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A B S T R A C T

Many semi-arid regions of the world experience rainfall patterns characterized by high spatial variability.
Accurate spatial representation of different types of rainfall will facilitate the application of distributed hy-
drological models in these areas. This study presents a daily, spatially distributed, stochastic rainfall generator
based on a first-order Markov chain model, calibrated using 50 years of rainfall observations at 88 gages from
1967 through 2016 in the 148-km2 Walnut Gulch Experimental Watershed. Three types of rainfall, including
convective, frontal, and tropical depression storms, were simulated separately in the generator using biweekly
parameterization. Convective storms were simulated based on an elliptical shape rain cell conceptual model,
whereas frontal and tropical depression storms were simulated as uniform rainfall fields over the whole wa-
tershed with introduced random variability. The rainfall generator was evaluated by comparing the mean sta-
tistics of 30 sets of 50-year simulated data versus the 50-year rain gage observed data. Most individual storm
statistics and aggregated seasonal rainfall statistics were similar to the measured rainfall observations. The long-
term mean values of both summer and winter rainfall amount were statistically satisfactory. This model can
serve as a guide for application in areas with convective, frontal, and tropical depression storms.

1. Introduction

Precipitation is a driving force of many hydrologic processes,
especially for regions with semi-arid and arid climates. However, the
lack of reliable rainfall records limits the development of hydrologic
research and applications. Stochastic rainfall generators can simulate
the key characteristics of natural rainfall records (Wilks and Wilby,
1999). The advantage of simulated rainfall data is that they can provide
long series of statistically representative records, which can be used in
hydrological models, agricultural models, or climate change impact
assessment to produce mathematically stable statistical representations
of hydrologic response for a given weather record. As models become
more sophisticated, the requirements for higher resolution and con-
tinuous rainfall series data become more important (Bonta, 2004; Breinl
et al., 2017; Li et al., 2017; Serinaldi, 2009).

Rainfall has both temporal and spatial characteristics that need to
be accounted for in the generation process. Point-based rainfall gen-
erators, which focus on the temporal dimension of rainfall, are the most
commonly used models (Arnold and Williams, 1989; Calenda and
Napolitano, 1999; Kavvas and Delleur, 1981; Papalexiou et al., 2011;
Richardson, 1981; Valdes et al., 1985). These generators are based on
single site observations, and therefore not designed to provide spatial

resolution. Researchers have studied the effect of spatially variable
rainfall on hydrologic response. Some studies argued that the spatial
variability of rainfall does not cause significant differences in runoff
generation or only causes secondary effects (Beven and Hornberger,
1982; Obled et al., 1994; Schuurmans and Bierkens, 2006). These
catchment sizes ranged from 71 to 287 km2, which were mostly
medium sized rural catchments. Obled et al. (1994) noted that their
conclusions may not apply for smaller urbanized or larger rural areas.
Schuurmans and Bierkens (2006) found that the spatial variability has a
major effect on daily simulation of discharge, groundwater level and
soil moisture, while for general longer-term behavior of the hydro-
logical system, the areal average rainfall information is adequate. Koren
et al. (1999) noted that heterogeneity of rainfall is a major factor for
small scale catchments, but the fraction of the watershed covered by
rainfall is not as important since rainfall is likely to cover the whole
area. However, for larger scales, the fractional area of the watershed
covered by rainfall is a major factor for runoff generation. Specific site
conditions, in terms of either climate characteristics or size of the wa-
tershed, can lead to quite different conclusions on how spatial rainfall
affects hydrological responses. In a semi-arid region, such as is found in
much of the southwestern United States, where runoff is dominated by
summer convective storms, transmission losses in ephemeral channels
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are a significant factor in the water budget (Goodrich et al., 1997;
Renard et al., 1993). Thus, the spatial distribution of rainfall may
matter more in these environments, creating distinctive runoff response
for upper and lower streams. Bell and Moore (2000) also pointed out
that convective rainfall induces more sensitivity in runoff production
than does stratiform rainfall. To facilitate the accurate modeling of
hydrologic response in semi-arid regions, such as in southeastern Ar-
izona, a rainfall generator that can simulate non-uniform rainfall fields
in space is needed. It will enhance the ability to apply distributed wa-
tershed hydrologic models.

Spatial rainfall generators may use multi-site data for a specific
region, so they can also be referred to as multi-site rainfall generators.
Compared with point-based generators, multi-site rainfall generators
take spatial correlation between stations into consideration, since
rainfall stations near enough are not totally independent of each other.
Storms organize into groups and form linear bands or spiral bands
under different weather systems in nature (Shuttleworth, 2012). In
recent years there has been extensive research conducted on different
types of multi-site rainfall generator models (Asong et al., 2016;
Bardossy and Plate, 1992; Breinl et al., 2017; Evin et al., 2018; Ferraris
et al., 2003; Leander and Buishand, 2009; Li, 2014; Mehrotra et al.,
2006; Peleg and Morin, 2014; Serinaldi, 2009; Wilks, 1999). Most
rainfall generators deal with two major components: rainfall occurrence
and rainfall amount. There are two basic approaches for precipitation
occurrence generation. One is the Richardson-type (Richardson, 1981)
and the other is serial type (Racsko et al., 1991). The Richardson-type
generator is based on Markov chain models, which simulates day to day
rainfall occurrence using transition probabilities. Serial type generators
account for long-term wet or dry trends, usually beginning with the
simulation of dry and wet series of years, and then simulate rainfall
amount based on dry and wet conditions.

