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ARTICLE INFO ABSTRACT

Drylands account for approximately 40% of the global land surface and play a dominant role in the trend and
variability of terrestrial carbon uptake and storage. Gross ecosystem photosynthesis — termed gross primary
productivity (GPP) — is a critical driver of terrestrial carbon uptake and remains challenging to be observed
directly. Currently, vegetation indices that largely capture changes in greenness are the most commonly used
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Ehegoctam datasets in satellite-based GPP modeling. However, there remains significant uncertainty in the spatiotemporal
andsal . . . . . .
MODIS relationship between greenness indices and GPP, especially for relatively heterogeneous dryland ecosystems. In

this paper, we compared vegetation greenness indices from PhenoCam and satellite (Landsat and MODIS) ob-
servations against GPP estimates from the eddy covariance technique, across three representative ecosystem
types of the southwestern United States. We systematically evaluated the changes in the relationship between
vegetation greenness indices and GPP: i) across spatial scales of canopy-level, 30-meter, and 500-meter re-
solution; and ii) across temporal scale of daily, 8-day, 16-day, and monthly resolution. We found that greenness-
GPP relationships were independent of spatial scales as long as land cover type and composition remained
relatively constant. We also found that the greenness-GPP relationships became stronger as the time interval
increased, with the strongest relationships observed at the monthly resolution. We posit that the greenness-GPP
relationship breaks down at short timescales because greenness changes more slowly than plant physiological
function, which responds rapidly to changes in key biophysical drivers. These findings provide insights into the
potential for and limitations of modeling GPP using remotely sensed greenness indices across dryland ecosystem
types.

1. Introduction

Terrestrial ecosystem carbon uptake dynamics respond to changes
in climate and play a critical role in either ameliorating or accelerating
the atmospheric CO, growth rate (Jung et al., 2017). Drylands — which
account for approximately 40% of the global land surface (Reynolds
et al., 2007) — have recently been highlighted as dominant in driving
both the trend and interannual variability of the net carbon flux in the
global terrestrial ecosystems over recent years (Ahlstrom et al., 2015).
Yet, carbon cycling in drylands is less well understood due to a his-
torical lack of long-term carbon exchange measurements. This poor
understanding can also be attributed to challenges in modeling carbon
exchange in drylands such as the highly variable hydrometeorological
conditions, and the mixture of vegetation with different forms (e.g.,
herbaceous vs. woody) and photosynthetic pathways (e.g., C3, C4 and
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crassulacean acid metabolism) (Biederman et al., 2017; Smith et al.,
2018). Southwestern North America hosts a range of dryland ecosys-
tems such as shrublands, grasslands, and woody plant-encroached
grasslands. Woody encroachment has been expected to substantially
affect the structure and function of dryland ecosystems in the south-
western United States (Archer et al., 2001; Pacala et al., 2001; Scott
et al., 2006a). Globally, shrubland ecosystems alone account for about
35% of the total dryland area (Biederman et al., 2018; Broxton et al.,
2014) while the storage of organic carbon in grassland soils is estimated
to account for up to 30% of the global soil organic carbon (Derner and
Schuman, 2007; Hewins et al., 2018).

Gross photosynthesis — termed gross primary productivity (GPP) — is
the major factor controlling terrestrial ecosystem carbon uptake and
since it is challenging to directly observe GPP, it must be estimated
(Frankenberg et al., 2011; Verma et al., 2014). Remote sensing remains
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the most common way to estimate GPP in a frequent, repeatable and
consistent manner from regional to global scales (Frankenberg et al.,
2011; Running et al., 2004; Smith et al., 2016). Many current remote
sensing models typically quantify GPP using a greenness-based Light
Use Efficiency (LUE) approach. For instance, the operational GPP pro-
duct from the Moderate Resolution Imaging Spectroradiometer
(MODIS) is generated by incorporating photosynthetically active ra-
diation (PAR), satellite-derived vegetation greenness indices (VI), and
model-derived LUE. In this approach, PAR quantifies the incoming solar
energy, VI are used as a proxy of the fraction of PAR absorbed by the
vegetation (FAPAR), and LUE represents the conversion efficiency of
the absorbed PAR to biomass production (Monteith, 1972; Running
et al., 2004; Smith et al., 2016; Zhao et al., 2005). Some remote sensing
studies also try to empirically model GPP by relating VI such as the
Normalized Difference Vegetation Index (NDVI) and/or the Enhanced
Vegetation Index (EVI) to GPP measured using the eddy covariance
(EC) technique (Barnes et al., 2017; Rahman et al., 2005; Sims et al.,
2006b; Wylie et al., 2003). Yet, a growing body of research has high-
lighted multiple limitations of these GPP modeling approaches when
considering dryland ecosystem types (Verma et al., 2014; Biederman
et al., 2017). For example, the MODIS GPP product was found to only
explain 20% to 30% of the interannual variation in EC-derived GPP
across a diversity of southwestern North American ecosystem types
(Biederman et al., 2017). Underestimation of interannual variability by
the MODIS GPP product can likely be attributed to multiple factors. For
instance, dryland ecosystems are often dominated by drought-tolerant
deciduous or evergreen species, for which VI and GPP may decouple
during periods of water stress (Biederman et al., 2017; Smith et al.,
2018). Further, these models are commonly driven by gridded me-
teorological products that may fail to capture the high spatiotemporal
variability in hydrometeorological conditions across this region due to
gaps in surface meteorology observatory networks across drylands
(Biederman et al., 2017). Finally, although satellite, airborne and near-
surface remote sensing platforms have made VI products available at a
wide range of spatial (e.g., from canopy to a few kilometers) and
temporal resolutions (e.g., from diurnal to weekly), most previous
studies rely on monthly remote sensing products with relatively coarse
spatial resolutions (e.g., 1km) (Biederman et al., 2017; Smith et al.,
2018).

