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Monitoring of forage utilization typically occurs at sample locations, or key areas, selected for their presumed
potential to represent utilization across pastures. However, utilization can vary greatly across landscapes and
may not be well represented by traditional ground-based sampling without great effort. Remote sensing from

Accepted 27 February 2019 satellite and manned airborne platforms offers spatial coverage at landscape scale, but their poor spatial resolu-
Key Words: tion (satellite) and cost (manned airborne) may limit their use in monitoring forage utilization. High-resolution
drone ’ photogrammetric point clouds obtained from small unmanned aerial systems (sUAS) represent an appealing

alternative. We developed a method to estimate utilization by observing the height reduction of herbaceous
structure-from-motion photogrammetry plants represented by 3-dimensional point clouds. We tested our method in a semiarid savanna in southern
rangelands Arizona by comparing utilization estimates with ground-based methods after a month-long grazing duration.
UAS In six plots, we found strong correlation between imagery and ground-based estimates (12 = 0.78) and similar
average estimate of utilization of across all plots (ground-based = 18%, imagery = 20%). With a few workflow
and technological improvements, we think it is feasible to estimate point cloud utilization over the entire pasture
(150 ha) and potentially even larger areas. These improvements include optimizing the number of images col-
lected and used, equipping drones with more accurate global navigation satellite systems (e.g., Global Positioning
System), and processing images with cloud-based parallel processing. We show proof of concept to provide
confident estimates of forage utilization patterns over large pastures and landscapes, at levels of spatial precision
that are consistent with ground-based methods. The adoption of drone-based monitoring of utilization of forage
on rangelands could follow the paradigm shift already demonstrated by Global Positioning Systems and Geo-
graphic information systems technologies, where the initial high computing costs were reduced, use became
the norm, and the availability of more precise spatial patterns was applied to prescribe and evaluate management
practices.

remote sensing
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Introduction of use and establish monitoring protocols to detect those levels of utili-
zation (USDI Bureau of Land Management, 1997; Smith et al., 2016).
Monitoring of grazing pasture and rangelands, however, is time con-
suming and therefore the area sampled is limited by the availability of
time and resources.

Monitoring typically occurs at a handful of sample locations, or key
areas, selected for their presumed potential to represent utilization
across larger pasture and landscape-scale management units. However,
utilization can vary greatly across a pasture due to livestock preference
for specific forage species, terrain barriers, sun exposure, and distance to

Forage utilization, defined as the proportion of current year’s pro-
duction by weight consumed or destroyed by animals (Heady, 1949),
can indicate levels of use and potential impacts from grazing. Managers
often establish maximum levels of utilization to ensure sustainability
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water (Bailey et al., 1996). As a result, patchy distribution of utilization
may not be well represented by traditional ground-based sampling,
and therefore levels of utilization could be poorly represented across
the large landscapes typical of western rangelands (Veblen et al.,
2014). Finding more efficient methods of collecting monitoring data
at pasture and landscape scales should help improve understanding
of conditions and their response to management across the vast
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rangelands in the western United States and world (Booth and Tueller,
2003).

Remote sensing from satellite and manned airborne platforms offers
spatial coverage at landscape scale (Booth and Cox, 2011), but their
poor spatial resolution (satellite) and cost (manned airborne) may
limit their use in monitoring forage utilization. High-resolution imagery
from small unmanned aerial systems (sUAS), commonly known as
drones, represents an alternative (Rango et al., 2009; Anderson and
Gaston, 2013). The availability of low-cost sensor-carrying sUAS and
the advancement of photogrammetric software has made on-demand
3-dimensional (3D) depictions of rangeland vegetation relatively easy
to produce. Further, sUAS have the potential for frequent on-demand
deployments yielding imagery at scales sufficiently fine to resolve
low-stature herbaceous vegetation. Though sUAS imagery cannot be
expected to cover the large geographic extents available from satellites
or manned aircraft, they can easily exceed the extent of area covered by
most ground-based campaigns. These new tools and the imagery prod-
ucts we can create with them have the potential to address a number of
management concerns regarding forage use by livestock and wildlife,
quality of wildlife habitat, and amount of wildfire fuels.

There has been little research using remote sensing to measure
forage utilization from any platform or scale. The only known study to
explicitly estimate utilization did so by relating simulated browse
(manually removed winterfat leaves to simulate livestock browsing)
with UAS imagery spectra (Quilter and Anderson, 2001). There is, how-
ever, a large and growing body of literature on remotely sensing forage
biomass where one could presumably estimate utilization with biomass
measures at two points in time. The most common method relies on
the relationship between ground-based measures of biomass with
coregistered imagery spectra. This method has been demonstrated
with satellite imagery (Todd et al., 1998; Kawamura et al., 2005; Marsett
et al., 2006; Edirisinghe et al., 2011; Feng and Zhao, 2011; Schucknecht
et al, 2017), manned airborne imagery (Beeri et al., 2007), and sUAS
imagery (Wang et al.,, 2014). However, seasonal and phenological
changes in spectra may limit the general application of this approach
given the need for multitemporal estimates of biomass.

Alternatively, 3D representation of vegetation can estimate biomass
and should be robust across the seasons when spectra is likely to
change. Cunliffe et al. (2016), for example, estimated biomass of grass
(Bouteloua eriopoda) with grass volume derived from UAS-obtained
photogrammetric point clouds. While this method overcomes the limi-
tation of relating spectral properties to biomass, it has a new challenge
of accurately measuring herbaceous vegetation height. This is usually
achieved by subtracting a digital terrain model (DTM) from a digital
surface model (DSM). However, using a photogrammetric approach to
make a DTM is challenging because it cannot “see” underneath dense
vegetation and thus the ground elevation under grasses must be inter-
polated from nearby ground elevations (Swetnam et al., 2018). In a
natural rangeland environment, unbroken extents of vegetation and/
or sloped terrain can lead to incorrect estimation of ground elevations
under vegetation. These challenges often introduce vertical errors in
canopy height models, which can make a big difference in the volume
and biomass estimates of low stature vegetation such as forage grasses.
Studies in crop fields have produced accurate DTMs when the vegeta-
tion is not present (Bendig et al., 2014). This strategy does not work
in many rangeland environments where perennial grasses (albeit
dormant) are present year-round.

