Changes in photosynthesis and soil moisture drive the seasonal soil respiration-temperature hysteresis relationship

Quan Zhang
d, Richard P. Phillips, Stefano Manzoni, Russell L. Scott, A. Christopher Oishi, Adrien Finzi, Edoardo Daly, Rodrigo Vargas, Kimberly A. Novick

ABSTRACT

In nearly all large-scale terrestrial ecosystem models, soil respiration is represented as a function of soil temperature. However, the relationship between soil respiration and soil temperature is highly variable across sites and there is often a pronounced hysteresis in the soil respiration-temperature relationship over the course of the growing season. This phenomenon indicates the importance of biophysical factors beyond just temperature in controlling soil respiration. To identify the potential mechanisms of the seasonal soil respiration-temperature hysteresis, we developed a set of numerical models to demonstrate how photosynthesis, soil moisture, and soil temperature, alone and in combination, affect the hysteresis relationship. Then, we used a variant of the model informed by observations of soil respiration, soil temperature, photosynthesis, and soil moisture from multiple mesic and semi-arid ecosystems to quantify the frequency of hysteresis and identify its potential controls. We show that the hysteresis can result from the seasonal cycle of photosynthesis (which supplies carbon to rhizosphere respiration), and soil moisture (which limits heterotrophic respiration when too low or too high). Using field observations of soil respiration, we found evidence of seasonal hysteresis in 9 out of 15 site-years across 8 diverse biomes. Specifically, clockwise hysteresis occurred when photosynthesis preceded seasonal soil temperature and counterclockwise hysteresis occurred when photosynthesis lagged soil temperature. We found that across all sites, much of the respiration-temperature lag was explained by the decoupling of photosynthesis and temperature, highlighting the importance of recently assimilated carbon to soil respiration. An analysis of observations from 129 FLUXNET sites revealed that time lags between gross primary productivity (a proxy for canopy photosynthesis) and soil temperature were common phenomena, which would tend to drive counterclockwise hysteresis at low-latitude sites and clockwise hysteresis at high-latitude sites. Collectively, our results show that incorporating photosynthesis and soil moisture in the standard exponential soil respiration-temperature model (i.e., Q10 model) improves the explanatory power of models at local scales.

1. Introduction

Soil respiration (Rs; i.e., the sum of autotrophic and heterotrophic respiration in the soil) is the largest terrestrial carbon (C) source to the atmosphere. Consequently, small changes in the magnitude of Rs can produce considerable fluctuations in atmospheric CO2 concentration (Raich and Schlesinger, 1992) and impact global climate. Soil temperature (Ts) is typically the dominant factor controlling the rate of Rs, often explaining most of its variability (Bond-Lamberty and Thomson, 2010a; Davidson et al., 1998; Lloyd and Taylor, 1994), with numerous studies demonstrating that Rs responds exponentially to Ts in ecosystems where water is not limiting (Luo et al., 2001; Zhang et al., 2013).
However, in many ecosystems, cycles of Rs are often out of phase with cycles of Ts, leading to hysteresis in the Rs-Ts relationship at both diurnal (see Zhang et al., 2015) and seasonal timescales (see Table 1). Such hysteresis has been observed most frequently at the diurnal scale, and there is a rich body of literature explaining the mechanisms that control this pattern. First, the dynamics of soil heat flow can cause soil temperature in different soil layers to peak at different times of the day (Phillips et al., 2011; Zhang et al., 2015). Second, the dynamics of gas transport in the soil is affected by soil moisture and soil structure, which determine how efficiently respired CO2 is transported to the surface where it is measured (Zhang et al., 2015). Finally, the dynamics of photosynthesis and carbon allocation can also affect diurnal hysteresis by regulating the availability of substrate to soil microbes and the rhizosphere (Abramoff and Finzi, 2015; Okawa et al., 2014; Stoy et al., 2007; Vargas and Allen 2008; Zhang et al., 2015). While reports of hysteresis occurring at seasonal scales have also been widely reported (Table 1), the drivers of these seasonal patterns are poorly understood and no consensus has emerged to explain them.

