shows the
distribution of historical antecedent conditions and the diurnal and
seasonal rainfall properties in the WGEW. In the summer, the like-
lihood of dry antecedent conditions in both the watershed uplands
and the channel beds is significantly higher [Fig. 3(a)], which is
typical of the arid environment of southwestern US watersheds.
The AMC 5d showed about 21% average and 24% wet conditions
during the summer season [Fig. 3(a)]. The distribution of the 2-day
AMC (AMC 2d) closely resembled the distribution of both ARC 5d
and ARC 3d that describe the wetness conditions of channel bed

sediment [Fig. 3(a)], which was consistent with the smaller number
of runoff-generating events. This analysis shows a high probability
of dry AMC and dry ARC [Fig. 3(a)], indicating dry conditions
before most of the events, resulting in large abstractions of runoff
water in the channels and contributing areas resulting in low
runoff-to-rainfall ratios (e.g., Goodrich et al. 2004). Seasonal and
diurnal precipitation patterns were important factors in the quantity
and frequency of runoff in Walnut Gulch. The average diurnal cycle
[Fig. 3(b)] of the WGEW shows a large peak around 21:00 MST,
with a significant portion of the rain occurring after midday. Events
with longer duration and larger spatial coverage with small rainfall
intensity are typical, characteristic of winter storms. The winter
storms are usually less frequent, and did not generally produce
runoff [Figs. 2, 3(c and d)].

Fig. 4 shows runoff responses of the interaction of two precipi-
tation properties, rainfall depth versus intensity or rainfall dura-
tion or storm size. Most runoff was generated from high-intensity

Table 3. Summary rainfall and runoff event characteristics for selected subwatersheds in Walnut Gulch

Number Description

Subwatershed

63.006 63.015 63.010 63.003 63.011 63.004 63.104 63.112

1 Watershed area (km sq) 93.34 23.58 15.57 9.362 7.85 2.26 0.048 0.019
2 Ratio of runoff to rainfall events (%) 8.18 6.39 6.62 7.48 8.47 6.69 13.9 6.98

Summer events (%) 11.99 9.67 9.91 11.39 13 9.56 19.26 11.48
Nonsummer events (%) 0.42 0.19 0.235 0.13 0.32 0.3 1.35 0.26

3 Average runoff (Qf > 0) 0.414 0.688 0.48 0.46 0.91 1.16 3.23 3.1
4 Event mean rainfall (d > 0) 4.75 3.94 3.74 4.05 3.95 4.22 4.78 4.6
5 Event mean rainfall (Qf > 0) 13.3 15.46 13.26 14.58 14.82 17.61 14.44 17.6
6 Mean max. rainfall intensity (d > 0) 46.8 32.7 36.78 71.4 30.26 62 21.27 16.97
7 Mean max. rainfall intensity (Qf > 0) 164.5 142.1 148.5 135.8 130.9 121.4 77.7 78.9
8 Mean rainfall duration (d > 0) 112.5 113.2 114.4 114.6 113.4 115.3 101.13 102.1
9 Mean rainfall duration (Qf > 0) 153.2 153.5 157.2 145.1 138.1 142 124.7 123
10 Average storm size (d > 0) 0.426 0.797 0.71 0.562 0.83 0.744 0.995 1
11 Average storm size (Qf > 0) 0.807 0.936 0.83 0.911 0.96 0.968 1 1
12 Stock pond detention area (%) — 27.91 2.93 42.1 4.5 0 0 0
13 Number of rain gauges (gauge) 56 18 14 15 9 5 2 1

Note: Duration in minutes, storm size as a fraction of the watershed area, runoff in mm, rainfall depth in mm. The analysis included in the table was the
conditional average of the measured rainfall (d > 0) and runoff (Qf > 0).