There are also basically two types of methods for representing
spatial distribution of rainfall amounts. The first type focuses on the
physical structure of small scale rain cells, such as shape and size, either
using rain gage data (Cowpertwait et al., 1996; Ferraris et al., 2003;
Hsieh, 2002; von Hardenberg et al., 2003) or radar images to acquire
the parameters (Morin et al., 2006; Peleg and Morin, 2014, 2012). The
other type considers relatively larger scale rainfall fields, usually in-
corporating mathematical representation of the spatial correlation.
Further classification of this type can include several different methods:
(1) Statistical multi-site models, usually achieved by fitting empirical
distributions for rainfall properties and adding spatial correlation ma-
trix to represent inter-sites relation (Brissette et al., 2007; Khalili et al.,
2009; Mehrotra and Sharma, 2007; Serinaldi, 2009; Wilks, 1998). (2)
Resampling/bootstrap models, where rainfall depths were resampled
from historical data (Buishand and Brandsma, 2001; Leander and
Buishand, 2009). Recent improvements of resampling methods in-
cluded adding a reshuffle process to maintain the spatial properties
(Breinl et al., 2013, 2015). (3) Nonlinearly filtered autoregressive
processes (Lanza, 2000; Mejía and Rodríguez-Iturbe, 1974; Rebora
et al., 2006). (4) Generalized linear models (Asong et al., 2016; Verdin
et al., 2018, 2015). (5) Fractal cascade models (Gupta and Waymire,
1993). Of all the above approaches, rain cell models are particularly
appropriate to simulate convective storms, since these storms share
common features of short duration and limited spatial extent (Osborn
et al., 1979). Generalized linear models have failed to capture the
summer convective precipitation characteristics (Verdin et al., 2015).

Rain cells can either be simulated using circular (Morin et al., 2005;
Morin and Gabella, 2007; Peleg and Morin, 2014) or elliptical shapes
(Barnolas et al., 2010; Peleg and Morin, 2012; Syed et al., 2003). The
circular shape is easier for modeling since it only has one radius
parameter, and the intensity distribution can be simplified as well be-
cause the cell is isotropic. The elliptical shape is more complex since it
has both a major and minor axis, which also requires an additional

orientation parameter. It is also necessary to define the center co-
ordinates of the cell and the coverage area for both kinds of cells. In
addition to cell shape parameters, researchers also have studied the
representation of rainfall intensity within the cell: (1) rain cells with a
constant intensity everywhere; (2) Gaussian decay of intensity from cell
center; (3) exponential decay of intensity from cell center; (4) hybrid of
Gaussian and exponential decay from cell center. The use of constant
intensity makes the model simpler, but not generally realistic, espe-
cially when the research focus is on sub-daily rain cell development.
Féral et al. (2003) noted that the Gaussian distribution leads to a faster
decay of rainfall intensity from the center outwards but to a lower
gradient for the outer part. The specific function might differ from re-
gion to region, which needs further calibration based on actual data.

In this study, we will employ a Markov-chain based rain cell model
to simulate daily spatial rainfall in a semi-arid watershed located in
southeastern Arizona. The major objectives are: (1) present a con-
ceptual model to characterize the spatial variation of the summer
convective rainfall, (2) build a stochastic daily rainfall generator cap-
able of simulating three types of rainfall with high spatial resolution
that can be used in small to medium sized watersheds, and (3) evaluate
the performance of the rainfall generator. Since temporal scale is not
the primary consideration in this study, we used a daily step in this
rainfall generator. The Richardson-type of generator was used for daily
rainfall occurrence. The geographic area we are concerned about is
dominated by convective rainfall during the summer, which is suitably
represented by a rain-cell based generator. We combined simulations of
individual rain cells to acquire the rainfall field over the entire wa-
tershed.

2. Methods

2.1. Study area and data

The study area is the Walnut Gulch Experimental Watershed, lo-
cated in southeast Arizona, surrounding the town of Tombstone. It is a
sub-watershed of the San Pedro River Basin. The USDA-ARS Southwest
Research Center has been operating the watershed since the 1950s with
intensive instrumentation and measurement of precipitation. The
drainage area of Walnut Gulch is approximately 148 km2, and elevation
ranging from 1220 m to 1900 m above sea level. The average annual
precipitation in this semi-arid watershed is approximately 312 mm
(Goodrich et al., 2008a), following a bimodal pattern, with most pre-
cipitation occurring in summer and winter seasons (Osborn, 1983).
Summer rainfall, during the months of July, August, and September,
accounts for approximately 60% of the total annual amount in this
region, and results from the North American Monsoon (Nichols et al.,
2002; Stillman et al., 2013). The summer rain often forms as convective
storms, with relatively short duration but high intensity, and cover a
limited spatial extent. The spatial variation of summer convective
storms is large. The winter frontal storms are, however, usually of long
duration but low intensity, and usually cover the whole watershed more
uniformly (Goodrich et al., 2008b; Nearing et al., 2015; Nichols et al.,
2002; Stillman et al., 2013). Frontal storms during the non-summer
months account for approximately 35% of the annual precipitation.
Occasionally, snow occurs in winter at the watershed, but it melts
quickly and does not accumulate. The remaining 5% of the annual
rainfall falls in the form of tropical depression storms, usually dropping
large amounts of water, much of which will be converted into runoff
(Gochis et al., 2006; Osborn, 1982).