There remains a critical need to better understand the VI-GPP re-
lationship at different spatiotemporal scales across dryland ecosystems
in particular. In this study, we systematically evaluated VI-GPP re-
lationships across spatiotemporal scales for three representative dry-
land ecosystems in southern Arizona characterized as a shrubland, a
grassland, and a woody-encroached grassland, or savanna, site. We then
varied the spatial scale from canopy patches (PhenoCam) to 30m
(Landsat) to 500m (MODIS), and we varied the temporal scale from
daily to 8-day to 16-day to monthly. Our objective was to provide in-
sights into how best to reduce uncertainty in VI-based estimates of GPP
for these key dryland ecosystem types.

2. Study sites

This study focused on three dryland Ameriflux EC sites located in
representative semiarid ecosystems in southern Arizona (Scott et al.,
2015) (Fig. 1). Specifically, the Santa Rita Mesquite site (SRM: 31.82°N,
110.87°W) located in the Santa Rita Experimental Range, is a semiarid
savanna site resulting from velvet mesquite (Prosopis velutina Woot.)
encroachment into perennial C4 grasslands (i.e., Digitaria californica
Benth. and Eragrostis lehmanniana Nees) (Scott et al., 2009). The other
two study sites are the Lucky Hills Shrubland (WHS: 31.74°N,
110.05°W) and Kendall Grassland (WKG: 31.74°N, 109.94°W) located
on the Walnut Gulch Experimental Watershed operated by the USDA
Agricultural Research Service (Scott et al., 2010). The WHS site is
dominated by Chihuahuan Desert shrub species with heights ranging
from 0.3 to 1.0 m (Scott et al., 2006b). The WKG site is mainly covered
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by Lehmann lovegrass (Eragrostis lehmanniana Nees) with a small frac-
tion of mesquite and shrub species (Scott et al., 2010).

The three study sites have very similar seasonal patterns of tem-
perature and precipitation (Fig. 2). At SRM for example, during
2004-2016, average monthly temperature varied from between 10 °C
and 15°C during the winter months (December-March) to between
25°C and 27 °C in summer (July—September). Based on precipitation
measured during 2004-2016, the mean annual rainfall was 352 mm,
approximately 63% of which occurred during the summer months as a
result of the North American monsoon. The winter months represent
another relatively wet period, the precipitation during which, however,
had higher inter-annual variation than that of summer precipitation.
Winter precipitation accounted for approximately 20% of total annual
rainfall on average. The spring months (April-June) were the driest
period in a year, the rainfall of which only accounted for about 10% of
the total annual rainfall. More details of the species composition and
the climate characteristics of the study sites can be found in (Scott et al.,
2015).

3. Data and methods
3.1. Eddy covariance measurements

Ecosystem CO, flux at the study sites was quantified using the eddy
covariance technique. Specifically, the wind velocity vector, sonic
temperature and CO, concentration were measured by three-dimen-
sional, sonic anemometers (CSAT-3; Campbell Scientific) and open-path
infrared gas analyzers (LI-7500, LI-COR) with a sampling frequency of
10 Hz. Daily GPP was calculated from these high frequency measure-
ments as described in (Scott et al., 2010, 2009). Since our sites are
affiliated with the Ameriflux network (http://ameriflux.lbl.gov/), the
instrument configuration and data processing techniques have been
further verified against the network's standards. Additional details of
the eddy covariance instrument configuration, and the procedures to
derive GPP can be found in (Scott et al., 2010, 2009).

3.2. PhenoCam data

PhenoCam imagery was available from 2013 to 2016 at WKG and
WHS sites while it was available between 2014 and 2016 at the SRM
site. Specifically, half-hourly images of the WKG and WHS sites were
captured using a NetCam SC camera with an infrared filter. The NetCam
SC camera is able to capture both RGB (filter on) and infrared (filter off)
images (Liu et al., 2017; Petach et al., 2014). We downloaded the RGB
and infrared images for the WKG and WHS sites from the PhenoCam
Network via: https://phenocam.sr.unh.edu/webcam/network/
download/ (Milliman et al., 2018). In contrast, PhenoCam imagery of
the SRM site consisted of hourly RGB-only images captured using a
Canon PowerShot D20 camera. Efforts are underway to get the SRM site
and the available historical data into the PhenoCam Network.

We used the functions implemented in the R package “phenopix”
(Filippa et al., 2016; Petach et al., 2014) to extract time series of NDVI
at WKG and WHS, and Green Chromatic Coordinate (GCC) time series
at SRM. Specifically, we first used the function DrawROI() to delineate
the Region-Of-Interest (ROI) for each site (Fig. 3). The considerations
for determining the particular ROIs in Fig. 3d-f along with the de-
scriptions of how these ROIs were used to evaluate the view angle ef-
fects in greenness indices derived from PhenoCam imagery are pro-
vided in Section 3.5.2. We then used the function ExractVIs() to
calculate GCC on a per-pixel basis by dividing the digital number from
the green channel by the sum of digital number from red, green and
blue channels (Toomey et al., 2015), which is the same method utilized
to calculate GCC in the standard PhenoCam dataset (Richardson et al.,
2018). NDVI was calculated using the function NDVI() in the “phe-
nopix” package. The details of integrating RGB and infrared images to
calculate NDVI on a per-pixel basis can be found in (Liu et al., 2017;
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Fig. 1. The location and land cover of the study sites in southern Arizona: (a) Locations of the study sites in southern Arizona overlaid on Landsat images from Google
Earth; (b-d) high-resolution imagery of the three study sites. Detailed information of the characteristics of the high-resolution imagery is presented in Supplemental
Table S1. The large and small white box represents the boundary of a 500-m MODIS and 30-m Landsat pixel, respectively. The white dots indicate the locations of

PhenoCam/eddy covariance towers.