We report a “proof of concept” assessment of a remotely acquired
photogrammetric method for estimating utilization without having
to estimate biomass. Forage utilization in rangeland settings can
be determined from the proportion of plants whose height has
been reduced by grazing (Roach, 1950). We can mimic this method
by measuring change in plant height using point cloud analysis. We
evaluated this method in a mixed shrub-grass savanna by comparing
ground-based estimates and sUAS point cloud estimates of forage
utilization following a month-long grazing event. This is the first

study to use remotely sensed data to directly estimate forage utiliza-
tion by grazing cattle.

The objectives for this study were to 1) estimate forage utilization by
differencing pregrazed and postgrazed sUAS photogrammetric point
clouds, 2) compare imagery-derived utilization with ground measure-
ments of utilization at transect and plot scales, and 3) identify critical
improvements that will extend this method to cover pasture-sized
areas.

Methods
Study Area

The experimental area (pasture UA-C) is a 147-ha fenced pasture
on the Santa Rita Experimental Range (SRER) in southern Arizona
(31°48’36'"N, 110°50’51”"W, elevation 1 174 m; Fig. 1; http://cals.
arizona.edu/srer). SRER soils are characterized as clay loams, sandy
loams, and limey upland soils. This semiarid area experiences a typical
Sonoran Desert bimodal pattern of precipitation where most moisture
falls in late summer and the rest is primarily in December and January
(McClaran and Wei, 2014). Mean annual temperature and precipitation
are 19°C and 35.8 cm yr !, respectively. The pasture lies on a sandy
loam upland ecological site within Sonoran Desert grassland savanna
(MLRA 41-3). The dominant herbaceous forage species included
Eragrostis lehmanniana (Lehmann lovegrass), Digitaria californica
(Arizona cottontop), Muhlenbergia porteri. (bush muhly), and Aristida
ssp. (threeawn). Woody species consisted of Prosopis velutina
(mesquite), Gutierrezia sarothrae (broom snakeweed), Zinnia pumila,
Opuntia ssp. (prickly pear), and Cylindropuntia ssp. (cholla).

In calendar yr 2016, there was 39.5 cm of precipitation in the study
pasture, 77% of which fell in July, August, and September. Herbaceous
grass production follows the late summer monsoon rain. At peak green-
ness (mean Landsat 8 NDVI = 0.45) as a proxy for peak forage produc-
tion, 80 animal units consisting of cow/calf pairs entered the pasture
on 22 August, 2016 and remained until 23 September, 2016. At the
time of withdrawal, herbaceous vegetation had already begun senes-
cence indicated by lower NDVI values (mean = 0.36) and a lighter
green color. This timing near the end of the growing season minimized
the amount of regrowth following defoliation compared with timing
earlier in the growing season.

Ground Methods

Within the study pasture, we chose six randomly placed points
to compare ground-based and sUAS imagery estimates of utilization
(see Fig. 1). From the random points, we chose a random azimuth to
orient the rectangular plot. The baseline of the plots was oriented at
220° azimuth from the plot point. Perpendicular from the baseline, we
established 5 sampling transects, each 30 m long. Transects were spaced
approximately 20 m apart, but that distance varied depending on the
ability to navigate through or around mesquite and cactus. The plot
size was ~0.27 ha or 100 x 30 m.

Following the removal of cattle from the pasture, we measured uti-
lization using the “ungrazed plant” method along each transect. The
method (Roach, 1950) was developed at the SRER and is based on the
grazing habits of cattle. With ample available forage, cattle are likely
to graze a grass clump once and move on to the next. Because of this be-
havior, there is a relationship between the percentage of ungrazed
clumps and utilization of forage. At every other pace along the transect
(20 total observations), the observer recorded the nearest herbaceous
plant as “grazed” or “ungrazed.” Classifying lightly grazed plants as
“grazed” is likely to overestimate forage use because the tops of grass
plants generally contain a small proportion of the plants’ biomass. To
identify these lightly grazed plants, we employed the grazed class
method (Schmutz et al.,, 1963), which consists of species-specific
photo guides for estimating biomass use. Plants with < 10% use were
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Figure 1. Study area and plot design on the Santa Rita Experimental Range in southern Arizona.

classified as “ungrazed.” The percent of ungrazed observations was en-
tered as x in the linear formula.

%utilization = 79.9451—0.8705x (1)

Utilization was calculated for each transect and for each plot (aggre-
gate of five transects).

In addition, we estimated utilization with before- and after-grazing
measures of forage biomass, a method that is commonly used in other
rangeland systems. Immediately before and immediately after the graz-
ing period, we estimated forage production along each transect using
the comparative yield method (USDI Bureau of Land Management,
1999). For each plot, forage was clipped, dried, and weighed from
three calibration frames (40 x 40 cm) representing low, medium, and
high amounts of forage. These frames were given scores of 1, 3, and 5,
respectively. These calibration frames are used to train the observer to
visually interpret all additional frames with a score of 0—5. This
method allowed for quicker data collection and the ability to cover a
larger area than destructive sampling methods. We estimated forage

production in 20 frames along each transect for a total of 100 frames
per plot. From the forage production data, we calculated utilization as:

biomass

postgmzed) (2)

biomass e grazea

%utilization = 1— (
where utilization is calculated from the ratio of biomass measured
pregrazed to postgrazed. We refer to this as the “biomass change”
method hereafter. We calculated utilization with the biomass change
method at only the plots (aggregate of five transects) because we did
not record pregrazed estimates for each transect.

Image Acquisition

Immediately before and after cattle grazing, we acquired high-
resolution drone imagery of each plot with DJI Phantom 3 Professional
and Phantom 4 multirotor drones (Table 1 for image acquisition speci-
fications). These drones weigh ~3 Ibs, have electric motors, and typically
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Table 1
Image acquisition specifications.