One challenge to uncovering a single explanation for the hysteresis relationship is that the nature of the hysteresis may differ. In nearly 40% of the previous studies in Table 1, increases in Rs lag increases in Ts, generating a counterclockwise hysteresis (i.e., Rs at a given temperature is lower during the early growing season than during the late growing season). Such a dynamic could occur when photosynthesis is in phase with Ts, but there is a long lag in the delivery of substrate to the roots or microbes (Grill, 1991; Jia et al., 2013, see Table 1) either through allocation processes or through litterfall (Curiel Yuste et al., 2005). In contrast, in ~50% of the studies in Table 1, increases in Rs precede increases in Ts, resulting in a clockwise hysteresis (i.e., Rs at a given temperature is greater during the early growing season than during the late growing season). This sort of pattern could be explained by progressive substrate depletion over the course of the growing season (Kirschbaum, 2006), by greater root productivity early in the growing season (Oe et al., 2011) or by soil moisture (θ) limitation to soil respiration late in the season (Gaumont-Guay et al., 2006). In addition to these two patterns (i.e., counterclockwise and clockwise), a “figure-8” pattern at the diurnal scale (Zhang et al., 2015) can also characterize seasonal dynamics (e.g., Harper et al., 2005; Phillips et al., 2010, Table 1). This pattern may result from different sensitivities of autotrophic and heterotrophic respiration to their drivers (Song et al., 2010, Table 1). For example, although both autotrophic and heterotrophic respiration respond positively to Ts (Zhang et al., 2013), a higher temperature sensitivity is commonly assumed for autotrophic respiration (Boone et al., 1998; Savage et al., 2013; Zhang et al., 2013), whereas heterotrophic respiration may be more sensitive to soil moisture (Moyano et al., 2013). Thus, a critical challenge is not merely to understand why hysteresis occurs, but to identify the frequency of environmental conditions conducive to seasonal clockwise, counterclockwise or figure-8 hysteresis.

However, in many ecosystems, cycles of Rs are often out of phase with cycles of Ts, leading to hysteresis in the Rs-Ts relationship at both diurnal (see Zhang et al., 2015) and seasonal timescales (see Table 1). Such hysteresis has been observed most frequently at the diurnal scale, and there is a rich body of literature explaining the mechanisms that control this pattern. First, the dynamics of soil heat flow can cause soil temperature in different soil layers to peak at different times of the day (Phillips et al., 2011; Zhang et al., 2015). Second, the dynamics of gas transport in the soil is affected by soil moisture and soil structure, which determine how efficiently respired CO2 is transported to the surface where it is measured (Zhang et al., 2015). Finally, the dynamics of photosynthesis and carbon allocation can also affect diurnal hysteresis by regulating the availability of substrate to soil microbes and the rhizosphere (Abramoff and Finzi, 2015; Okawa et al., 2014; Stoy et al., 2007; Vargas and Allen 2008; Zhang et al., 2015). While reports of hysteresis occurring at seasonal scales have also been widely reported (Table 1), the drivers of these seasonal patterns are poorly understood and no consensus has emerged to explain them.

One challenge to uncovering a single explanation for the hysteresis relationship is that the nature of the hysteresis may differ. In nearly 40% of the previous studies in Table 1, increases in Rs lag increases in Ts, generating a counterclockwise hysteresis (i.e., Rs at a given temperature is lower during the early growing season than during the late growing season). Such a dynamic could occur when photosynthesis is in phase with Ts, but there is a long lag in the delivery of substrate to the roots or microbes (Grill, 1991; Jia et al., 2013, see Table 1) either through allocation processes or through litterfall (Curiel Yuste et al., 2005). In contrast, in ~50% of the studies in Table 1, increases in Rs precede increases in Ts, resulting in a clockwise hysteresis (i.e., Rs at a given temperature is greater during the early growing season than during the late growing season). This sort of pattern could be explained by progressive substrate depletion over the course of the growing season (Kirschbaum, 2006), by greater root productivity early in the growing season (Oe et al., 2011) or by soil moisture (θ) limitation to soil respiration late in the season (Gaumont-Guay et al., 2006). In addition to these two patterns (i.e., counterclockwise and clockwise), a “figure-8” pattern at the diurnal scale (Zhang et al., 2015) can also characterize seasonal dynamics (e.g., Harper et al., 2005; Phillips et al., 2010, Table 1). This pattern may result from different sensitivities of autotrophic and heterotrophic respiration to their drivers (Song et al., 2010, Table 1). For example, although both autotrophic and heterotrophic respiration respond positively to Ts (Zhang et al., 2013), a higher temperature sensitivity is commonly assumed for autotrophic respiration (Boone et al., 1998; Savage et al., 2013; Zhang et al., 2013), whereas heterotrophic respiration may be more sensitive to soil moisture (Moyano et al., 2013). Thus, a critical challenge is not merely to understand why hysteresis occurs, but to identify the frequency of environmental conditions conducive to seasonal clockwise, counterclockwise or figure-8 hysteresis.