Petach et al., 2014). Note that PhenoCam-derived NDVI can have ne-
gative values, which resulted from the fact that NDVI was calculated
using digital numbers from PhenoCam imagery instead of spectral re-
flectance (Liu et al., 2017; Petach et al., 2014). Since we are only in-
terested in the seasonal pattern of VI rather than its magnitude, we did
not apply the method proposed by (Petach et al., 2014) to scale Phe-
noCam NDVI to the same range of NDVI derived from satellite data
(details available in Section 3.3). We also point out that potential im-
pacts of changing image exposure on the extraction of greenness from
PhenoCam imagery were accounted for in the R package “Phenopix” by
normalizing the digital numbers of any given image against the image
exposure of the same image. NDVI and GCC calculated in this way have
been shown to have strong agreements with those derived from ground
spectral sensors (Petach et al., 2014) and MODIS (Filippa et al., 2018).
The main features and applications of the “phenopix” package are
documented in Filippa et al. (2016). The full descriptions of the func-
tions used in this study can be found in the “phenopix” package manual,
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which can be accessed via: https://cran.r-project.org/web/packages/
phenopix/phenopix.pdf. NDVI and GCC are hereafter referred to as VI.
The VI for a given ROI was calculated as the average VI from the en-
closed pixels. Daily VI for a given ROI was determined as the median of
the VI calculated using images captured during 8:00-17:00. In order to
minimize the day-to-day VI changes caused by the changes in illumi-
nation conditions, we further employed the commonly used local
polynomial regression fitting (Browning et al., 2017; Sonnentag et al.,
2012) to smooth the daily VI time series.

3.3. Satellite data

We downloaded 16-day, 30-m Landsat-8 Operational Land Imager
surface reflectance (SR), and the associated Quality Assurance (QA)
data from the Science Processing Architecture of USGS Earth Resources
Observation and Science Center: https://espa.cr.usgs.gov/. We also
downloaded daily, 500-m MODIS SR and QA (MCD43A4) (Schaaf and
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Fig. 2. The long-term average monthly temperature (left y-axis, dotted lines) and precipitation (right y-axis, bars) of the study sites during 2004-2016. More details
of the instrument setup for temperature and precipitation measurements at the three sites can be found in two relevant studies (Scott, 2010; Scott et al., 2009).

Wang, 2015) using the MODIS Collection 6 Global Subsetting Tool
provided by the Oak Ridge National Laboratory Distributed Active
Archive Center (DAAC, 2017). The Collection 6 MCD43A4 product is
generated daily based on BRDF parameters retrieved over a 16-day
period (Schaaf and Wang, 2015). For each site, we calculated the cor-
responding VI (i.e., NDVI at WKG and WHS, and GCC at SRM) for each
Landsat/MODIS pixel, the centroid of which fell in the 1 km-radius
tower footprint (i.e., approximately 3500 Landsat and 17 MODIS pixels,
respectively). We hereafter used “footprint scale” to denote the area
inside a 1 km-radius circle around the tower, an area that roughly en-
compasses the source region for the measured tower fluxes. MODIS/
Landsat GCC was calculated based on surface reflectance from red,
green and blue bands (Hufkens et al., 2012). For each 30-m Landsat
pixel, we further converted the 16-day VI time series to an 8-day time
series by interpolating the mid-point VI between two consecutive 16-
day VI. The mid-point VI was calculated as the average of the two 16-
day VI only when both of them had good quality (i.e., cloud-free and
without sensor saturation). In other words, the mid-point VI was not
calculated if either of the two neighboring 16-day VIs was not of good
quality.

3.4. Land cover classification

We conducted land cover classifications using both unsupervised
and supervised classification algorithms implemented in the ENVI
image processing software to understand how the land cover compo-
sition varied across spatial scales at each site. The target land cover
category was mesquite shrubs, grasses and bare soil for WKG and SRM,
while it became shrubs and bare soil at WHS. The land cover classifi-
cation within the delineated PhenoCam ROIs (i.e., (a)-(c) in Fig. 3)
were carried out using the ISODATA unsupervised classification algo-
rithm. Specifically, we first used the ISODATA classifier to determine 10
potential land cover classes for the PhenoCam ROI at each site. We then
manually grouped the 10 potential classes into the target land cover
categories at each site. Finally, we manually corrected any wrong
classifications by comparing the grouped land cover classes with the
original PhenoCam imagery. The land cover within the 1km-radius
tower footprint was determined by classifying high-resolution imagery
(i.e., (b)-(d) in Fig. 1) using the maximum likelihood supervised clas-
sification algorithm. Specifically, for WKG and SRM, we used the 1 m 4-
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band aerial imagery acquired by the USDA National Agriculture Ima-
gery Program (NAIP) on June 21st and July 2nd of 2015, respectively.
We downloaded the NAIP imagery by adding the following link:
https://gis.apfo.usda.gov/arcgis//rest/services to the Web Mapping
Services provided by the ESRI ArcGIS Desktop Application. For WHS,
since shrub and bare soil were not visually distinct from each other in
the NAIP imagery, we used a high-resolution image downloaded from
the historical imagery archive provided by Google Earth Pro (image
acquisition date: April 6th, 2013). A complete list of the characteristics
of the high-resolution imagery acquired for the study sites is presented
in Supplemental Table S1.