Walnut Gulch Experiment Watershed has more than sixty years of
rainfall monitoring. The earliest rainfall record dates back to 1954. The
current rain gage network consists of 88 digital rain gages (Fig. 1),
which gives an average of approximately 0.6 gage km−2 over the wa-
tershed. The dense network provides advantages for spatial rainfall
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analysis, especially for the summer convective rainfall events with high
spatial variation. The full current network of 88 gages was installed by
1967, so this study uses rainfall data from 1967 through 2016
(50 years) to build the generator. From 1967 through 1999, the rainfall
data was recorded by analog rain gages, while after 2000, digital gages
were used (Goodrich et al., 2008a). Due to resource considerations,
only nine gages operated out of the monsoon season, during the winter
months from 1981 through 1991 and in 1999. The reason for this is that
winter rainfall in this area is much less spatially variable and the high
density of rain gages were not considered necessary (Goodrich et al.,
2008a). All rainfall data used can be acquired on the website of USDA-
ARS-SWRC. The rainfall records are stored in an Access database, in-
cluding both daily rainfall and event rainfall. The daily data recorded
the year, month, day and total depth received by a certain gage on that
day. The event data recorded the event ID, year, month, day, start time,
duration and depth by a certain gage. Each day may have multiple
events in the database for a gage. The resolution for depth is 0.254 mm
(0.01 in.) and the resolution for duration is 1 min.

2.2. Storm identification

A continuous rainfall record consists of both wet periods and dry
periods. Researchers have explored different methods to distinguish
events, usually based on a threshold of the dry period. This threshold
can be a fixed time interval for all months, such as 6 h used in erosive
rainfall studies (Wischmeier and Smith, 1978). It can also vary with
months, depending on the actual distribution of the inter-arrival time of
rainfall in each month. The Walnut Gulch rainfall database has iden-
tified events for each gage separately and assigned an event ID to each

one. The criteria used for each gage in the database was based on a one
hour hiatus (Goodrich et al., 2008a). However, this separation is only
for one rain gage, which means if two gages received rainfall at the
same time, they are still assigned different event IDs in the database. An
actual storm occurring in the watershed usually involves more than one
gage, so it is necessary to identify the individual storms within the
entire gage network. According to visual perusal of daily rainfall in-
terpolation maps (Fig. S1 in supplemental material), we determined
that a reasonable storm cell number within one day was no more than
five. Longer thresholds give fewer storms identified for each day, since
more gage events will be combined. The 4-hour threshold to separate
and identify storms was selected so that the daily storm numbers were
equal to or fewer than five. When the event starting times of two gages
were within that threshold, they are identified to be the same storm in
the watershed. The maximum depth for each storm was also recorded
during the storm identification process.

2.3. Rainfall occurrence

The rainfall generator is built with a Richardson type framework,
using a first-order Markov chain model (Richardson, 1981). A flow
diagram of the computational processes of rainfall generator was shown
in Fig. 2. The basic concept of the first-order Markov chain method is
that the present state of the system only depends on the previous state,
which translated into the rainfall generation process means that the wet
or dry state of the current day depends only on the state of the previous
day. Using the Markov approach, a wet day is designated if at least one
rain gage in the watershed receives rainfall on that day. Once a wet day
is generated for the watershed, the model then generates the storm

Fig. 1. Rain gage network of USDA-Agricultural Research Service Walnut Gulch Experimental Watershed, Tombstone, Arizona.
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location and coverage, which determines how much simulated rainfall
each particular gage receives. In order to generate a sequence of wet
and dry days, three transition probabilities need to be calculated. P(W)
is the probability of a wet day, P(W|W) is the probability of a wet day
following a wet day, and P(W|D) is the probability of a wet day fol-
lowing a dry day. Previous research in Walnut Gulch showed that the
transition probabilities for biweekly periods have significant differences
from each other (Hsieh, 2002), so all transition probabilities were cal-
culated on a biweekly basis. Modeling of the wet and dry sequence in
the rainfall generator is done by first initializing a random number, and
then using P(W) to decide the state of first day. After the state of the
previous day was decided, then the transition probabilities P(W|W) and
P(W|D) were used to calculate the state of the next day in each bi-
weekly period for the entire simulation sequence (Fig. 2).

When a wet day is generated, the type of rainfall also needs to be
decided for that day. The consensus of most studies on Walnut Gulch is
to separate each year into summer months (July-September) and non-
summer months (Goodrich et al., 2008a; Nearing et al., 2015; Nichols
et al., 2002; Osborn et al., 1979) in terms of differentiating rainfall
types. The dominant type for summer months is convective rainfall,
while the dominant type for non-summer months is frontal rainfall. The
third type, tropical depression rainfall, occurs primarily in late summer
and fall, from September through November (Gochis et al., 2006).
Probabilities for these three types of rainfall were calculated for each
biweekly period using the daily rainfall. Periods with only one type of

rainfall occurrence is straightforward, i.e. the probability of a rainfall to
be a frontal type in December and January through June is 1. Similarly,
the probability for convective rainfall in July through August is also 1.
The complicated period is from September through November, where
the probability for tropical depression storms needs to be considered.
To do this, the histogram of all maximum depths of the storms in
September through November were plotted, and then an exponential
distribution was fitted to that histogram. The storms with large max-
imum depth on the histogram tails, which could not be fitted well by
the exponential curve, were identified as tropical depression storms.
Thus, their probabilities were calculated using the number of these
storms divided by the total number of storms. All biweekly periods in
September through November share the same probability of tropical
depression rainfall, and the remainder of the probability for convective
and frontal storms in these three months are obtained by subtracting
those from 1. Thus, each day of rainfall as determined by the transition
probabilities were categorized as one of the three rainfall types.