Fig. 2. Long-term monthly average rainfall properties such as storm sizes, event durations, number of events, mean event rainfall depth, and
maximum intensity summarized on a monthly scale for the entire Walnut Gulch watershed (149 km2).
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rainfall. Intensities less than 30 mmh−1, regardless of the rainfall
depth, resulted in little chance of runoff [Fig. 4(a)], consistent with
the findings of Syed et al. (2003). Small, localized rainfall events
(covering less than 40% of the watershed) and very short-duration
events (<25 min) generated little runoff [Figs. 4(b and c)]. How-
ever, as the duration and storm size with respect to watershed size
increased, runoff generation increased. The typical rainfall of the
southwest, which is a localized, high-intensity rainfall with very
short duration, usually resulted in smaller runoff depth per event at
the watershed outlet in larger watersheds (Table 3). This is due to
more runoff leaving the system through channel transmission losses
as the ephemeral channel area increases with increasing watershed
size (Miller et al. 1996). In addition, the percentage of watershed
area covered by high-intensity rainfall generally decreases as water-
shed drainage area increases (Goodrich et al. 2004).

Predictive Model

The application in data quality assessment of the WGEW showed
Model I as the best model. Based on the relation between pre-
dicted and observed runoff, Model I correctly predicted runoff and

no-runoff events more than 85% of the time. Models II and III
erroneously predicted runoff for a large number of events when
the observed runoff was zero. Both Models II and III showed signs
of overfitting based on evaluation of the predicted runoff against
the observations. Model II incorrectly predicted runoff more than
65% of the time when the rainfall did not generate runoff; that is, a
large number of false positives occurred, disqualifying the use of
Models II and III for improving data quality in the WGEW. The
scatter plots of Model II (not shown) and Model III versus the ob-
served data [Fig. 5(d)] showed better agreement for large runoff
events than the same comparison for Model I [Fig. 5(c)]. However,
Models II and III showed a large overestimation for low-runoff
events compared to Model I. Although the coefficient of determi-
nation and standard errors were better for Models II and III, with
adjusted R2 of 0.68 and 0.7, respectively, Model I showed superior
performance for data quality assessment across all ranges of runoff
values based on the probability of runoff detection and false alarms.
It is also important to note that the comparison of the predicted and
observed runoff in Model I [Fig. 5(c)] showed significant spread,
indicating inaccuracy in predicted runoff magnitudes, which is also
inherent to semiarid modeling difficulties.

Fig. 3. Summary of rainfall properties and their responses based on rainfall and runoff events recorded across Walnut Gulch: (a) summer period
antecedent conditions over the watershed based on prior 5-day (AMC 5d) or 2-day (AMC 2d) accumulated rainfall, and channel floor (ARC 5d and
ARC 2d) based on the magnitude of prior accumulated runoff at the outlet; (b) average diurnal cycle of rainfall observations of 83 rain gauges in
Walnut Gulch; (c) seasonal distribution of storm size as a fraction of summation of areas of Theissen polygons of 83 rain gauges to total watershed
area; and (d) seasonal distribution of storm duration of events.
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The multimodel inference approach resulted in an optimal
model that includes the 18 model parameters listed in bold in
Table 1 as the predictors. AIC analysis was applied to all Model I
predictors except AMC 5d and ARC 3d. We removed AMC 5d and
ARC 3d based on the results of the F-tests to avoid the redundancy

of antecedent conditions, and used AMC 2d and ARC 5d as the
regression parameters for AIC analysis. The F-test showed, out
of four antecedent conditions, that AMC 5d was the only nonsig-
nificant (with p-value >0.05) parameter in Model I. Both anteced-
ent runoff conditions were found to be significant parameters in

Fig. 4. Description of combined effects of rainfall properties on runoff: (a) 15-min maximum intensity versus rainfall depth relation to runoff;
(b) duration-rainfall depth-runoff relation; and (c) storm size-rainfall depth-runoff. Bar graphs in (a–c) show maximum 15-min intensity, duration,
and storm sizes subdivided into six categories, where the subdivisions are labeled 1–6 and gray to black color. Corresponding scatter plots show
relation between event rainfall depth to runoff as a watershed response for each of the categories in the bar chart from lower left (light gray starting
with label number 1) to top right (black with label number 6).

© ASCE 04019036-8 J. Hydrol. Eng.