3.5. Quantifying the changes in VI-GPP relationship across spatial and
temporal scales

We quantified changes in VI-GPP relationship across spatial and
temporal scales using statistics retrieved from linear regression ana-
lyses, in which VI and GPP were used as the predictor and response
variables, respectively. For each regression, we retrieved the following
statistics: the coefficient-of-determination (R?), the total absolute re-
sidual (A), the Root-Mean-Square-Difference (RMSD) and the p value.
Specifically, A and RMSD were calculated using the following equa-
tions.

N
A =)’ |GPP, — GPP)|
i=1 @
i N —_
RMSD = \/zi=1 (GPR — GPR)’
N ®))

where, GPP; and GPP: refer to the measured and predicted GPP, re-
spectively. N is the total number of samples.

3.5.1. Characterizing changes in VI-GPP relationship across spatial scales

We compared the statistics from the regressions in which VI from
PhenoCam, Landsat and MODIS were used separately as the predictor
variable against the same response variable, which is the GPP derived
from eddy covariance measurements as described in Section 3.1. Spe-
cifically, PhenoCam VI were computed based on ROIs in Fig. 3a-c.
Satellite VI were extracted from the 30-m/500-m pixel in which the
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ROI - temporal analyses

Fig. 3. PhenoCam views with the delineated Region-of-Interest (ROI). (a)-(c): the single ROI used to extract VI time series in the spatial analyses; (d)-(f): ROI
delineated to extract VI time series from major land cover types in the temporal analyses. Black boxes in (d)-(f) represent ROIs delineated for bare soil. White and
yellow boxes in (d) and (e) indicate ROIs delineated for mesquite and grass, respectively. Orange boxes in (f) indicate ROIs delineated for shrub. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

eddy covariance tower is located. Note that we only used the VI from
the days on which PhenoCam observations were available, and both
Landsat and MODIS had good quality observations. Therefore, there
were equal numbers of samples in the three regressions at any given
site.

3.5.2. Characterizing changes VI-GPP relationship across temporal scales
We scaled VI from PhenoCam, Landsat and MODIS to the 1 km-ra-
dius tower footprint (Schmid, 2002; Sims et al., 2006b) so that varia-
tions in VI-GPP relationship with temporal scales are comparable across
sensors. Satellite VI at the tower footprint scale was calculated as the
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average VI from good quality pixels within the 1km-radius tower
footprint. We followed the procedures proposed by (Liu et al., 2017) to
upscale PhenoCam VI. Specifically, we first delineated separate ROIs
(i.e., Fig. 3d-f) targeting major land cover types described in Section
3.4. We determined the positions of the ROIs in Fig. 3d—f with the
following considerations. For any given land cover, ROIs should be
placed on this land cover at different positions to account for the
variability in greenness within PhenoCam's field-of-view. ROIs should
be placed at the positions without significant land cover change (e.g.,
grass dominated in one year and bare soil dominated in another). We
then generated daily VI time series for each ROI using the methods
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Fig. 4. The VI (left y-axis) and GPP (right y-axis) time series during 2013-2016 at the study sites. Purple, orange and blue dots represent VI from PhenoCam, Landsat
and MODIS, respectively, while GPP is shown as solid black lines. Note that GCC was calculated for the SRM site while NDVI was calculated at the WKG and WHS
sites. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

described in Section 3.2. We further generated an average daily VI time
series for each major land cover type based on the associated ROIs. This
is to capture the within-class variability in PhenoCam's field-of-view.
Note that we found substantial increases in the VI time series extracted
from the bare soil ROIs. These greenness increases occurred under two
types of conditions. First, the expansion of green leaf area in grass/
shrub patches during the monsoon season could result in the extension
of green leaves into adjacent bare soil ROIs. Second, some bare soil
ROIs can be free of grass/shrub in one year yet partially covered by
grass/shrub in another year. In order to remove the greenness increases,
we first delineated a single bare soil ROI that was least affected by these
two types of conditions for each site (black boxes in Fig. 3d-f). We also
identified the time periods during which this bare soil ROI was free of
grass/shrub. We then calculated a fixed VI for this bare soil ROI as the
mean VI during the time periods when it was free of grass/shrub. The
fixed soil VI calculated for WKG, WHS and SRM was —0.40, —0.51 and
0.33, respectively. Finally, the footprint scale PhenoCam VI was
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determined as the average VI of the major land cover types weighted by
their corresponding proportion in the 1km-radius tower footprint,
which was derived from the land cover classification using aerial ima-
gery described in Section 3.4. We then conducted a series of regression
analyses based on GPP and footprint scale VI at daily, 8-day, 16-day and
monthly intervals. Note that since daily Landsat data are unavailable,
the regression analyses at daily scale were omitted for Landsat. Daily
GPP derived from eddy covariance measurements were temporally
aggregated to a specific temporal scale by determining the mean value
during the corresponding aggregation period. The footprint scale VI
was temporally aggregated in the same manner. We hereafter referred
to these regression analyses using the mean VI and GPP as the original
temporal regression analyses.