The primary objective of this work is to present a generalizable framework to elucidate the key mechanisms responsible for generating the various hysteresis patterns at the seasonal timescale. We test the hypotheses that the compound effects of photosynthesis and θ together with Ts are major drivers of the seasonal hysteresis, and the time lag between gross primary productivity (GPP) and Ts is an important factor driving the temporal decoupling of Rs and Ts. We expect that counter-clockwise hysteresis will be most common at sites where GPP lags Ts, clockwise hysteresis will be most common at sites where GPP precedes Ts, and the figure-8 pattern will be most common at sites where the dynamics of θ and GPP are out of phase, but both are important in controlling soil respiration. We test these hypotheses by merging field observations with numerical models of Rs that accommodates a variety of mechanisms which may be responsible for seasonal Rs-Ts hysteresis.
2. Method and theory

We present two sets of mathematical approaches to disentangle the drivers of the seasonal hysteresis. First, we use a conceptual numerical model to illustrate how different time lags among \(T_s \), GPP and \(\theta \) can alter the shape of the seasonal \(R_s-T_s \) hysteresis. Second, we use observations of \(R_s, T_s, \) GPP, and \(\theta \) from a range of biomes to parameterize quasi-empirical variants of the numerical model for \(R_s \), which are then used to interpret the observed patterns of hysteresis at these sites. Here we assume that \(T_s, \) GPP, and \(\theta \) impact \(R_s \) independently; in the discussion, we address some limitations of this assumption and the potential for interactions among these drivers.

2.1. Developing a simple model with conceptual mathematical representation of the hysteresis

As the first step in our analysis, we develop a simple mathematical model for soil respiration that accommodates the drivers (e.g., temperature, GPP, and \(\theta \) which we hypothesized to be primarily responsible for seasonal hysteresis. The results emerging from the analysis of this theoretical model will inform our understanding of dynamics observed in field observations.

In most models, \(R_s \) is simulated based on its exponential relationship with temperature (\(T \), which represents a generic temperature of either soil or air temperature). Here, we also Great! considered GPP (used as a proxy of canopy photosynthesis rate) and \(\theta \) as key factors driving \(R_s \) at the local scale. For each driver (\(T_s, \) GPP, and \(\theta \)), a response function of \(R_s (\chi) \) was specified together with seasonal cycles of the driver. To focus on the role of seasonal phase shift among the drivers, all values of the drivers were normalized to fall between 0 and 1. Likewise, the response functions associated with each driver were also normalized so that they ranged from a minimum value, when the driver has no effect, to 1, when the effect of the driver reaches its maximum. For the response function of \(T \) (Eq. (1.1)), we adopted a \(Q_{10} \) model (Lloyd and Taylor, 1994):

\[
\chi_T = e^{(T-\theta_{\text{max}})/b}
\]

where \(\theta_{\text{max}} \) is the maximum seasonal temperature, and \(b \) is a temperature sensitivity coefficient.