 J. Hydrol. Eng., 2019, 24(10): 04019036 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

M
en

be
ru

 B
ite

w
 o

n 
07

/2
5/

19
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



Model I, but included ARC 5d (p < 0.05), reducing the number of
parameters to 20. The combination of 18 of the 20 parameters
showed a minimum calculated AIC value of −13,478 and a delta
AIC value of 0. The second best-performing model showed a delta
AIC value greater than 4. Fig. 5(b) shows the AIC values for the
various combinations of predictors. The 18 parameters identified
included all precipitation, watershed, and time properties except
the area of channel bottom and hour of the occurrence of the rainfall
events. The coefficients of the regression equation that relates run-
off to rainfall and other watershed parameters are given in Table 4.

In general, the optimum model overestimated smaller events
and underestimated larger events [Figs. 5(c), 6(a and b)]. The
Durbin-Watson statistical test (1.84) of the residuals shows a dis-
tribution around zero on the y-axis [Fig. 6(a)]. The large residual
[Fig. 6(b)] for events around 22,000 shows a large underestimation
in watershed 104, which is a relatively flashier watershed, and the
significant overestimation for events was around 23,500 for 112.
The deviation of the quantile plot (Fig. 6) at both ends from the
theoretical fit shows the model performs well over the range of

Table 4. Regression equation coefficients for runoff prediction (k ¼ 0.25)

Variable Coefficient

Event rainfall depth 0.035
Maximum rainfall intensity 0.001356
Duration −0.000377
Storm size −0.051
Storm distance −0.039
2-day antecedent moisture 0.005331
5-day antecedent runoff 0.051
Event month 0.012
Area 0.011
Shape −0.000043
Slope −0.058
Length −0.012
Stock pond area −0.008015
Area of channel bottom −0.003208
Stream density 0.218
Stream order ratio −0.281
Hydraulic conductivity 0.053
Average land productivity 0.165

Fig. 5. Comparison of the regression model performances based on (a) adjusted R2 and residual errors (mm) from series of F-tests of models I, II,
and III; (b) corrected AIC values of models through the automated exhaustive search approach; (c) comparison of Model I predicted runoff versus
observed runoff; and (d) comparison of Model III predicted runoff versus observed runoff. Watershed runoff depth was computed as the total observed
flow volume divided by the watershed area. Computed watershed depths will be quite small in association with small runoff events.
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runoff values except for very small and large runoff values. Regres-
sions showed the highest correlation when event data from each
of the subwatersheds were regressed separately, where only pre-
cipitation properties and AMC are relevant predictors as all water-
shed properties remain constant. Small, flashy watersheds such as
63.104 and 63.121 showed the highest correlation, explaining more
than 75% of the variances (not shown). With the increase in water-
shed sizes, the partial area response became more dominant (Stone
and Paige 2003), reducing the runoff rainfall ratio at the outlets
(Goodrich et al. 1997).

Model Validation and Evaluation

We considered all predicted runoff using the coefficients in Table 4
with values less than 0.0001 mm as no runoff. The performance
of Model 1 using the validation data subset is shown in Table 5
and Fig. 7. The models showed correlation coefficients ranging
from 0.48 in watershed 63.010 up to 0.9 in watershed 63.003 at
the individual subwatershed scale. The NSE was as high as 0.76
for watershed 63.121 and 0.66 for watershed 63.011. Watershed
63.010 showed the lowest NSE (−10.36), showing that the average

Fig. 6. (a) Comparison of the optimal model-predicted runoff and transformed observed runoff time series; (b) the residual from the 12 subwater-
sheds; and (c) the normal quantile plot of the optimal multiple regression model. The events are organized based on the watershed IDs from 03 to 121.
The large and medium-sized watersheds that are designated with small ID numbers such as 03, 04, 06, and so on are on the right side, and watersheds
with the smallest area (104, 112, and 121) are on the very right of (a and b).