We conducted two additional analyses to address the issues that
could confound the temporal scale analysis: the changes in the sample
size caused by temporal aggregation and the view angle effects on VI
extracted from different PhenoCam ROIs. Since temporal aggregation
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Fig. 5. Changes in VI-GPP relationship across spatial scales (i.e., PhenoCam: canopy, Landsat: 30-m, MODIS: 500-m) (column 1-3 from the left), and the land cover
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inherently reduced the number of samples in a time series, we utilized
additional statistical techniques to determine its impact on model
performance. Specifically, for each VI and GPP time series at a given
site (i.e., daily, 8-day and 16-day), we generated 100 unique time series
of the same length (equivalent to the length of monthly time series at
the same site) by randomly drawing from the original time series. We
then conducted a regression analysis using each of the simulated VI and
GPP time series. We then calculated the mean and standard deviation of
R? across the 100 regression analyses. This additional statistical tech-
nique was utilized to control for the potential impacts from changes in
sample size and thus ensure that we were testing in isolation the im-
pacts of temporal aggregation on the relationship between VI and GPP.
The idea was that if the variation in the mean R? generated using the
simulated time series from daily to 16-day is consistent with those
generated using the original time series, then the possible impacts from
changes in sample size can be eliminated.

Although both NDVI and GCC are normalized indices, results from
previous studies have shown the angular effects in normalized indices
such as NDVI (Gamon, 2015; Sims et al., 2006a; Tian et al., 2010).
Therefore, we used the WKG grassland as the test site to determine if
using VI extracted from ROIs with substantially different view angles
would affect the variations in VI-GPP relationship across temporal
scales. Specifically, we first selected two ROIs with substantially dif-
ferent view angles for both mesquite (ROI #1 and #7 in Fig. 3d) and
grass (ROI #1 and #8 in Fig. 3d). We calculated the correlation coef-
ficient between daily VI extracted from mesquite ROI #1 and #7 as well
as the correlation coefficient between daily VI extracted from grass ROI
#1 and #8. We generated four daily PhenoCam VI time series at the
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footprint scale based on the fixed soil VI at WKG (i.e., —0.4), and the
different combinations of mesquite and grass VI from the selected ROIs.
We conducted the regression analyses between GPP, and each of the
four footprint scale PhenoCam VI time series at daily, 8-day, 16-day and
monthly intervals. Finally, we examined if the changes in R* across
temporal scales derived from the PhenoCam VI generated based on a
given combination of selected mesquite and grass ROIs are consistent
with those derived from the footprint scale PhenoCam VI generated
using VI from all mesquite and grass ROIs in Fig. 3d. Note that although
the mesquite and grass ROIs we selected at the WKG site have different
view angles, they do not span the full range of the view angles in the
PhenoCam imagery (Fig. 3d). Therefore, our test is not thorough in
terms of evaluating the view angle effects in the absolute VI values
extracted from PhenoCam imagery.

4. Results
4.1. Changes in VI-GPP relationship across spatial scales

The VI and GPP time series during 2013-2016 are presented in
Fig. 4. The day-to-day variation in the time series of GPP was higher
than that in the VI time series. The consistency in temporal dynamics
between PhenoCam and satellite VI, and between VI and GPP was re-
latively high at the WHS shrubland site. At the WKG grassland and the
SRM savanna sites, the consistency in temporal dynamics between VI
from different sensors as well as between VI and GPP was higher during
summer than that in spring. At the SRM savanna site, for instance, GPP
had two peaks with the minor peak in spring and the major peak in
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summer during 2014-2016. Both PhenoCam and satellite VI were able
to capture the summer peak. During spring, however, while satellite VI
was generally coupled with changes in GPP, the temporal dynamics of
PhenoCam VI was only consistent with that of GPP during late March
and early April but then maintained a plateau despite the declining GPP
as spring soil moisture is exhausted by the dry and hot pre-monsoon
season (Barron-Gafford et al., 2017; Scott et al., 2008).

Results of the land cover classification within PhenoCam ROIs are
presented in Supplemental Fig. S1. The classified NAIP imagery is
shown in Supplemental Fig. S2 and the associated accuracy assessment
results are summarized in Supplemental Table S2. The overall classifi-
cation accuracy and the kappa coefficient were all above 95% and 0.90,
respectively, at the three sites. The land cover proportions at different
spatial scales are reported in the bar plots of Fig. 5. Grass was the
dominant land cover across spatial scales at the WKG grassland site. In
contrast, at the SRM savanna site, while mesquite dominated the Phe-
noCam ROI, grass was the dominant land cover within the Landsat/
MODIS pixel and tower footprint. At the WHS shrubland site, shrub was
the dominant land cover within the PhenoCam ROI and the tower
footprint. Bare soil dominated the Landsat pixel and it had a slightly
higher proportion than that of shrub within the MODIS pixel.

The regression statistics (i.e., R2 A and RMSD) are summarized in
Supplemental Table S3, and the VI-GPP scatter plots are presented in
Fig. 5. All the regressions shown in Fig. 5 were highly significant
(p < 0.01). The biggest change in regression statistics across spatial
scales was found at SRM. For instance, R? increased by 0.22 (36%)
when the spatial scale varied from PhenoCam to satellite at SRM while
the R? remained relatively consistent across spatial scales at WKG and
WHS. The greatest variations in A and RMSD across spatial scales were
also associated with SRM (Supplemental Table S3).