2.4. Rainfall amount and distribution

2.4.1. Convective storms
Convective storms usually show with an approximately elliptical

shape in space, as determined either from interpolated daily rainfall
maps or radar images (Hsieh, 2002; Karklinsky and Morin, 2006; Peleg
and Morin, 2012). Hsieh (2002) analyzed convective storms in Walnut

Fig. 2. Flow diagram of the computational processes in the rainfall generator.
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Gulch and proposed a conceptual model to characterize them (Fig. 3).
This current study followed a similar conceptual model and determined
several parameters using rainfall data from July through September
collected in 1967 through 2016.

The previous study of Hsieh (2002) showed that the storm centers
are distributed randomly in the watershed. Sometimes a storm falls only
partly within the watershed boundary, which means the generated
storm center can also be outside the boundary. To address this, the
generator uses a slightly larger area of 26.5 km by 12.5 km, divided it
into 33,125 cells, with each cell representing a 100 m by 100 m area
and assigned an index from 1 through 33125. The equation to obtain a
storm center location Z is:

=z Z
33125 (1)

where Z is the center index ranging from 1 through 33125, and z is the
standard uniform deviate ranging from 0 to 1.

Once the storm center is located, a storm center depth is generated
from a lognormal distribution and assigned to this storm. Several dis-
tributions were tested for the convective storm maximum depth, and
the lognormal fit best for the data. It is assumed that the depth at the
storm center is the maximum and decays to zero on the storm edge. A
modified linear spread function was applied in the generator (Fig. 4),
which maintains constant intensity amount around the center, and then
follows a linear decay function to the edge.

=
×

× <depth
dep r c D

dep r D c c D r D
max 0

max (1 / )/(1 ) (2)

where depth is the rainfall depth at a certain point inside the storm
extent, max dep is the maximum depth at storm center, D is the distance
from the center to the edge passing through at a certain point, r is the
distance from the center to that point, c is a constant between 0 and 1.
The calibration of c was made by matching the simulated total summer
rainfall amount to the observed rainfall.

The storm area is related to the maximum depth of the storm. After
logarithmic transformation, a linear regression was built between the
area and the maximum depth:

= + +area a a depln( ) ln(max )0 1 (3)

where the units for storm area is km2, and the units for maximum depth
is mm, a0 and a1 are the coefficients of the linear regression equation, ε
is a random error term.

An elliptical shaped storm has two axes, the major axis a and the
minor axis b. The ratio c between them is defined as c= a/b. The value
of c follows a normal distribution. Distribution parameters were ac-
quired from Hsieh (2002). The simulated ratio was bounded between
one standard deviation around the mean. When both the area and the
ratio has been chosen for a storm, the length of major and minor axis
can be calculated from the area equation of an ellipse.

The last parameter for a convective storm is the orientation. It is
defined as the counter-clockwise angle starting from the east. The or-
ientation for a storm is between 0 and 180 degrees and follows a normal
distribution. Distribution parameters were acquired from Hsieh (2002).
The simulated orientation was bounded between one standard devia-
tion around the mean, and extreme values beyond the 0 to 180 degrees
range were discarded until a new value within the range was generated.

2.4.2. Frontal storms
The frontal storms in non-summer months have much less spatial

variation than do the convective storms. Osborn et al. (1979) analyzed
data from Walnut Gulch in non-monsoon months, suggesting that nine
gages are adequate to represent the variability of frontal storms.
Rainfall interpolation maps in non-monsoon months also showed this
pattern. Since frontal storms usually cover the whole Walnut Gulch, for
simplicity, it is assumed that every frontal storm covers the entire
watershed in the generation process. The total volume of water of each
frontal storm is an important factor for quantifying annual water bal-
ance, but from a hydrologic standpoint, winter frontal storms do not
generate runoff in the channels at Walnut Gulch (Goodrich et al.,
2008a,b; Nearing et al., 2015).

The 88 rain gages are nearly uniformly distributed in the watershed,
which means the area represented by each gage is approximately the
same. The total volume of water that a storm delivers can be calculated
by the following equation:

= × ×Vol Dep unit area Navg (4)

where Vol is the total volume of each frontal storm, Depavg is the average
depth of all gages receiving rainfall, unit area is the area of one gage
represented, N is the number of gages receiving rainfall. Notice that the
unit area is not a constant value throughout all the years, because with
the deletion or addition of gages over time the number of gages in the
full network changed during the recording period. Different unit area
values needed to be calculated for different years. Data from 1967
through 1980, 1992 through 1998, and 2000 through 2016 were used
to fit a distribution for the total volume of water per storm for each
biweekly period. The extremely large values on the tails during
September through November fit poorly with the overall distribution
curve (Fig. S2), which indicates that they follow a different underlying

Fig. 3. Conceptual model of convective storms.