Aircraft
Sensor
Image format

DJI Phantom 3 Professional & Phantom 4 multirotors
12 mpx; 33 msec rolling shutter readout; RGB

jpeg file format; 5.2 MB per image; bit depth

R(8) + G(8) +B(8)

Altizure v 3.0 for [pad

~20 m above ground level

8-10 mm ground sampling; 31 x 23 m footprints
4-5 m/sec

~950 total; 190 nadir, 760 42° oblique

(190N, 190 S, 190 W, 190 E)

Autopilot

Flying height

Image dimensions
Ground speed

Image count per plot

Image forward and 75-80%
side overlap
Flying time per plot 45 min

have 20-min flight endurance. The Phantom series are the most ubiqui-
tous drones on the market and are off-the-shelf ready to fly with modest
price points around $1 500. We acquired the imagery for each plot using
autonomous grid pattern missions programmed in Ipad application
Altizure v 3.0 (https://next.altizure.com). We flew low to the ground
(20 m above ground level) in order to get high-resolution imagery
(8 —10 mm) capable of resolving low-stature herbaceous plants.
In the structure-from-motion (SfM) photogrammetry approach we
employed, a high number of overlapping images is recommended to
reconstruct complex features (Westoby et al., 2012; Smith et al.,
2015). However, the optimized number of images needed to recon-
struct perennial dryland grasses was unknown before this study. Conse-
quently, we blanketed each plot with 900 — 1 000 images with high
overlap (80%), likely more imagery than what is necessary for recon-
struction. We acquired imagery at nadir and 42-degree oblique angles
because the inclusion of oblique images in the sparse point cloud step
has been shown to improve scene geometry compared with only
nadir images (James and Robson, 2014). It was hypothesized that
oblique images might also improve reconstruction of herbaceous vege-
tation at the base of mesquite trees, areas that are less visible from
nadir-only imagery. Each plot took approximately 45 minutes to fly, in-
cluding two battery changes. Wind speed during the flights typically
ranged from 5 to 10 mph, not strong enough to disrupt operations.

Because the expected positional accuracy of the drone global naviga-
tion satellite system (GNSS) is poor (1—2 m horizontally and 5—10 m
vertically from true location), we surveyed ground control points
(GCPs) to be used in the photogrammetry processing. On each plot,
we surveyed 13 GCPs. Ten were used in the photogrammetry process-
ing, and three were held back as x, y, and z check points. The GCPs
were located on the ends of each vegetation transect (see Fig. 1). Each
GCP consisted of a 17-cm diameter round plastic lid mounted on a
0.5-m rebar stake. The lids were painted black and white in an iron
cross pattern. We experimented with but ultimately abandoned
the use of coded targets, patterns that can be detected automatically
by software, because it could not reliably locate GCPs in oblique imag-
ery. We surveyed the GCPs with a Trimble R10 real-time kinematic
GNSS, a setup consisting of a base station and rover. Points were sur-
veyed in NAD 83 UTM Zone 12 N projection with a horizontal precision
of 5—7 mm and vertical precision of 6 — 16 mm.

Point Cloud Generation

We used image-based 3D reconstruction software Agisoft Photoscan
v 1.3 (http://www.agisoft.ru) for point cloud generation. Each point in
the cloud is an x, y, z location of a surface feature with its natural color
assigned to it. The SfM process of making point clouds is well docu-
mented (Snavely et al., 2008; Westoby et al., 2012; Smith et al., 2015;
Eltner et al., 2015), so it will be abbreviated here. All image processing
was carried out on a Windows machine with two Intel Xeon CPUs
(2.4 GHz;16 logical processors each), two EVGA GeForce GTX 1080
video cards, and 256 GB RAM.

We did “high-quality” initial alignment using the GNSS and time
stamp metadata of each image to expedite the process. During this pro-
cess, camera physical dimensions and lens distortion parameters were
calculated with self-calibration. The pose of each exposure station was
determined, and a sparse point cloud was generated. Any images that
did not align or were misaligned were realigned.

After initial alignment, we located all 10 GCPs and 3 check points
and marked them in the images. By locating a GCP on two overlapping
images, the software estimated the locations of the GCP on all other
overlapping images. We went through every image and adjusted the
estimated location of the GCPs to the center of the targets. Each GCP
was visible on 100 — 400 images. Points in the center of the plot gener-
ally had more image projections, and vegetation blocked the view of the
GCP in some images. Manually adjusting GCPs locations was the most
time-consuming aspect of the point cloud generation.

We used the GCPs for a bundle adjustment optimization procedure.
Following the recommendation of James et al. (2017a), we optimized
parameters focal length (f), principal point coordinates (cx, cy), radial
distortion (k1, k2), and tangential distortion (p1, p2). We also
optimized to correct for rolling shutter effect present in Phantom sen-
sors (Vautherin, 2016). Next, we used the “gradual selection” tool to
identify and remove low-quality sparse points with the following
criteria: reprojection error > 0.5 pixels, reconstruction uncertainty >
30, and projection error > 3. The sparse cloud was optimized (bundle
adjustment) after each removal of low-quality points.

We created dense point clouds using an ultra-high-density setting,
which attempts to create a point for every image pixel, a desirable be-
havior for fine-scale vegetation. For this step, we sought to optimize
the number of images needed to reconstruct grass with high detail
while limiting processing time. On one plot we experimented with
the number of images used in dense reconstruction testing a model
using only nadir images (150 —200) and a model using nadir + all
oblique images (900 — 1 000) for dense reconstruction. The nadir only
dense point cloud had ~27 million points and took approximately
5— 6 h to process. Comparatively, the nadir + oblique point cloud had
~87 million points and took upwards of a week to process. However,
higher point density does not necessarily indicate better or more
detailed grass height reconstruction. We tested grass height difference
of the two point clouds by subtracting one from the other using M3C2
tool in CloudCompare. A detailed description of these methods is in
the “Point Cloud Filtering” and “Point Cloud Differencing” sections of this
paper. The nadir only point cloud was on average only 1 cm lower in
height than the nadir + oblique point cloud, which suggests nadir
only imagery is a more efficient approach.