4.2. Changes in VI-GPP relationship across temporal scales

The time series of mean PhenoCam VI determined based on in-
dividual ROIs of major land cover types (i.e., Fig. 3d-f) are presented
along with tower GPP in Fig. 6. The PhenoCam VI time series for each
non-soil ROIs shown in Fig. 3d-f is presented in Supplemental Figs.
S3-S5. The consistency in temporal dynamics between VI from mes-
quite and grass, and between VI and GPP at the grassland site WKG and
the savanna site SRM varied between seasons and sites. Specifically, at
WKG, the first green-up of mesquite occurred in April followed by a
stronger one in July (Fig. 6a). The timings of mesquite green-up at SRM
were similar to that at WKG. Unlike WKG, however, the magnitude of
the spring green-up at SRM was similar to or even slight higher than
that of the summer green-up. In contrast, the green-up of grass at WKG
and SRM mainly occurred in July. At WKG and SRM sites, greenness
from mesquite and grass approached an annual minimum during winter
due to the leaf shedding of mesquite trees and the browning of grasses,
respectively. While the timing of annual minimum was similar between
mesquite and grass at WKG, a mesquite minimum occurred later than
the grass minimum at SRM. Therefore, at both WKG and SRM, mesquite
had a longer growing season than that of grass. At WKG, while grass VI
corresponded better with GPP than did mesquite VI during spring, both
the temporal dynamics of mesquite and grass VI had a relatively high
consistency with that of GPP during summer. In contrast, at SRM, the
temporal dynamics of mesquite VI was more consistent with that of GPP
in spring, and the temporal dynamics of grass VI was more consistent
with that of summer GPP. Shrub VI at the WHS shrubland site generally
corresponded well in GPP except during late summer when VI exhibited
relatively stable decreases while GPP showed strong fluctuation.

The footprint scale PhenoCam and satellite VI along with GPP are
shown in Fig. 7. Compared with the VI extracted from a single ROI/
pixel in Fig. 4, scaling VI to the tower footprint generally increased the
correlation between Landsat and MODIS VI. Compared with WKG and
WHS, however, the correlation between Landsat and MODIS VI at SRM
was relatively low (Supplemental Fig. S6). The variations in the R*
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across temporal scales are presented in Fig. 8 and the regression scatter
plots are presented in Supplemental Figs. S7-S9 (all the regressions
were significant with p < 0.01). VI from both PhenoCam and MODIS
better predicted GPP (i.e., higher R?) at longer time steps at all sites.
The changes in the R? when using Landsat VI to predict GPP at different
time steps were not consistent across sites. While there was an increase
in R? from 8-day to longer time steps at both WKG and WHS, R? fluc-
tuated across temporal scales at SRM. The sample reduction toward
longer time steps due to temporal aggregation had little impact on these
results (Supplemental Fig. S10). Similarly, using VI from ROIs with
different view angles did not affect the R? variation across temporal
scales. Specifically, the correlation coefficient between daily VI from
mesquite ROI #1 and #7 was 0.87 while the correlation coefficient was
0.94 between daily VI from grass ROI #1 and #8. Moreover, the var-
iation in R? across temporal scales calculated using footprint scale
PhenoCam VI generated based on different combinations of the selected
mesquite and grass ROIs was consistent with that in Fig. 8 (Supple-
mental Table S4). However, the R? for a given temporal scale did vary
when the footprint scale PhenoCam VI generated based on different
combinations of the selected mesquite and grass ROIs was used in the
regression against GPP, and the variation can be as high as 0.12 (Table
S4). This variation in R? indicates the view angle effects on the absolute
VI values derived from PhenoCam imagery. For any given sensor at
each site, A and RMSD exhibited decreases toward longer time steps
with the exception being for Landsat at SRM (Supplemental Tables
S$5-S6).

5. Discussion

We systematically evaluated the changes in the VI-GPP relationship
across spatiotemporal scales at three representative dryland sites in the
southwestern United States. We found substantial changes in the
greenness-GPP relationship across spatial scales only at the SRM sa-
vanna site. We also found that the relationship between greenness and
GPP becomes stronger at longer time intervals with the best relation-
ships observed at a monthly temporal resolution. In the following sec-
tions, we first explain the phenological differences between mesquite
and grass, and how it affects seasonal GPP dynamics. We then discuss
the differences in PhenoCam- and satellite-derived Phenology. We
further discuss spatiotemporal scaling and why temporal aggregation
strengthens the greenness-GPP relationship.

5.1. The differences between mesquite and grass phenology, and the
differences between PhenoCam- and satellite-derived phenology

5.1.1. The phenological differences between mesquite and grass, and its
relationship with GPP dynamics

The substantial differences in the greenness trajectories of mesquite
and grass at the grassland site WKG and the savanna site SRM (Fig. 6a
and b) can be explained by their very different leaf phenology. Mesquite
in southeastern Arizona leaf out in early April, near the onset of the
driest and hottest part of the year, and maintain these leaves until the
occurrence of freezing events in late fall. A second flush of additional
leaves can occur in abundant rainfall years during the monsoon. The
perennial grass phenology, instead, is closely coupled to recent pre-
cipitation with more pulse-like greening occurring anytime from
around February through September when temperatures are not lim-
iting (Hamerlynck et al., 2012, 2010). However, significant spring
greening of the grass is rare and limited in magnitude, and detection of
grassland greening can be reduced by the previous summer season's
brown leaves. Apparent increases of springtime grass greenness only
occurred in 2015 at WKG and in 2016 at SRM (Fig. 6a and b). Browning
et al. (2017) found that at least 25% of new growth in the grass canopy
may be needed before PhenoCam can capture a change in greenness of
a similar bunchgrass species. Thus, more limited springtime growth in
these desert grasslands may not be captured by PhenoCam imagery.
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lines.