Fig. 4. Rainfall depth spread function of convective storms.
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mechanism. Those storms were considered as tropical depression
storms and were excluded from the dataset when building the dis-
tribution for frontal storms. The model simulation will randomly pick a
storm volume from the distribution curve of each biweekly period, first
spread it evenly in the whole watershed with each grid having the
average depth calculated based on the volume, and then added some
randomness for each grid. The random difference added to each grid is
based on the standard deviations of the observed rainfall fields, and
each standard deviation is corresponded to a certain average storm
depth. In order to provide a reasonable variation of the generated
rainfall fields, the added randomness is allowed to fluctuate between
negative to positive two standard deviations.

2.4.3. Tropical depression storms
The algorithm to generate tropical depression storms is similar to

that of frontal storms. The difference is that these storms are much less
frequent and the volume of water dropped by this type is much larger
than by frontal storms (Gochis et al., 2006; Osborn, 1982). In the pre-
vious steps, the extreme values of storm volumes in September through
November were excluded and all these values were fit to a separate
distribution, which was used for the tropical depression storms. Unlike
the frontal storms, numbers of identified tropical depression storms
were limited, so only one distribution was fit for the entire September
through November period. The model simulation will randomly pick a
storm volume from the distribution, first spread it evenly in the whole
watershed and then add some randomness to each grid. The random
difference added to each grid is based on the standard deviations of the
observed rainfall fields, and each standard deviation is corresponded to
a certain average storm depth. In order to provide a reasonable varia-
tion of the generated rainfall fields, the added randomness is allowed to
fluctuate between negative to positive two standard deviations.

2.5. Multiple events in a day

The results in the Hsieh (2002) model underestimated the total
summer rainfall of each gage, partly because the model only simulated
one storm per day. Studies from radar analysis have shown that con-
vective rainfall generally consists of several rain cells in one day (Morin
et al., 2004; Peleg and Morin, 2014, 2012). Thus, the ability to simulate
multiple events per day were enabled in this rainfall generator. Both
convective storms and frontal storms can have multiple events per day,
whereas the tropical depression storm remained as single event per day
because of their sizes and durations. Based on the storm identification
process in previous section, probabilities for different numbers of
storms occurring in a single day may be calculated. For example, the
probability of two events per day is made by counting the number of
days with two storms and then dividing it by the number of total rainy
days in a biweekly period. Convective rainfall would allow up to five
storms per day, while frontal rainfall would allow up to three storms
per day in this rainfall generator. Calibration of multiple events prob-
abilities is based on controlling the total number of storms over the
fifty-year period. For instance, if the total number of storms is over-
estimated, then the probability of more than one event was adjusted
lower by multiplying a coefficient between 0 and 1. Consequently,
probabilities for one event will be adjusted higher to maintain that the
sum of all probabilities adding to one.

2.6. Statistics

Statistical analyses were performed using MATLAB. The regression
equation between convective storm area and maximum depth was
based on 4152 convective storms identified in 50 years, with maximum
depth ranging from 0.25 mm to 95.12 mm and storm area ranging from

1.59 km2 to 152.94 km2. Statistical distribution types were determined
for convective storm maximum depths and frontal storm and tropical
depression storm volumes by comparing the empirical probability dis-
tributions to several theoretical distribution functions, such as log-
normal, gamma, and exponential. The Kolmogorov–Smirnov test (K-S
test) was used to test the similarity of the empirical distribution to the
theoretical ones using a significance level of α= 0.05. If more than one
theoretical distribution passed the K-S test, then the one with least
number of parameters was selected in further modelling processing.
After the selection of distribution type, distribution parameters were fit
for each type of rainfall as described previously.

2.7. Model evaluation

The rainfall generator was run for 30 sets of 50-year simulation (in
total 1500 years) to obtain a sequence of simulated daily rainfall, and
then compared with the observed 50 years historical rainfall data.
Model performance was evaluated in two aspects: individual storm
statistics and seasonally aggregated rainfall statistics. Previous research
(Goodrich et al., 2008a; Nearing et al., 2015; Nichols et al., 2002) di-
vided the year into summer months (July–September) and non-summer
months (October–December, January–June), which is adopted in this
study as well. The convective storm type was evaluated to determine
whether the proposed conceptual model was able to capture the major
storm characteristics. Seasonally aggregated rainfall amounts were
evaluated based on the simulation results of six gages (Gage ID 13, 34,
44, 46, 62, 80). These gages were relatively evenly distributed inside
the watershed and were selected as a sample to calculate the seasonal
rainfall.

Statistics of both simulated individual storms and aggregated rain-
fall, including the mean, standard deviation, maximum, minimum,
range and skewness, were computed and compared with the 50-year
observed data. In addition, simulated and observed cumulative dis-
tribution functions (CDFs) were created for both individual storms and
aggregated rainfall. K-S tests were performed between simulated and
observed CDFs to determine whether they belonged to the same sta-
tistical distribution.

Time series properties were evaluated through dry and wet spell
lengths of simulated and observed rainfall data. The cumulative dis-
tribution function curves of both dry and wet spells were created for
summer, non-summer, and annual periods. Seasonal and annual median
lengths of dry and wet spells were also calculated for comparison. K-S
tests were performed between simulated and observed CDFs to de-
termine whether they belonged to the same statistical distributions.