Table 5. Comparison of the predictive skill of the validation data at subwatershed scale and all watersheds combined

Statistics

Subwatersheds

WG 63.003 63.006 63.004 63.121 63.112 63.104 63.010 63.011

Correlation coefficient 0.65 0.48 0.81 0.859 0.94 0.723 0.53 0.485 0.812
Bias 0.055 −0.012 −0.007 −0.025 −0.084 −0.044 −0.68 0.019 −0.052
NSE 0.425 0.135 0.61 0.74 0.76 0.47 0.162 −10.36 0.66
P (flow hits) 0.9 0.897 0.889 1 0.98 0.96 0.93 0.92 0.81
P (no flow hits) 0.86 0.879 0.895 0.87 0.87 0.76 0.82 0.87 0.87
Number of observed flow 486 35 56 31 38 32 48 77 61
Amount of validation data 4,801 459 609 239 296 469 468 796 459
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of the observed runoff is a better predictor than the model due to the
large negative value. The regression equation consistently under-
estimated the runoff in all watersheds with a bias less than 0.03.
The small watersheds (63.104, 63.112, and 63.121) showed large
underestimation where the calculated bias was nearly double that of
the medium sized watersheds. When all subwatershed data were
combined, the model performance showed a modest accuracy, with
a correlation coefficient of 0.46 and NSE of 0.425. Regardless of
the accuracy of runoff values, the regression model predicted the
occurrence of runoff 93% of the time (see probability of flow hits in
Table 5) and no-runoff event occurrences 86% of the time. The
model performed poorly in watershed 63.010, which has an elon-
gated shape compared to the rest of the subwatersheds. Shape was
not a significant predictor in the general regression model. How-
ever, the distinctively elongated watershed has a very long main
channel and a relatively large channel bottom area with alluvial
deposits that may increase the potential for channel transmission

losses, resulting in the difference in the rainfall-runoff relation
of watershed 63.010.

Application of the Regression Model for Assessing
Measurement Quality

In this exercise, we illustrate how the regression model was applied
to identify potential errors previously unidentified in the database.
We applied the regression model to predict runoff for watersheds
63.004 (small to medium size) and 63.006 (relatively large) to dem-
onstrate the quality assurance potential of the regression model.
Using the predicted and observed runoff with the depth of precipi-
tation events, we identified events with questionable rainfall-runoff
relations based on the following three situations.

The first condition was the identification of substantial rainfall
events (>20 mm depth) that did not produce runoff. Watershed
63.004 produced runoff in 93% of the rainfall events with precipita-
tion depth greater than 20 mm and intensity higher than 30 mm=h.

Fig. 7. Comparison of observed and modeled runoff for the 15% validation data set to evaluate the predictive skill of the model. The performance in
watershed 63.010 (WS-10) is the poorest.

Table 6. Examples of flagged problematic rainfall and runoff events based on the inconsistencies observed in the application of the regression model for
watersheds 63.004 and 63.006

Watershed Condition Event date Runoff (mm) Predicted (mm) Residual (mm) Rainfall (mm)

63.004 1 6/29/1996 19:00 0 0.987 −0.987 31.657
7/29/1987 14:00 0 0.637 −0.637 27.527
7/14/1985 18:00 0 0.405 −0.405 23.778
10/19/1972 14:00 0 0.183 −0.183 21.242
8/6/1966 0:00 0 0.241 −0.241 22.543

2 9/5/1977 15:00 1.233 0 1.233 1.973
7/12/1981 23:00 1.096 0 1.095 3.494

63.006 1 7/24/1969 13:00 0 0.250 0.250 21.758
3/19/1973 13:00 0 0.168 0.168 26.643
7/31/1982 15:00 0 0.210 0.210 22.510
8/17/1986 23:00 0 0.222 0.222 24.779
10/14/1988 19:00 0 0.266 0.266 24.760
7/9/1993 2:00 0 0.619 0.619 27.849

2 7/31/1981 8:00 0.612976 0 −0.613 6.910

Note: Condition 1 shows a list of events with substantial rainfall events for which regression predicted runoff but there was no associated runoff observation;
and Condition 2 lists events with substantial runoff, but no runoff model prediction.
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Watershed 63.006 produced runoff in 85% of rainfall events under
similar conditions. Based on the 20-mm threshold, we identified
five rainfall events in watershed 63.004 and six rainfall events in
watershed 63.006 that did not generate runoff when the regression
model predicted significant runoff (Table 6).