Another concern of eliminating oblique images was losing the ability
to detect and model herbaceous vegetation under mesquite trees. We
evaluated this concern on one plot and found herbaceous vegetation
to be visible and reconstructed at the base of nearly all mesquites. We
are, however, giving up some ability to model grass at the base of
some mature mesquite trees that have wide obscuring canopies. These
were rare occurrences in our study plots that we assume should not sig-
nificantly alter utilization estimates. We proceeded to carry out dense
point cloud reconstruction for all the plots using nadir images only
(Fig. 2A). The plot point clouds typically had between 25 and 50 million
points with density ranging from 3 000 to 5 000 points-m~ ~

Point Cloud Filtering

The goal of filtering is to remove any points that are not of interest
in the analysis. For this study, we were interested in only herbaceous
vegetation. Using the “classify points” tool in Photoscan, we identified
and removed points representing tall woody trees and shrubs while
retaining low-stature vegetation such as grasses and forbs (Fig. 2B).
Cunliffe et al. (2016) and Gillan et al. (2017) both demonstrated
the use of this type of filtering approach in semiarid shrublands in
New Mexico. This point filtering tool is a type of maximum local slope
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Pre-grazed dense point cloud (Aug. 2016)

Post-grazed dense point cloud (Sept. 2016)

Pre-grazed
Point Cloud

Post-grazed
Point Cloud

6 cm diameter

- 4

Assessed Point Cloud Repeatability and applied 90% CI for
Vegetation height change detection

4

If height difference < -9.5 cm*, then ‘grazed’
If height difference >-9.5 cm* , then ‘ungrazed’

mm Grazed Forage Paints

Applied ungrazed plant method
Utilization = 79.9451 — 0.8705(%ungrazed points)

- 10m

Figure 2. Workflow to calculate forage utilization with point clouds. A, We created a drone-based structure-from-motion photogrammetry point clouds before and after a month-long
grazing event. Here we depict a single 30-m transect. B, Tall woody vegetation was removed using a local maximum slope threshold in Agisoft Photoscan. C, Bare ground and woody
stems were filtered with a green leaf algorithm, leaving only herbaceous vegetation. D, Vertical height change estimated by subtracting pregrazed herbaceous points from postgrazed
herbaceous points using M3C2 in CloudCompare. E, Repeatability of height change estimated at each plot and applied a 90% confidence interval to set a vegetation height change
detection threshold (*threshold varies per plot). Each point was labeled as “grazed” or “ungrazed” on the basis of this threshold. F, The percentage of ungrazed points was entered into
the ungrazed plant method equation (Eq. (1)) to estimate utilization. We compared point cloud utilization with ground-based utilization at individual transects (white rectangles), plot

aggregated from five transects, and the entire plot (black rectangle).

filter (Montealegre et al., 2015) where the lowest elevation point within
a user-defined grid cell is assumed to be ground. All additional ground
points are identified on the basis of a user-defined maximum angle
and distance from the origin ground point. To identify and remove
woody trees and shrubs, we found the best combination of parameter
values were a grid size of 2 m, a maximum angle of 18 degrees, and a
maximum distance of 0.5 m. However, no filter is perfect, so some tree
stems and small shrubs were likely to remain. We exported the point

clouds in log ASCII format (las) format, in projection NAD 83 UTM
Zone 12 N.

In the open-source program CloudCompare (Girardeau-Montaut,
2011), we further filtered the point clouds to remove nonherbaceous
vegetation points (i.e., bare ground, rocks, woody vegetation stems)
with a color threshold (Fig. 2C). We calculated a green leaf algorithm
(&2=R=B; | puhaichi et al., 2001) on the colorized points and applied a

G=2+RtB’
simple threshold to separate the herbaceous vegetation from all other
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surface features. We found that a green leaf algorithm value > 0.035
was an appropriate threshold for identifying vegetation points. This
cutoff value varied slightly between plots due to nuanced soil and veg-
etation color, as well as illumination differences. We removed the
nonherbaceous points, leaving point clouds consisting of only herba-
ceous vegetation before and after grazing.

Point Cloud Differencing

We used the Multiscale Model to Model Cloud Comparison (M3C2)
point cloud differencing tool (Lague et al., 2013; James et al., 2017b)
in CloudCompare to subtract pregrazed herbaceous points from
postgrazed herbaceous points in the vertical (z) plane only. This type
of analysis is similar to the well-established method of digital elevation
model differencing (Brasington et al., 2003; Wheaton et al., 2009) but
uses points instead of gridded raster surfaces. Doing the analysis with
points removes the step of having to interpolate the points into an ele-
vation surface. Before differencing, we thinned and smoothed the
pregrazed and postgrazed point clouds to reduce noise and absorb hor-
izontal coregistration error (Table 2). M3C2 calls this subset of points
“core points.” We applied a 6-cm horizontal distance between core
points, effectively removing 96% of the total points within a cloud,
resulting in 120 — 200 core points-m 2. The elevation values of the
core points were calculated as an average of all points within a 3-cm
spherical radius of the core point. In the vertical (z) plane only, the algo-
rithm measures the distance from the averaged core point in the
pregrazed cloud to the average core point in the postgrazed cloud
(Fig. 2D). If there are not core points from both clouds in the same
vertical cylinder, then no differencing occurs.

We performed point cloud differencing for each transect and for en-
tire plots (minimum convex polygon surrounding the five transects).
We isolated each transect in CloudCompare using the “cross-section”
tool. We set the width of the transects at 1 m, an area we thought
would contain the 40-cm wide frame measurements with some addi-
tional space for possible spatial registration errors. We then exported
the M3C2 point data to .csv format. We deleted any point difference
values < —1.0 m or > 1.0 m because grass could not have been grazed
or grown a meter in the 1-mo duration of the study. The sporadic exis-
tence of such erroneous values is due to some kind of error, most likely
an unfiltered tree or shrub point differenced from underlying grass
points. For each plot, the existence of these points was typically < 0.5%.

Repeatability Error and Threshold for Detecting Vegetation Height Change

Because we estimated vertical differences between point clouds at
two points in time, it was essential to quantify the repeatability (preci-
sion) error of point cloud reconstructions in order to separate true grass
height change from measurement error. Good point cloud reconstruc-
tion requires finding the same surface features in multiple images.
This can be an easier task for solid features (e.g., bare-ground, rocks)
that are visible from several angles. For vegetative surfaces, even slight
differences in image perspectives or illumination can cause features to
be obscured or have altered texture between successive images. This
phenomenon can cause point cloud reconstructions of vegetation to

be less repeatable. For each plot we measured the repeatability between
the before- and after-grazing point clouds by looking initially at the
check points. With perfect repeatability, the check point modeled coor-
dinates should not change between two points in time. The observed
change can be used to estimate repeatability error primarily due to
scene geometry, lens calibrations, or reference quality. In addition to
the checkpoint analysis, we developed a herbaceous vegetation recon-
struction error term. We did so by reconstructing a 3D scene twice
using two independent image sets acquired within 30 min of each
other (plot 5 on 6 September, 2016). We used M3C2 to vertically
differentiate the point clouds (same methods described previously). In
theory, there should be no vertical difference between the point clouds,
so any difference is due to reconstruction error. The standard deviation
of checkpoint differences was 3.0 cm. As expected, the standard devia-
tion of herbaceous points (using same filtering methods) was larger at
7.7 cm. We calculated the total repeatability error for each plot as the
standard deviation of the checkpoint vertical repeat error plus 4.7 cm
(7.7 cm herbaceous height standard deviation [SD] minus 3.0 check-
point SD) for herbaceous reconstruction error (Fig. 2E; see Table 2).
On the basis of this two-part error assessment, the vegetation vertical
repeatability error among plots ranged from 5.2 to 7.5 cm (see Table 2).