3. Results and discussion

3.1. Rainfall characterization

The transition probabilities for rainfall occurrence somewhere on
the watershed for the 24 half-month periods are shown in Table 1. The
probability of wet P(W) clearly showed that rainfall frequency reaches
its peak in summer, exceeding 0.5, from the first half of July to the first
half of September. The second wettest period is in winter from De-
cember through February, where P(W) ranges from 0.2 to 0.3. P(W|W)
is always greater than P(W|D), which means that wet days tend to be
clustered together.

Axis ratio and orientation statistics were acquired from Hsieh
(2002). Those parameters were measured directly from interpolated
rainfall surfaces and shown in Table 2. The mean value of axis ratio was
1.54, which is slightly greater than that found in previous work on
Walnut Gulch, which showed a major to minor axis ratio of between 1.0
and 1.5 (Fogel and Duckstein, 1969). The mean value of orientation
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found in Hsieh (2002) was 91.40, which points generally north as de-
fined in the previous section. The area statistics acquired in this study
showed a mean of 58.01 km2, which is approximately one-third of the
watershed area. The regression equation of area and maximum depth
(see Eq. (3)) was determined as:

= + + = =area dep R nln( ) 2.1784 0.6851 ln(max ) ( 0.57, 4152)2

(5)

Hsieh (2002), using data also from Walnut Gulch, developed a si-
milar regression equation (Eq. (6)) between area and maximum depth
from 48 interpolated storm surfaces, with the maximum depth ranging
from 4.83 mm to 47.75 mm, and storm areas ranging from 3.6 km2 to
181.26 km2.

= + + = =area dep R nln( ) 1.1569 0.93ln(max ) ( 0.46, 48)2 (6)

The number of storms used in this study was much greater than used
by Hsieh (2002). The slope of Eq. (5) is less than Eq. (6), because the 48
storm samples Hsieh chose were mostly larger storms with clear ellip-
tical shapes in space, which may be biased in terms of area

representation.
The decay function to distribute rainfall from the convective storm

center to the edge was determined as (see Fig. 4):

= <depth
dep r D

r D D r D
max 0 0.59

maxdep(1 / )/0.41 0.59 (7)

Previous work on Walnut Gulch has used either an exponential type
decay function (Fogel and Duckstein, 1969) or simple linear decay
function (Hsieh, 2002) to distribute the rainfall from the storm center to
the edge. However, in this study, we found that these two methods both
underestimate the rainfall total. Observed from radar images and in-
terpolated rain gage isohyets, the convective rain cell tends to have a
flat distribution around the center. The rationale behind it is that as the
storm moves in space it creates a region with relatively uniform max-
imum depth in the storm center (Fogel and Duckstein, 1969).

Other model parameters, including the probabilities for different
types of rainfall, probabilities for multiple events occurring in a day,
and the distribution parameters for rainfall amount are shown in
Table 1. The distribution for convective storm maximum depth was
determined to be lognormal with two parameters, mean (µ) and var-
iance ( ), the fitting plots were shown in supplemental material Fig. S3.
Whereas, the best-fit distribution for frontal and tropical depression
storms was determined to be exponential, with only one parameter µ,
and fitting plots were shown in supplemental material Fig. S4. Notice
that the units for convective storms and the other two types are dif-
ferent in Table 1, because one is for depth and the other two are for
volume.

Table 1
Transition probabilities, probabilities for three types of rainfall, and the probabilities for multiple events in all 24 half month periods.

Half month 1 2 3 4 5 6 7 8 9 10 11 12

Transition probabilities P(W) 0.2053 0.2225 0.2547 0.1914 0.1880 0.1338 0.1147 0.0960 0.0960 0.1175 0.1240 0.2640
P(W|W) 0.4740 0.5000 0.5602 0.4776 0.4752 0.3738 0.4186 0.4167 0.3750 0.5106 0.4624 0.6111
P(W|D) 0.1359 0.1431 0.1503 0.1237 0.1215 0.0952 0.0753 0.0619 0.0664 0.0652 0.0761 0.1377

Probabilities for types of rainfall Convective 0 0 0 0 0 0 0 0 0 0 0 0
Frontal 1 1 1 1 1 1 1 1 1 1 1 1
Tropical 0 0 0 0 0 0 0 0 0 0 0 0

Probabilities for multiple events 1 0.7309 0.7155 0.6589 0.7629 0.6751 0.7312 0.6690 0.8808 0.8217 0.7066 0.7868 0.8031
2 0.1651 0.1626 0.2321 0.1626 0.2188 0.1680 0.2242 0.1022 0.1426 0.1726 0.1745 0.1663
3 0.1040 0.1219 0.1089 0.0745 0.1061 0.1008 0.1068 0.0170 0.0357 0.1208 0.0388 0.0306
4
5

Parameter of distributions* μ (mm or 105 m3) 2.6923 2.8794 2.1721 1.8628 2.6981 2.0318 1.5667 1.6052 1.4837 1.6541 2.3326 2.1434
σ (mm)

Half month 13 14 15 16 17 18 19 20 21 22 23 24

Transition probabilities P(W) 0.6213 0.7738 0.7547 0.6438 0.5320 0.2733 0.2160 0.1950 0.1440 0.1613 0.2173 0.2288
P(W|W) 0.7854 0.8336 0.8269 0.7592 0.7118 0.5561 0.5185 0.4615 0.4444 0.3884 0.5215 0.5191
P(W|D) 0.3521 0.5635 0.5326 0.4316 0.3276 0.1651 0.1327 0.1304 0.0935 0.1176 0.1329 0.1410