The relationship between greenness and GPP is also complicated by
the soil moisture conservation strategy that mesquite trees utilize that
can help sustain photosynthesis in the dryer periods of a year. For in-
stance, at the SRM savanna site, while grasses mainly develop roots in
the shallow soil layer, mesquite trees have both extensive lateral roots
and deep tap roots (Scott et al., 2008). Results from previous studies
indicate that the hydraulic redistribution of soil moisture by the roots of
mesquite trees occur throughout the year, which benefit mesquite trees
in the competition for soil moisture with understory grasses (Barron-
Gafford et al., 2017; Scott et al., 2008). The spring GPP increase at SRM
is primarily driven by the leaf emergence of mesquite trees in April
(Fig. 6b). The spring GPP peak only lasts for a short time period since it
is sustained by a limited amount of winter precipitation that has been
redistributed by the tap roots in the deep soil profile (Scott et al., 2009,
2008). Mesquite trees maintain a relatively high level of greenness
while GPP starts to decrease during late spring (Fig. 6b) due to strong
stomatal control (Potts et al., 2008). The summer GPP increase is due to
relaxed stomatal constraints on existing tree leaves and the greening
and upregulation of the perennial grasses (Scott et al., 2009, 2008), the
greenness of which is tightly coupled with GPP (Fig. 6b). Therefore,
although mesquite shrubs at the SRM savanna site may flush additional
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leaves in summer, their greenness is not closely synchronized with
ecosystem GPP (Fig. 6b). The hydraulic redistribution of soil moisture
also occurs during the summer and it helps mesquite trees to maintain
green leaves and sustain photosynthesis after the end of the monsoon
season. This is likely why mesquite trees have a slower brown-down
process than grasses (Fig. 6b) (Scott et al., 2009, 2008). Note that, there
seemed to be a concurrent spring green-up of mesquite and grass on
May 2nd, 2013 at the WKG grassland site, which occurred after the
spring GPP peak. By carefully examining the PhenoCam imagery, we
found that this was caused by a PhenoCam focus adjustment. We con-
ducted an experiment by repeating the spatial and temporal regression
analyses at the WKG site with the VI before May 2nd, 2013 excluded.
Results from this experiment (Supplemental Table S7) indicate that the
variations in R? across the spatial and temporal scales are consistent
with our current results (Figs. 5a and 8a).

5.1.2. The differences between PhenoCam- and satellite-derived phenology

It is worth noting that there was a distinct delay in the phenology
derived from satellite VI than that from PhenoCam VI during the se-
nescence phase (i.e., months following the peak VI) at the WHS
shrubland site (Fig. 4c). The delay in satellite-derived phenology during
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the senescence phase has been explored in previous studies (Liu et al.,
2017; Melaas et al., 2016; Zhang et al., 2018). As suggested by those
studies, the delay is most likely caused by limited ability of satellite-
derived VI to accurately monitor leaf phenology during the senescence
phase. This is because, in contrast to the rapid leaf color change and leaf
expansion during the green-up phase, the changes in leaf color and leaf
area during the senescence phase are more gradual. Furthermore, there
tends to be higher inter-species variability in the changes of leaf color
and leaf area during the senescence phase. With a pixel size larger than
the PhenoCam's field of view, it is possible that the satellite is seeing a
more spatially variable thus slower process of greenness decreases than
that observed by PhenoCam.

5.2. Greenness-GPP changes across spatial scales

At the SRM savanna site, the greenness of mesquite is decoupled
from GPP during both late spring and summer (Fig. 6b). In contrast, the
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greenness of grass is tightly coupled with GPP during summer, which
represents the major growing season. Since PhenoCam imagery was
captured from an oblique angle, grass and bare soil can mainly be seen
in the foreground whereas they were blocked by the canopy of mesquite
trees in areas further away from the camera within the PhenoCam's
field-of-view at the SRM site (Fig. 3b). This is another piece of evidence
demonstrating the view angle effects in PhenoCam VI. As a result, the
PhenoCam ROI was dominated by mesquite trees (Fig. 3b and S1d)
whereas grass was the dominant land cover at the scale of Landsat and
MODIS (Fig. S2a), which captured imagery from a more nadir angle.
Therefore, the difference in the correlation with GPP between the
greenness of mesquite and grass along with the change in the dominant
land cover resulted in the substantial changes in the strength of
greenness-GPP relationship across spatial scales. At the grassland site
WKG, the R? was consistent across spatial scale, because grass was the
dominant land cover across spatial scales and its greenness is closely
coupled with GPP (Figs. 5d and 6a). Although the dominant land cover



D. Yan et al.

Original temporal regressions

o
- © ()
[-°)
& o =
» ~ (]
0N S
E ©o
Q S
2w
2 °
<
©  PhenoCam Landsat MODIS
(-]
S |(b)
© o _
£ 3
S ~
z S
? o
s o
m m.— HH
N o
<
©  PhenoCam Landsat MODIS
»
S [(e)
e o
© o
o N
= o
S
£ o
UI) o
N w
Ir o]
2 <
©  PhenoCam Landsat MODIS
Daily 8-day 16-day Monthly

| I
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in temporal scales.

was not consistent across spatial scales at the shrubland site WHS
(Fig. 5i), the R? remained relatively consistent because shrub is the only
land cover type with photosynthetic capacity. The increase in R? at the
SRM savanna site was probably not caused by the differences in viewing
geometry between PhenoCam and satellites because it did not affect the
R? values at the other two study sites.