We added a 90% confidence interval to the repeatability error to set a
grass height change detection threshold that reduces type I errors (false
positive for grazing designations).

Grass height change detection threshold
= (checkpoint SD +4.7 cm) * 1.645 (3)

Using plot 5 as an example, the repeatability SD of the checkpoints
was 1.1 cm. We added the grass reconstruction error of 4.7 cm for a
total of 5.8 cm. The Clgg = 5.8 = 1.645 = 9.5 cm. Using this logic, grass
height must be reduced by 9.5 cm in this plot for it to be considered
grazed. Vegetation height change detection thresholds ranged from
8.5to 12.3 cm (see Table 2).

We applied the vegetation height change detection threshold to all
core points in the differenced point clouds and labeled each point as
grazed or ungrazed (Fig. 2E). We then calculated the percentage of
ungrazed core points within the total forage core points and used that
value in the “ungrazed plant” method equation (see Eq. (1); Fig. 2F) to
estimate forge utilization. We then compared these values of utilization
with ground-based estimates of utilization at transect scale, plot scale
aggregated from five transects and plot scale with all measurements
within a polygon surrounding the transects (Fig. 2F). Transect 5 of plot
4 was omitted from the study because we failed to image the entire
plot during August acquisition. Our comparative analysis contained 29
transects within 6 plots.

Accuracy of Point Cloud Maximum Plant Heights

Accuracy in this case refers to how well we can create a point cloud
to capture the “true” vegetation heights. This differs from the previous
section that was primarily concerned with the repeatability of point
cloud generation. Knowing how well point cloud reconstructions repre-
sented the true structure of the grass indicates how sensitive our

Table 2
Check point (n = 3 per plot) repeatability and vegetation height change detection threshold
Plot  Check point x Check point y Check point z Check point z Grass repeatability ~ Total repeatability ~ Clgg height change
repeatability RMSE (cm)  repeatability RMSE (cm) — repeatability RMSE (cm)  repeatability SD (cm)  error SD (cm) error SD (cm) threshold (cm)
1 2.0 1.8 1.7 1.2 4.7 5.9 9.7
2 0.8 1.1 0.8 1.0 4.7 5.7 93
3 0.8 15 19 0.5 4.7 52 8.5
4 2.5 14 23 2.8 4.7 7.5 123
5 0.8 1.1 0.9 1.1 4.7 5.8 95
6 0.7 0.6 0.9 1.0 4.7 5.7 93
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methods are to detecting a change in height. It may also provide an
explanation for differences between the ground and point cloud
methods for estimating utilization. Before this study, the accuracy of
photogrammetrically reconstructing herbaceous vegetation from UAS
imagery was unknown in our study ecosystem. To quantify vegetation
maximum height accuracy, we used a hand-held tape to measure the
maximum height of 21 herbaceous plants (grasses and forbs) immedi-
ately before the August image acquisition. We then compared the
ground-based measured heights with the point cloud heights of those
same 21 plants using CloudCompare.

Results

Agreement Between Imagery and Ground-Based Ungrazed Plant Method of
Estimating Utilization

At the transect scale, there was a poor linear relationship between
point cloud and “ungrazed plant” methods of utilization (R? = 0.011;
Fig. 3A), and differences ranged from an overestimation (below 1:1
line) of 38% to an underestimation (above 1:1 line) of 34% of
ground-based value. The median absolute difference between the
methods was 13% (Fig. 3D). At the aggregated transect scale, the
agreement between the point cloud and ungrazed plant method
was much stronger than the transect scale (R?> = 0.78; Fig. 3B).
Method differences ranged from an overestimation of 8% to an underes-
timation of 6% and median absolute difference was 5.2% (Fig. 3D).
Agreement at the plot scale was also strong (R? = 0.81; Fig. 3B) and
ranged from an overestimation of 8% to an underestimation of 3%, and
the median absolute difference was 6% (Fig. 3D). Interestingly, at both
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Table 3

Utilization estimated with ground-based methods and point cloud differencing methods
arranged from most to least utilization by plot. Normal approximation used to generate
standard error and 95% confidence interval.

Forage Ungrazed plant Biomass change Point cloud Point cloud

utilization — aggregated aggregated differencing differencing
transects transects aggregate plot scale

transects

Most Plot 6 (24.2%)  Plot 3 (37.5%) Plot 6 (32.0%)  Plot 6 (31.1%)
Plot 3 (22.4%)  Plot 4 (23.4%) Plot 3 (26.8%)  Plot 3 (28.5%)
Plot 5 (20.7%) Plot 5 (21.8%) Plot 4 (25.1%)  Plot 5 (26.8%)
Plot4 (16.4%)  Plot 6 (22.2%) Plot 5 (233%)  Plot4 (25.1%)
Plot 2 (14.6%)  Plot 1 (13.9%) Plot 1 (9.4%) Plot 1 (13.7%)

Least Plot 1 (129%)  Plot 2 (13.5%) Plot2 (85%)  Plot2 (11.1%)

Average 18.5 + 4.7% 233 4+9.1% 20.8% + 10.1%  22.7% + 8.6%

the aggregated transect and entire plot scales, the ground-based esti-
mate of utilization was underestimated when the point cloud estimate
was < 15% utilization and overestimated when > 15% (Fig. 3B).