Probabilities for types of rainfall Convective 1 1 1 1 0.9876 0.9876 0 0 0 0 0 0
Frontal 0 0 0 0 0 0 0.9876 0.9876 0.9876 0.9876 1 1
Tropical 0 0 0 0 0.0124 0.0124 0.0124 0.0124 0.0124 0.0124 0 0

Probabilities for multiple events 1 0.6449 0.6499 0.6450 0.6842 0.7133 0.6966 0.7409 0.7515 0.7496 0.7596 0.7801 0.6929
2 0.2187 0.2227 0.2171 0.2178 0.1633 0.1678 0.1766 0.1792 0.2019 0.1492 0.1367 0.1906
3 0.0961 0.0911 0.0953 0.0713 0.0867 0.0807 0.0824 0.0694 0.0485 0.0912 0.0832 0.1165
4 0.0362 0.0300 0.0310 0.0255 0.0250 0.0323
5 0.0042 0.0062 0.0115 0.0013 0.0117 0.0226

Parameter of distributions* μ (mm or 105 m3) 1.5314 1.7461 1.6551 1.6105 1.6272 1.3189 2.4079 2.4877 2.5405 2.0375 3.2548 2.3647
σ (mm) 1.4235 1.4680 1.4851 1.4827 1.4576 1.5344

* (1) July–September (13–18): lognormal distribution for convective rainfall maximum depth, unit: mm. (2) Other months (1–12, 19–24): exponential distribution for
frontal rainfall volume, unit: 105 m3. (3) September–November (17–22): μ of exponential distribution for tropical depression rainfall is 4.2643*106 m3.

Table 2
Characteristics of convective storm area, axis ratio, and orientation.

Mean Std. dev. Skewness Max Min

Area (km2) 58.01 50.50 0.56 152.94 1.59
Axis ratio (a/b)* 1.54 0.37 0.96 2.50 1.08
Orientation (degree)* 91.40 38.27 0.06 170.00 0.00

*From Hsieh (2002).
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Table 3
Characteristics of convective storm maximum depths (mm).

Observed Simulated

July 1–15 July 16–31 Aug 1–15 Aug 16–31 Sept 1–15 Sept 16–30 July 1–15 July 16–31 Aug 1–15 Aug 16–31 Sept 1–15 Sept 16–30

Mean 10.32 12.85 12.05 11.52 11.38 9.45 10.26 13.23 12.73 11.73 11.93 9.46
Std. dev. 12.62 14.78 14.30 13.58 13.41 12.99 14.86 20.08 19.36 17.53 17.85 14.94
Max 85.60 83.31 91.19 81.03 87.63 95.12 104.28 143.36 136.68 129.45 125.26 108.26
Min 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
Range 85.34 83.06 90.93 80.77 87.38 94.87 104.03 143.11 136.43 129.20 125.01 108.01
Skewness 2.25 1.79 1.91 1.86 2.03 2.85 2.97 3.07 3.05 3.01 3.05 3.25

Fig. 5. CDFs of observed and simulated summer convective storm maximum depths.
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3.2. Model evaluation

The statistics of observed and simulated convective storm maximum
depth from July through September are presented in Table 3. The mean
value simulated in all six half months with convective storms had less
than 6% difference. The fact that the simulated storm depths had a
broader range of maximum depths is expected since the model was run
for 30 sets of 50-year time range (in total 1500 years) and should in-
clude extreme values that were not captured in the historical data. The
shape of simulated and observed CDF curves for all six periods were
similar (Fig. 5). The K-S test showed that there were no significant
(α= 0.05) differences between the observed and simulated CDFs in all
half month periods.

The average summer rainfall total of the selected six gages was
192.9 mm, whereas the simulated summer rainfall total was 190.4 mm,
with 1.3% difference (Table 4). The simulated range of summer rainfall
total was almost twice that of the observed values, with lesser minimum
and greater maximum values. Consequently, the simulated standard
deviation was approximately 100 mm, which was greater than the ob-
served values which were approximately 60 mm. K-S test results
showed that there was no significant difference between the two curves
in summer (Fig. 6a), under α= 0.05 significance level. The simulated
data variability was greater than the historical data, could have resulted
from more extreme values being simulated in the long synthetic time
series. This is consistent with the individual convective storms eva-
luation, where some extreme values exceeding the historical records
were simulated.

As for non-summer rainfall, observed mean of six gages was
122.6 mm, and the simulated mean was 122.2 mm (Table 5). The range
of winter rainfall had 15.6% difference between the observed and si-
mulated, which is mostly caused by the overestimation of the minimum
values. The simulated maximum winter rainfall was slightly less than
the observed. Thus, the standard deviation was also underestimated by
the model compared to historical records. The reason for this is related
to the method used to distribute the generated the rainfall volume over

the watershed. Since winter frontal storms have less variability than
summer convective rainfall, for simplicity in this rainfall generator,
every storm volume was distributed uniformly to all gages, only adding
a small random variance. As a result, the variation in both space and
time has been lost to some degree. The two CDF curves of non-summer
rainfall total amounts failed the K-S test (Fig. 6b), which means that
there was some difference between the simulated and observed data.
However, the winter storms in Walnut Gulch rarely cause runoff and
erosion due to their low intensity (Goodrich et al., 2008a,b; Nearing
et al., 2015), so it was considered acceptable to miss some variation in
the generated storm depth totals as long as the mean total amount is
similar and annual water balance is maintained.