The response function of \(\theta \) (Eq. (1.2)) was assumed to be quadratic, thus accounting for the suppression of soil respiration at both high and low \(\theta \) (Suseela et al., 2012; Zhang et al., 2013):

\[
\chi_\theta = 1 - \left(\frac{\theta}{\theta_{\text{sat}}}-1 \right)^2
\]

where \(\theta_{\text{sat}} \) is the saturation level at maximum respiration (near soil field capacity) so that \(\frac{\theta}{\theta_{\text{sat}}} \) is a non-dimensional value reflecting effects of \(\theta \). The response function of GPP (Eq. (1.3)) was assumed to be linear (Tang et al., 2005; Zhang et al., 2013):

\[
\chi_{\text{GPP}} = \chi_{\text{GPP,0}}(1-\chi_{\text{GPP,0}})GPP
\]

where the parameter \(\chi_{\text{GPP,0}} \), if positive, allows soil respiration to occur even in the absence of plant carbon uptake due to heterotrophic activity. See Fig. S1 in the supplementary information (SI) for an illustration of these response functions.

To describe the seasonal cycles of each driver, we used generic non-negative sine functions:

\[
y = \frac{1}{2}(1 + \sin(ft + \phi_f))
\]

where \(y \) is either \(T \), GPP or \(\theta ; f \) is \(2\pi \) year\(^{-1} \) so that the period of all drivers is 1 year, \(t \) is time within the one-year interval, and \(\phi_f \) is the phase angle shift with respect to a reference phase. Here, the phase of the \(T \) series was set to \(\phi_f = 0 \), such that the phase shifts of GPP and \(\theta \) were defined relative to the phase of \(T \). A positive phase shift indicates that GPP and \(\theta \) peak before \(T \).

The compound environmental effects on \(R_s \) were then modeled by different combinations of Eqs. (1.1)-(1.3) as:

\[
\chi(T,GPP) = \chi_T(\phi_T)\chi_{\text{GPP}}(\phi_{\text{GPP}})
\]

(3.1)

\[
\chi(T,\theta) = \chi_T(\phi_T)\chi_\theta(\phi_\theta)
\]

(3.2)

\[
\chi(T, GPP, \theta) = \chi_T(\phi_T)\chi_{\text{GPP}}(\phi_{\text{GPP}})\chi_\theta(\phi_\theta)
\]

(3.3)

where Eq. (3.1) combines the effects of GPP and \(T \) on \(R_s \), Eq. (3.2) combines \(T \) and, and Eq. (3.3) combines all the three factors.

To explore how GPP, \(\theta \) and their combinations regulate the temperature response of \(R_s \), the response functions (i.e., Eqs. (3.1)-(3.3)) were plotted as a function of \(T \) under various \(\phi_{\text{GPP}} \) and \(\phi_\theta \) values. The area enveloped by the loop can be used to quantify the hysteresis magnitude as proposed by Zhang et al. (2014). The phase shifts of \(\phi_{\text{GPP}} \) and \(\phi_\theta \) with respect to \(T \) were set at \(\pi/6, 0 \) and \(-\pi/3 \) for Eqs. (3.1) and (3.2); the phase shifts were selected as typical cases to show how positive, zero and negative shifts regulate the shape and direction of the hysteresis between \(R_s \) and \(T \). As Eq. (3.3) includes the effect of three variables, we considered scenarios where \(\phi_\theta \) was set to \(\pi/6, 0 \) and \(-\pi/3 \), and for each considered \(\phi_{\text{GPP}} = \pi/6 \) and \(\phi_{\text{GPP}} = -\pi/3 \). By normalizing the drivers, we limit the focus of this analysis to the effects associated with phase shifts alone.

2.2. Diagnosing and modeling hysteresis in field measurements

We adopt the model structure described above into a more commonly-used \(Q_{10} \) form that can be readily parameterized using field observations, facilitating an assessment of how well the hypothesized drivers of seasonal hysteresis can be captured by the more commonly-used \(Q_{10} \) approach. In this exercise, the drivers were not normalized to one. However, the shapes of the functional relationships between \(R_s \) and each driver are similar to those presented in Eqs. (1.1)-(1.3). In the \(Q_{10} \) model here, \(R_s \) is described as a function of \(T_s \) (Lloyd and Taylor, 1994) as:

\[
R_s = R_{ref}e^{\theta T_s}
\]

(4)

where \(R_{ref} \) is the basal respiration when \(T_s = 0 °C \), and \(b \) is the temperature sensitivity coefficient, linked to \(Q_{10} \) via \(Q_{10} = e^{10b} \).