The average utilization of all six plots combined was estimated
at 18.5% using the ungrazed plant method (Table 3). The point
cloud method with five aggregated transects had utilization of
20.8%, while the entire plot point cloud method estimated a total
utilization of 22.8% for all six plots. In terms of plot rank order
(most to least), the point cloud methods were similar to the
ungrazed plant method with some slightly different ordering (see
Table 3). The discrepancy in rank order between the ground-
based and point cloud methods was the result of only a few per-
centage points.

B

50

A Plot Aggregated from 5 Transects
y=0.419x+9.817 R*>=0.7879

B Entire Plot
30 y=0.498x+7.21

R?=0.815

20

10

0
0 10 20 30 40 50
Point Cloud Utilization (%)
D Point Cloud and Ground-Based Utilization Difference
50 Ungrazed Plant ~ Biomass Change
46 " Transect Aggregated Entire Plot 'AggregaIEd Entire Plot

Transects

-

Transects
30

20

Utilization Difference (%)
s

Figure 3. A, Linear regression between point cloud and ungrazed plant method estimates of utilization with transects as the sample unit. Plot numbers are labeled 1 —6 on the graphs.
B, Linear regressions between point cloud and ungrazed plant method with the sample units being plot aggregated from five transects and entire plot. C, Linear regressions between
point cloud and biomass change method with the sample units being plot aggregated from five transects and entire plot. D, Box plots showing difference between point cloud and
ground-based method utilization. Whiskers show the range, boxes show the interquartile range, and the middle line represents the median.
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Agreement Between Imagery and Ground-Based Biomass Change Method
of Estimating Utilization

The agreement between the point cloud methods and biomass
change field method was not as robust as the ungrazed plant method.
At the aggregated transect scale, the agreement between the point
cloud and biomass change estimates of utilization was modest (R? =
0.46; b = 0.61; Fig. 3C). Differences between the point cloud and bio-
mass change estimates of utilization ranged from an overestimation of
9.8% to an underestimation of 10.6%, and median absolute difference
was 4.7% (Fig. 3D). At the plot scale, the agreement was also modest
(R* = 0.51; b = 0.76; Fig. 3C) and differences between the point
cloud and biomass estimates of utilization ranged from an overestima-
tion of 8.9% to an underestimation of 8.9%. The median absolute differ-
ence was 3.6% (Fig. 3D). As occurred with the ungrazed plant results,
at both the aggregated transect and plot scales, the biomass change
estimate of utilization was underestimated when the point cloud esti-
mate was < 15% utilization and overestimated when > 15% (Fig. 3C).

The utilization of all six plots combined was estimated at 23.3% using
the biomass change method (see Table 3). The point cloud method
with five aggregated transects had utilization of 20.8%, while the entire
plot point cloud method estimated a total utilization of 22.8% for all
6 plots. Utilization rank order using the biomass change method was a
bit different than the other methods (see Table 3). Most notably, it esti-
mated plot 3 to have the highest utilization (37.5%), 15% higher than the
ungrazed plant method, 11% higher than the aggregated transect point
cloud method, and 9% higher than the entire plot point cloud method.

Accuracy of Point Cloud Maximum Plant Heights
On average, the point maximum plant heights were 45% of ground

measured heights with SD of 12% (Fig. 4; Appendix Table A1). Underes-
timation of grass plant height is likely a function of imagery that is too
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coarse to detect and match features in the diffuse canopy and possible
movement of that canopy caused by wind.

Discussion

Our “proof of concept” assessment provides results that support the
use of photogrammetric point cloud differencing as a viable alternative
to ground-based estimates of forage utilization in a semiarid mixed-
shrub savanna ecosystem. There was strong agreement between utiliza-
tion estimates using drone-based point cloud differencing of plant
height and the ground-based ungrazed plant method (developed at
SRER) for which it was expected to mimic. There was also good agree-
ment with the biomass change ground method. This suggests that the
point cloud method of detecting change in plant height could provide
reliable estimates of utilization in other rangeland ecosystems and,
more importantly, represent utilization over a larger spatial extent
with shorter field time than the traditional ground-based estimates.

The approach of simply estimating change in plant height is advan-
tageous compared with other remote sensing approaches that must
estimate forage biomass at multiple points in time. Specifically, our
method should be more stable across seasons than a 2-dimensional
imagery spectra approach (e.g., Wang et al., 2014) where spectra/
biomass relationships can differ among seasons for the same amount
of mass. In addition, our approach should be more replicable than a
3D representation of biomass, which is reliant on making DTMs and
canopy height models (e.g., Cunliffe et al., 2016). For example, our
approach could be especially advantageous in ecosystems with large
amounts of herbaceous cover (e.g., Great Plains) that would make it
difficult to sense the ground elevation.

Agreement between ground-based and point cloud methods was
stronger at plot scale than transect scale. Some of this can be attributed
to the central limit theorem, which suggests that as more measure-
ments are aggregated, the distribution will better represent the central
tendency of a normal distribution leading to better agreement between

80 cm

36 cm 9 cm [

True
Height

3-D Modeled
Height

o ['

Detectable Grazing
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Figure 4. Comparing the maximum height of one Arizona cottontop (Digitaria californica) plant as measured in the field and estimated with sUAS-based photogrammetric point clouds.
The ground-measured height was 80 cm but was modeled with point clouds to be 36 cm. Combined with point cloud repeatability error 90% confidence interval of ~9 cm, the plant would

need to be reduced to a point-cloud height of 27 cm before it could be detected as “grazed.”
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the methods. In addition, the mechanics of performing the measures
could contribute to the improved relationship at the plot-scale. In the
ungrazed plant method, the absence of a plant at the point of observa-
tion causes the observer to seek the nearest plant, perhaps away from
the transect line. This can create a mismatch in the exact ground foot-
print being sampled by the two methods. Also, the ground-based
method is taking a sample of 20 individual plants along the transect.
The point cloud method cannot distinguish individual plants and is
instead taking a census of all herbaceous points in the 3-cm radius
core point (~120— 200 core points per m?). If there is a large plant
consisting of multiple core points, some points may be classified as
grazed and others as ungrazed, leading to different estimates of utiliza-
tion compared with the ground-based method, which would have
classified that entire plant as grazed.