Simulated and observed median lengths of dry and wet spell were
shown in Table 6, which represents the central tendency of spell length
distribution. The median of simulated dry spell length was slightly
shorter than observed throughout the year, whereas the median of si-
mulated wet spell length was longer than observed for summer, but the
same for non-summer months. The overestimated wet spell length also
caused an overestimation for annual wet spell length. The cumulative
distribution function curves for seasonal and annual were shown in
Fig. 7. Five of the six pairs of observed and simulated curves passed the
K-S test under α= 0.05 significance level. The significant difference for
the summer wet spell curves indicated that the rainfall generator tends
to simulate slightly longer wet periods during summer season.

4. Conclusion

This study presented modeling concepts and processes of a daily,
spatial, stochastic rainfall generator in a semi-arid watershed in
southeastern Arizona. Unlike most daily rainfall generators which give
only the daily rainfall amount, this model is capable of simulating in-
dividual storms within a day. Simulation of four elements, including
daily rainfall occurrence, the number of storms per day, the maximum
depth or total volume of a storm, and spatial distribution of the rainfall
was illustrated using 50-years of rain gage observations in Walnut

Table 4
Observed and simulated rainfall totals for summer months of six gages (mm).

Gage ID Observed Simulated

13 34 44 46 62 80 13 34 44 46 62 80

Mean 186.7 192.2 194.6 199.5 194.5 189.7 196.3 187.1 185.8 191.8 186.5 195.0
Std. dev. 60.4 63.7 58.6 61.4 52.2 66.8 100.4 99.7 101.6 102.6 96.3 100.7
Max 336.6 345.7 345.9 410.5 327.3 380.0 508.3 561.7 623.5 617.3 534.2 511.9
Min 89.8 70.2 81.0 77.7 88.8 75.4 3.6 1.5 7.2 8.2 10.4 9.1
Range 246.8 275.5 264.9 332.7 238.5 304.5 504.8 560.2 616.3 609.1 523.9 502.8
Skewness 0.5 0.4 0.4 0.5 −0.2 0.6 0.5 0.6 1.0 0.9 0.6 0.6

(a) (b) 

Fig. 6. CDFs of observed and simulated rainfall totals for (a) summer and (b) non-summer periods.
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Gulch Experimental Watershed, Arizona. The separation process of
generating three types of rainfall (convective, frontal and tropical de-
pression) is appropriate in this region, since they all have quite different
physical features. The concept of elliptical shape of convective storms
works well in this study and has been tested in other research. The
simulated individual convective storm statistics were similar to the
observed. The simulated seasonal rainfall performed differently for
summer and non-summer periods, with a slight overestimation of var-
iation of annual summer rainfall and an underestimation of variation in

non-summer period, but the long-term mean values of both summer and
non-summer periods are satisfactory.

There are limitations for this generator. It is a well calibrated model
based on the dense rain gage network of Walnut Gulch Experimental
Watershed, and expanding it to larger area application will require
additional analysis linking the point statistics with area statistics.
Possible solutions for obtaining larger area statistics, such as convective
storm area, may need incorporation of radar rainfall images. This
rainfall generator is initially targeted at semi-arid watersheds where

Table 5
Observed and simulated rainfall totals for non-summer months of six gages (mm).

Gage ID Observed Simulated

13 34 44 46 62 80 13 34 44 46 62 80

Mean 122.7 120.7 121.6 132.8 116.9 120.9 122.6 122.0 122.0 122.7 121.6 122.1
Std. dev. 59.7 65.8 61.1 65.1 64.3 59.8 34.2 34.1 33.7 34.7 34.0 34.3
Max 266.4 308.9 295.0 318.8 300.4 282.8 265.0 305.8 282.0 280.8 264.7 256.8
Min 19.8 18.0 13.2 16.3 10.7 12.2 42.3 41.9 42.3 33.2 44.7 30.3
Range 246.6 290.8 281.8 302.5 289.7 270.6 222.7 263.9 239.8 247.6 219.9 226.5
Skewness 0.6 0.9 0.9 0.8 1.2 0.7 0.5 0.6 0.4 0.5 0.6 0.4

Table 6
Observed and simulated median length of dry and wet spells (day).

Annual Summer Non-summer Annual Summer Non-summer

Dry_observed 4.2 2.2 7.2 Wet_observed 1.0 1.0 1.0
Dry_simulated 4.0 2.0 6.0 Wet_simulated 2.0 3.0 1.0

Fig. 7. CDFs of observed and simulated dry and wet spell length for annual, summer and non-summer periods, (1) first column: dry spell, (2) second column: wet
spell.
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convective rainfall dominated, thus it may not be immediately applic-
able in regions with significantly different rainfall types.

Possible uses of the rainfall generator include application into hy-
drological models, erosion models as rainfall input, where spatial
rainfall information could have an impact on runoff response or sedi-
ment yield. It may also be applied in climate change studies by ma-
nipulating model parameters to account for future trends and testing
the outcomes. Developing the rainfall generator into a high-resolution
temporal model is a future research need, which will require further
studies of storm movement in space and time.
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