Similar to Eq. (1.3), \(R_s \) is assumed to be a linear function of canopy photosynthesis (Tang et al., 2005; Zhang et al., 2013) as:

\[
R_s = a_G\text{GPP} + b_G
\]

(5)

To simultaneously consider both temperature and canopy photosynthesis, we assume that basal respiration correlates with canopy photosynthesis (Sampson et al., 2007). This requires linking \(R_{ref} \) in Eq. (4) to GPP in a way that is also consistent with the linear dependence assumed in Eq. (5). To this aim, the linear dependence in Eq. (5) was normalized to obtain a non-dimensional factor that varies between 0 and 1 and rescales respiration as a function of GPP; this factor was then multiplied by a new reference respiration value and \(R_s \) was modeled as:

\[
R_s = R_{ref,GPP} + \frac{GPP}{GPP_{\text{max}}} + n e^{\theta T_s}
\]

(6)

where \(R_{ref,GPP} \) is the new reference rate, the parameter \(n \) defines the role of GPP as a driver of \(R_s \) (\(n = 0 \rightarrow \) strongest effect of GPP), and \(GPP_{\text{max}} \) is the maximum measured value of GPP. When \(GPP = GPP_{\text{max}}, \) the second term on the right-hand side of Eq. (6) equals one, indicating that GPP is not limiting soil respiration. In contrast, as GPP decreases the second term also decreases to the minimum value of \(n/(1+n) \), which represents the contribution of heterotrophic respiration to the reference respiration, in absence of contributions from recent photosynthates. The parameter \(n \) thus reflects the fact that freshly assimilated carbohydrates are not the only substrate available to microbes to respire and heterotrophic respiration is also associated with the
decomposition of soil organic matter. In Eq. (6), Rs increases with increasing n following a saturating curve to capture limiting factors that bound soil respiration to an upper limit independent of GPP (Rs = Rs_{ref}GPP^{θ_{opt}}T_s\theta_{opt}, \text{ where } \theta_{opt} < 1).

To account for the soil moisture effects in the Q_{10} approach, we follow the commonly used quadratic dependence of Rs on θ to account for the suppression of Rs at both high and low θ conditions (Suseela et al., 2012; Zhang et al., 2013). Accordingly,

\begin{equation}
R_s = R_{\text{ref}}\left[1-c(\theta-\theta_{opt})^2\right]e^{\theta_{opt}}T_s
\end{equation}

where Rs_{ref} is the reference rate when soil moisture is included as a predictor of respiration, \theta_{opt} is the optimal soil moisture at which soil respiration reaches its maximum value, and c is a shape parameter reflecting the importance of soil moisture as a driver of Rs (c = 0 → least effect of 0). As in Eq. (6), the second term on the right-hand side of Eq. (7) is non-dimensional and varies between 0 and 1 (when θ = θ_{opt}).

In parallel with the simple models assuming that either canopy photosynthesis and temperature (Eq. (6)) or soil moisture and temperature (Eq. (7)) regulate basal respiration, we constructed a full model including all three factors (T_s, GPP and θ):

\begin{equation}
R_s = R_{\text{ref},GPP,θ} \left[1-c(\theta-\theta_{opt})^2\right]e^{\theta_{opt}}T_s
\end{equation}

where Rs_{ref,GPP,θ} is a new reference rate. As in the previous equations, all conditions (Suseela et al., 2012; Zhang et al., 2013) were rejected from analyses. Adjacent to each soil collar, a thermocouple was inserted 5 cm into the ground for temperature measurement. A time domain reflectometry sensor (CS-615, Campbell Scientiﬁc, Logan, UT, USA) was inserted 30 cm into the ground, approximately in the center of all 8 plots for continuous soil moisture measurement. The Rs measurement interval includes 90 s during which the program switched between chambers. Soil effluxes were calculated using a method similar to the calculations with an LI-8100 (LiCOR, Lincoln, NE, USA). Model fits with a coefficient of determination (R^2) less than 0.9 were rejected from analyses. Adjacent to each soil collar, a thermocouple was inserted 5 cm into the ground for temperature measurement. A time domain reflectometry sensor (CS-616, Campbell Scientiﬁc) was inserted 30 cm into the ground, approximately in the center of all 8 plots for continuous soil moisture measurement. The Rs measurements operated through 2012.