Interestingly, the strong relationship between the point cloud and
both the ungrazed plant and biomass change estimates of utilization
occurred in spite of the point cloud representing on average 45% of
grass height. We propose that the strong relationship exists because
1) grass mass is disproportionately concentrated at the lower portions
of the plant (Schmutz et al., 1963; Nafus et al., 2009) and 2) we considered
any plant with < 10% utilization as “ungrazed” in our ground estimates. On
the basis of the agreement between the field and point cloud methods, it
appears that our ability to model the bottom 45% of plant height was suf-
ficient for the level of grazing intensity in this study. For studies or man-
agement goals that require a more sensitive detection of grazing, it
would be possible to reconstruct the top of grass canopies better by flying
lower to the ground or using a sensor with higher spatial resolution.

We defined grazing in this study as a modeled grass height reduction
with 90% confidence interval. The confidence interval can be changed
to better meet management goals. Relaxing this threshold will likely
increase the points that are identified as grazed, which in turn will
increase utilization estimates. This could increase type I errors of identi-
fying grass as being grazed when it was not. Consequences of this could
be that the pasture is grazed less than desired. Strengthening the
threshold will reduce the number of points we identified as grazed,
which will lower utilization estimates. This could increase type Il errors
(true grazing that is not detected) for this application. Consequences of
this could be that the pasture is grazed more than desired.

There are a few potential limitations of the point cloud utilization
method. First, it assumes any reduction in herbaceous height past the
threshold is due to grazing. Vegetation height could also be reduced
by wind, rain, animal trampling, or sagging under their own weight.
It may be appropriate to consider and inspect these occurrences before
assuming all height reduction is due to grazing. Second, the point cloud
method, along with the field methods we compared it with, are conser-
vative estimates of utilization. It is possible that some utilization was not
detected due to grass growth after being grazed. This was likely an infre-
quent occurrence because we timed the grazing to coincide with peak
biomass. Third, it is unlikely that herbaceous species (e.g., native vs.
non-native) can be distinguished with high-resolution imagery. There-
fore, an estimate of what is being used will be challenging. Because the
vegetation community was fairly simple at SRER, separating woody
vegetation, herbaceous vegetation, and nonvegetation features was
achievable. However, further parsing of vegetation composition will
become extremely challenging when using RGB sensors.

Expanding Spatial Coverage of Point Cloud Analysis

This study demonstrated an ability to measure forage utilization at
plot scales (0.25 ha). With this proof of concept established, the method
must be expanded and tested over larger areas. The real advantage of
drone data is to cover greater extents of land and capture more indicator
variability than can be realistically sampled with ground methods.

An additional benefit of a drone approach is generating a spatial ex-
plicit map of forage utilization across a pasture. These image products
will be used to better understand the response to management

practices intended to change grazing intensity and location (Brock and
Owensby, 2000; Guenther et al., 2000). Utilization maps will improve
our knowledge of herbivore behavior in relation to habitat characteris-
tics such as distance from drinking water, slope, previously grazed
patches, and neighboring nonforage vegetation (e.g., Bailey et al.,
1996; Washington-Allen et al., 2004). A utilization map also enables a
reverse assessment of the accuracy of utilization estimates based on a
few ground-based estimates to represent pasture- and landscape-scale
patterns. The implication is that we are able to ask how well “key
areas” represent the response of utilization at the pasture-scale to
changes in the management practices and growing conditions. This
could be especially useful when two or more herbivore species are graz-
ing, such as elk and cattle, and a “key area” designed for cattle may not
represent the spatial use pattern of elk (Laca et al., 2010).

With a few workflow and technological improvements, we think it
is feasible to estimate point cloud utilization over the entire pasture
(150 ha) and potentially even larger areas. Here, we identify critical im-
provements to the workflow that will speed estimates of utilization
measurements and increase the likelihood of adoption by practitioners.

First, we can reduce the number of images per area needed for
herbaceous vegetation reconstruction. We only used the nadir images
(~190 per plot) for dense point cloud generation and, therefore, could
have avoided the time spent collecting and processing 760 oblique im-
ages. Woodlands or other ecosystems with more tree cover may benefit
from more oblique images to view forage change at the base of the trees.
The more open canopy of mesquite savanna made it possible to view
herbaceous vegetation change at the base of most mesquite trees with
just nadir images. Future acquisitions at SRER should consist of nadir
images along with a modest amount (a few dozen) of oblique images,
which have been shown to improve scene geometry in the initial align-
ment (James et al., 2017a). Fewer images and flight lines per area will
free up our flights to cover larger areas.

Second, we should use higher-resolution sensors (more megapixels
or longer focal lengths) to allow higher flight elevation and greater
spatial coverage per flight time without loss of data resolution
(3 000 —5 000 points-m 2 in our study). Higher-resolution sensors
are already available for the Phantom series (Phantom 4 Pro with
20 mpx), while other studies have demonstrated the use of higher-
resolution RGB cameras on other drone aircrafts (Bendig et al., 2014;
Li et al., 2016; Gillan et al., 2017). We should also consider flying more
than one drone at a time, which currently requires a special waiver
from the US Federal Aviation Administration (CFR 107.35).

Third, we need more precise and differentially correctable GNSS on
board the drones to precisely capture the coordinates of each exposure
station (location of camera when image was taken) to streamline direct
georeferencing and reduce reliance on ground control. The success of our
point cloud differencing method depends on the point clouds being well
coregistered in three dimensions. Horizontal (xy) coregistration is im-
portant in order to difference the height of same grass plant. Vertical
(z) coregistration is important because it drives the vertical repeatabil-
ity error and thus sets the threshold for detection of vegetation height
change. We achieved good coregistration with the RTK surveyed
ground control points (0.9 cm horizontal, 1.4 cm vertical). However,
the survey added an entire day of field work and hours of
postprocessing in Photoscan spent locating targets in the imagery.

With enough precision, direct georeferencing with RTK GNSS has the
potential to greatly reduce the cost of measuring utilization over larger
areas by reducing ground control requirements. Early results from
drone-mounted RTK report accuracies of 2—4 cm (x,y) and 2—9 cm
(z) among a variety of systems (Rehak et al., 2013; Hugenholtz et al.,
2016; Forlani et al., 2018). Given that our accuracies were better than
the drone-mounted RTK tests suggests that establishing permanent
ground control points and RTK base stations may provide a greater re-
turn on investment for range and pastures that are routinely measured.