The second condition identified events with substantial observed
runoff (>0.5 mm depth), but zero predicted runoff. Under this
condition, we identified two runoff events for watershed 63.004 on
9/5/1977 and 7/12/1981 and one runoff event for watershed 63.006
on 7/31/1981 (Table 6).

The third condition identified those events with observed runoff
(>0 mm depth) but zero rainfall accumulation and predicted flow.
Under this condition, we identified 11 events in watershed 63.004

and 5 events in watershed 63.006 (not shown in Table 6). Those
data points with observed runoff but no precipitation associated
with the runoff within the defined time window could be related to
timestamp error, instrument malfunction, or human error during in-
strument maintenance and calibration. Fixing those error types re-
quires further investigation and combing through the available site
notebooks or the analog charts for indications of measurement error.

In Table 6, we show only about 56% of the identified data points
for which we found a good reason to believe that there were errors
either in rainfall or runoff recordings. With regard to those data
points identified as problematic that we did not include in Table 6,
even though there are some possible reasons related to the rainfall
data such as low-intensity rain with long duration, which favors

Fig. 8. Selected runoff and rainfall from multiple gauges within the watershed of interest on inverted y-axis observations from the lists in Table 6 of
(a) watershed 63.004; and (b) watershed 63.006 that explains the reason those events were picked up by the regression.
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more infiltration than runoff generation, or very wet antecedent
conditions, which could result in runoff generation even for small
rainfall depth, and so on, we could not find any reason to believe
that there were problems with those data points.

Closer examination of the database as well as inspection of ana-
log strip charts for the identified questionable data points in Table 6
revealed different kinds of problems related to the timing of the data
recording and storage. Nine of the events in Table 6 (five in water-
shed 63.004 and four in watershed 63.006) are shown in Fig. 8 in
terms of the timing of the recordings of rainfall and runoff. In some
of the events, such as the events on 9/5/1977 in 63.004 and events
8/17/1986, 10/14/1984, and 7/12/1981 in 63.006, the source data
show that most of the rainfall with the potential to cause runoff in
the watershed appeared to have been recorded while the runoff was
receding. In most of the events shown in Fig. 8, events with sub-
stantial runoff observation and zero model predictions are possibly
related to either an incorrect timestamp of the precipitation or the
runoff, or an error in the digitization process of the analog chart. In
watershed 63.004 on 7/12/1981, the structure of the rainfall and its
timing do not seem to explain the dynamics recorded in the runoff.

The precipitation event on 3/19/1973 in Table 6 showed a condi-
tional mean of 26.6 mm rain that does not have associated runoff.
In the source database, a very long-duration rainfall that extended
over 15 h [see the watershed conditional average rain depth (red
line) in Fig. 9(a)] was split into multiple events when a window
of the 3 h preceding and 3 h following maximum runoff was
applied to summarize the hourly data into event scale. A detailed
look into all the precipitation recorded in the watershed from multi-
ple rain gauges revealed that the problem in this data point could
be a wrong timestamp on some of the gauge recordings. At any
given location, the precipitation duration was not as long as it ap-
peared on the watershed scale. Two rain gauges, 63.041 and 63.044
[Fig. 9(a)], recorded 8 h earlier and stopped recording right before
the neighboring gauges started recording. A cross-check on the
rainfall and runoff analog charts on 3/19/1973 also confirmed that
gauges 63.041 and 63.044 recorded the rainfall at the same time
with the neighboring gauges and the shift in the digitized data
within the database could be related to data entry error made during
reading and digitizing the charts for the two rain gauges.

On 7/31/1981 [Fig. 9(b)], two rainfall events occurred across the
watershed but were summarized as a single event of 16 h. The first
event was large enough that the regression model predicted runoff
for it, but the second event was so small that the regression did not
predict runoff. Considering a very wet surface because of rain a few
hours earlier, it is very likely that that the second rain also generated
runoff that the regression model was not able to predict.