5.3. Greenness-GPP changes across temporal scales

We found stronger greenness-GPP relationships when both green-
ness and GPP were averaged over longer temporal intervals (Fig. 8).
This is because averaging removes the high short-term variability in
GPP, associated with fast-changing environmental conditions, that is
not captured by greenness (Sims et al., 2006b). In Fig. 7 for example, it
is obvious that the day-to-day variability in GPP is much higher than
that in VI. This is because GPP is affected by photosynthetically active
radiation and other hydrometeorological conditions (e.g., humidity,
temperature, soil moisture), which vary at sub-daily scales and affect
leaf level gas exchange (Running et al., 2004; Sims et al., 2006b). In
contrast, greenness is mediated by leaf chlorophyll content and canopy
structure (Carlson and Ripley, 1997; Gitelson and Merzlyak, 1997),
which vary slower than the hydrometeorological conditions and asso-
ciated plant gas exchange regulation (Supplemental Fig. S11). This
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finding appears consistent across the study sites included in this study
(Fig. 8). The one exception was observed between GPP and Landsat VI
at the SRM savanna site. We suggest that outliers in the Landsat VI time
series likely caused this exception. Specifically, Supplemental Fig. S6
presents the comparison of tower footprint scale Landsat and MODIS VI.
VI from Landsat and MODIS have strong agreements at the WKG and
WHS sites with a correlation coefficient of 0.99 and 0.98, respectively.
In contrast, Landsat and MODIS VI have relatively weak agreement at
the SRM savanna site with a correlation coefficient of 0.89. We suspect
that the relatively weak agreement at the SRM site was caused by
outliers in Landsat VI (i.e., Fig. S6b). These outliers not only exhibited
abrupt changes when compared to neighboring Landsat VI but also
were much higher than the concurrent MODIS VI. When we repeated
the regression analyses between Landsat VI and GPP at the SRM site
with these outliers excluded, we found that the R? between VI and GPP
at 8-day, 16-day and monthly scale increased to 0.75, 0.76 and 0.73,
respectively (in contrast to the R? of 0.71, 0.65 and 0.69 at the corre-
sponding time scales in Fig. 8b). Further, the variation in R became
more consistent with the patterns observed at the WKG and WHS sites
(Fig. 8a and c). Since outliers in Landsat VI time series were mainly
found at the SRM site, the conditions that resulted in these outliers are
worth being investigated in future studies. We point out that the R>
between Landsat VI and GPP at a given spatial or temporal scale might
also be affected by missing Landsat VI during particular phenological
periods as a result of its relatively low temporal resolution. However,
the experiment design of this study should provide sufficient sampling
of VI-GPP relationship during different phenological periods. Specifi-
cally, we used Landsat VI from multiple years, the missing Landsat VI
during a particular phenological period in one year may become
available during same phenological period of another year (Figs. 4 and
7). In addition, we also used daily VI time series of PhenoCam and
MODIS to study changes in VI-GPP relationship. Based on the VI
availability demonstrated in Figs. 4 and 7, it is evident that VI from
either PhenoCam or MODIS could cover the phenological periods
during which Landsat VI was continuously missing during the entire
study period.

Our results highlight the needs for alternative remote sensing
proxies of short-term GPP changes in drylands. Solar-induced-fluores-
cence (SIF) has been found to outperform the Enhanced Vegetation
Index in terms of tracking GPP dynamics across the drylands of
southwestern North America (Smith et al., 2018). The recently laun-
ched TROPOspheric Monitoring Instrument (TROPOMI) provides
global SIF measurement on a daily basis thus holds great potential to
reduce the uncertainty in tracking dryland GPP dynamics at short
temporal intervals (Guanter et al., 2015). Results from previous studies
have also shown that the pigment-based Photochemical Reflectance
Index (PRI) (Gamon et al., 1992) and water-content-based Water Band
Index (WBI) (Penuelas et al., 1997) are also very useful in monitoring
productivity-related traits of dryland plants. For example, PRI has been
shown to be very useful in estimating leaf pigment content of a wide
range of dryland plant species (Sims and Gamon, 2002), and monitoring
light use efficiency in a chaparral ecosystem (Sims et al., 2006a). WBI
has been found to have better performance in the detection of plant
biophysical properties (e.g., water content and biomass) in a semi-arid
grassland ecosystem than that of NDVI (Rahman and Gamon, 2004).
The Fluorescence Imaging Spectrometer (FLORIS), which will be on-
board the upcoming Fluorescence Explorer Mission of the European
Space Agency (scheduled for launch in 2022), is able to provide coupled
SIF and PRI measurements with a spatial resolution of about 300 m, and
thus another promising instrument in improving dryland GPP mon-
itoring (Drusch et al., 2017; Kraft et al., 2013). We also point out that
our analysis was based on a static relative percent cover of key plant
functional types (e.g., mesquite, grass, shrub). The land cover data with
higher spatiotemporal resolution that better captures seasonal shifts in
relative percent cover of key plant functional types may also enable
improved GPP estimates using PhenoCam VI in dryland ecosystems.
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6. Conclusions

The results from our study show that VI-GPP relationships are
mediated by different factors in the spatial and temporal domains. In
the spatial domain, the usefulness of using VI to track GPP changes
decreases when land cover heterogeneity is high. In the temporal do-
main, the relationship between VI and GPP becomes stronger at longer
time intervals with the best relationships observed at a monthly tem-
poral resolution. The reason the VI-GPP relationship breaks down at
short timescales is most likely because VIs vary at a much lower fre-
quency relative to GPP. Therefore, we recommend cautious inter-
pretation of VI-derived GPP dynamics at relatively short temporal in-
tervals, especially for dryland ecosystem types.
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