Alternatively, there is a little known photogrammetric technique
that can be used to ensure good coregistration between multitemporal
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imagery products without differential GNSS. Raw images from before
and after a grazing event can actually be processed within the same pro-
ject “chunk” (Korpela, 2006; Gillan et al., 2016). The initial alignment
should be conducted with all images from both time periods, while
the dense point clouds should be created with images from just one
time period. This multitemporal approach should produce point clouds
coregistered to within a few centimeters. The drawback is that the abso-
lute georeferencing accuracy of the products will still depend on the
references used (GCPs or GNSS). Also, doubling the image count in a
project chunk will increase processing demands in the initial alignment.

Reducing the processing time of point clouds is the final improvement
needed to expand the use of drone-based photogrammetry to estimate
utilization of forage on rangelands. Measuring indicators over entire pas-
tures will require tens of thousands of images, and processing them is a
big data problem that quickly overwhelms the model of using a single
powerful desktop computer. To achieve the goal of creating useable imag-
ery products and analysis summaries in 1 or 2 days, we must shift to a
cloud computing or network computing model where super computers
or many regular computers tackle the problem with parallel processing
nodes. Projects such as the National Science Foundation — funded Cyverse
(Goff et al., 2011) and Google Earth Engine (Gorelick et al.,, 2017) show
that big data processing is accessible now to anyone with an Internet con-
nection, though advanced computing skills are often required. Removing
the technical barriers for mass adoption will likely require a “software-as-
a service” model in which users upload images to a server and get an au-
tomated product (e.g., point cloud) in return. This shifts the burden of
photogrammetry expertise, as well as purchasing and maintaining hard-
ware. Commercial companies (e.g., DroneDeploy (www.dronedeploy.
com) and Agisoft (www.agisoft.com)) are offering cloud-based image
product creation, but they are likely to be expensive over large extents
and not specific for rangeland applications. Researchers and resource
agencies should partner to develop cloud-based image processing tools
specifically for estimating forage utilization and other rangeland monitor-
ing applications.

Implications

We focus on three implications that emerge from this successful “proof
of concept” assessment showing that drone-based estimates of forage uti-
lization can replicate estimates from traditional ground-based methods.
First, there is promise to provide confident estimates of forage utilization
patterns over large pastures and landscapes, at levels of spatial precision
that are consistent with ground-based methods, and that promise will
only increase as the technology becomes more affordable and easy to use.

The second implication is related to the clear benefit of adopting 21st
century technology to assess site-specific resource conditions at excep-
tional precision and extent. This implies that training for rangeland
managers (or at least geospatial specialists) is likely to include operation
of drones for data collection and use of cloud-computing resources to
handle data processing demand. Adopting these technologies may be
similar to the proliferation of global positioning systems and geographic
information systems in the later 20th century, where the initial high
computing costs were reduced, use of the technologies became the
norm, and the availability of more precise spatial patterns was applied
to prescribe and evaluate management practices.

The third implication is that these technologies do not replace field
skills in plant identification, knowledge of phenological patterns of
growth, and ability to associate utilization patterns with the distribution
of soils and geomorphic surfaces. Common sense and field setting acuity
will remain critical to logical interpretation and application of the exten-
sive and precise information available from these new technologies.
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Appendix A

Table A1
Comparison of ground measured and point cloud modeled maximum height of 22
selected herbaceous plants.

Plant Species Ground Point cloud  Height proportion
specimen measured maximum  (point cloud height/
maximum  height (cm)  ground-based
height (cm) height)
1 Digitaria californica 80 36 045
2 Heteropogon 80 33 041
contortus
3 Bouteloua filiformis 50 30 0.6
4 Eragrostis 80 28 0.35
lehmanniana
5 Digitaria californica 50 26 0.52
Eragrostis 100 53 0.53
lehmanniana
7 Ambrosia 40 13 0.32
artemisifolia
8 Aristida sp. 60 10 0.16
9 Kallstroemia 50 30 0.6
grandiflora
10 Setaria leucopila 58 17 0.29
11 Heteropogon 100 44 0.44
contortus
12 Digitaria californica 64 40 0.62
13 Eragrostis 80 27 033
lehmanniana
14 Aristida sp. 69 29 042
15 Digitaria californica 80 33 041
16 Aristida sp. 50 31 0.62
17 Eragrostis 75 34 045
lehmanniana
18 Eragrostis 50 27 0.54
lehmanniana
19 Amaranthus sp. 60 26 043
20 Digitaria californica 60 21 035
21 Aristida sp. 55 34 0.61
Mean 0.45
Standard deviation
0.12
Table A2

Point cloud marker residuals (surveyed coordinate minus modeled coordinate).

Plot Acquisition  Markers Residual RMSE (cm)
date (m Easting Northing Elevation x,y,z
(x) (y) (2)
1 Aug. 2016 GCP (10) 26 05 0.7 28
Check (3) 16 15 0.8 24
Sept.2016  GCP (10) 09 09 0.6 14
Check (3) 14 1.0 22 238
2 Aug. 2016 GCP (10) 0.8 0.6 0.6 13
Check (3) 1.1 14 22 29
Sept. 2016  GCP(10) 0.5 04 0.3 08
Check (3) 06 04 13 15
3 Aug. 2016 GCP (10) 15 13 04 2.1
Check (3) 22 09 04 1.0
Sept. 2016 GCP (10) 1.1 1.0 0.5 16
Check (3) 08 16 16 24
4 Aug. 2016 GCP (10) 1.2 1.2 3.1 3.6
Check (3) 06 06 15 17
Sept. 2016  GCP (10) 14 1.7 2.1 3.1
Check (3) 26 15 24 38
5 Aug. 2016 GCP (10) 1.0 0.6 1.0 1.6
Check (3) 0.5 04 1.6 1.7
Sept. 2016 GCP (10) 0.7 0.6 0.5 1.0
Check (3) 0.5 08 0.9 14
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Table A2 (continued)

Plot Acquisition Markers Residual RMSE (cm)
dat
ate (m) Easting Northing Elevation Xx,y,z
(x) (v) (2)
6 Aug. 2016  GCP (10) 0.8 09 0.9 15
Check (3) 09 0.5 1.8 20
Sept.2016 GCP(10) 09 05 0.7 13
Check (3) 02 02 12 12
Plot average Aug. & Sept. GCP (60) 1.1 0.8 0.9 1.8
2016 Check (18) 1.0 0.8 14 20
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