Application of the regression model to identify possible data
errors in the WGEW showed that the method should be applied
with care because of accuracy limitations in predicting the magni-
tude of runoff events. Without a doubt, this type of improvement in
the data would directly affect the quality of our resulting hydrologic
analysis; data interpretation; and findings such as forecasts, warn-
ings, and decision support guidance. Most applications of data are
the responsibility of the user, and their accuracy and consistency are
usually ignored. However, it is a known fact that errors are common
in long-term databases like the WGEW. There are several reasons,
including human mistakes and instrument malfunctions, for errors.
The most common approach before any data usage would be to
check if there are recordings that were off by orders of magnitude
or outside an acceptable range of values, big jumps in value for no
reason, and so on. Tools such as this regression-based model that
are able to identify, flag, and correct errors that are not as obvious
as outliers have paramount importance in improving the quality of
historical hydroclimatic observations.

Conclusions

A regression approach used in this study to develop a method for
flagging erroneous data based on the concept of a causal relation-
ship among watershed properties, antecedent conditions, rainfall,
and runoff was applied in the WGEW. The development of the mul-
tiparameter regression model required careful evaluation of its
application, in this case its use for QAQC of historical data. In ad-
dition to the combination of F-tests and the exhaustive search
approach, it needed to select an optimal model based on the accu-
racy of the predicted runoff. The precipitation properties explained
more of the variance in the rainfall-runoff relation than the water-
shed and antecedent properties. AMC 3d explained the rainfall
runoff relations better than AMC 5d, the standard prior 5 days’ ac-
cumulation (SCS 1972), which could be related to the semiarid
environment in the Southwest that facilitates rapid drying of soils.

The regression model was used to predict runoff given measured
rainfall characteristics. It showed significant improvement in runoff
prediction with the inclusion of known interaction terms, indicating
the model with more variables had better performance. However,
the model with the least number of predictors, consisting of only
individual precipitation and watershed properties (18 predictors),
showed superior performance for quality assurance assessments be-
cause it showed the smallest false alarm runoff. The optimal model
predicted runoff with a fairly modest accuracy (adjusted R2 of 0.63
and standard error equal to 0.218) in terms of magnitude estimation,

Fig. 9. Two events in watershed 63.006 identified as problematic due to (a) possible recording error in rain gauges 41 and 43 on 3/19/1973 that
extended the rainfall event duration outside the bounds of the model assumptions; and (b) a false alarm on 7/31/1981 identified due to a small second
rainfall event that fell on a very wet (saturated) surface.
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with a general underestimation of the observed runoff. However,
the model showed good skill in detecting runoff-generating rainfall
events, with the lowest false alarm runoff.

The use of predicted runoff in combination with the observed
rainfall and runoff illustrated good potential for implementing addi-
tional quality assurance procedures in the DAP database. Using this
regression model, we identified a total of 25 data points that had
some type of error. Most of the problems identified in this exercise
were recorded during the analog period, that is, prior to the year
2000, and were usually due to human errors in assigning events at
the wrong time when reading the analog charts and during the digi-
tization process. It is also important to note that flagging events with
questionable rainfall or runoff points requires caution. Once the
questionable data points are identified, it requires validation of
the errors using all available information, such as field notebooks,
a copy of the analog charts, and observations in the neighboring
gauges. This exercise demonstrated that the regression model was
able to identify additional inconsistent observations beyond those
identified by QAQC procedures on precipitation or runoff independ-
ently. It thus provides a useful addition to complement existing
QAQC procedures to ensure that rainfall and runoff data in the
Walnut Gulch database are consistent and contain minimal errors.
The model also has the potential for making runoff predictions in
similar hydroclimatic environments where high-resolution ground-
based radar-rainfall estimates are available.

In addition to the regression approach, we are currently working
on the development of other potential tools for flagging inconsis-
tent and erroneous data points based on the causality between rain-
fall and runoff. The causal relations include (1) rainfall is spatially
correlated in the watershed, which can be applied to the recorded
rainfall fields only; (2) there is a temporal link between rainfall and
runoff (showing the presence of reasonable lag time between rain-
fall and runoff); and (3) there is an upper limit to the amount of
runoff generated from a rainfall event (a threshold of runoff coef-
ficient). Unlike the regression method, the application of the meth-
ods that apply to the latter two causal relations is only limited to
events that resulted in runoff.
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