The Harvard Forest (AmeriFlux Site, US-Ha1) is located in central Massachusetts and has cooler conditions than US-MMS. At Harvard Forest, Rs measurements were collected separately from two different experiments. The first experiment (hereafter named US-Ha1-E1) was conducted in 2003 and had 6 replicate chambers (Savage et al., 2008); soil temperature and soil moisture were monitored concurrently using a 10 cm probe and a 15 cm TDR, respectively, both inserted vertically into the ground. The second experiment (hereafter named US-Ha1-E2) was conducted from 2003 through 2006 along a moisture gradient from the edge of a wetland to upland by using 8 chambers (Phillips et al., 2010); soil temperature at 2 cm depth was measured, but soil moisture was not. In both experiments, soil CO₂ concentration was continuously measured, and again, the method similar to LI-8100 (LiCOR) calculations was used to calculate Rs. For more methodological details, see Savage et al. (2008) (for US-Ha1-E1) and Phillips et al. (2010) (for US-Ha1-E2).

The Santa Rita Mesquite Savanna (AmeriFlux site, US-SRM) and Walnut Gulch Kendall Grasslands (AmeriFlux site, US-Wkg) are both semi-arid ecosystems that experience higher temperatures and lower amounts of precipitation relative to other sites. At US-SRM, automated chambers (LI-8100, LiCOR) were used to measure Rs under intact mesquite tree canopies with 3 replicates (control plot), under mesquite tree canopies that were girdled with 3 replicates (girdled plot), and in the inter-canopy space occupied by bunchgrasses with 2 replicates (open plot) in 2015. The chambers were set over soil collars inserted 8
cm into the ground, and the system was programmed to monitor air temperature, relative humidity, \(\text{CO}_2 \) mole fraction, and atmospheric pressure every second during 90 s measurement intervals every 2 h. \(R_s \) was obtained using the LI-8100 software, and chamber runs where the model \(R_s^2 \) was less than 0.9 were rejected from analyses. Close to each chamber, one soil thermistor and soil moisture probe were installed at 5 cm depth. At US-Wkg, the same type of soil chambers used in US-SRM were deployed at four locations in 2016. Soil temperature and moisture were monitored with the same protocol as US-SRM.

In all of the study sites, NEE was partitioned into GPP and ecosystem respiration (ER) by fitting nighttime NEE to a function of soil or air temperature. This function was used to estimate daytime respiration, and GPP was then calculated as \(\text{NEE} + \text{ER} \). At US-MMS, a single exponential function of surface soil temperature was fitted using nighttime NEE measurements for the entire year, following the approach of Schmid et al. (2000) and Sulman et al. (2016). At Harvard Forest, nighttime NEE was fitted to air temperature within a fixed ~10-day window (Munger and Wofsy, 1999, Harvard Forest Data Archive: HF004). The same approach was used for US-SRM and US-Wkg but with a 5-day moving window that did not overlap a rain event (see Scott et al., 2015). At Duke Forest, NEE was partitioned using the Van Gorsel et al. (2009) approach as described in Novick et al. (2015). This approach still relies on using nocturnal data to parameterize a temperature-dependent model for ER; however, the data are subjected to a stricter set of filters designed to minimize contributions from periods of likely horizontal and vertical advection. We use these site-specific GPP products to preserve consistency between results presented here and previous work from these sites.

2.5. Field data processing and analysis

Time series of \(R_s \) data often contain spikes and errors due to gas analyzer failure and rain events. Therefore, all measurements were filtered to exclude these data. To account for spatial variability, \(R_s \) measurements were averaged by treatment types (i.e., ‘control’, ‘girdled’, and ‘open’ if any) at each site. Because this study is focused on hysteresis at the seasonal timescale, the original measurement series (with a resolution from half hour to ~2 h) were averaged into two-week intervals to reduce the noise associated with high-frequency measurements. The two-week interval is also consistent with the averaging period adopted in many previous studies listed in Table 1. To test that a two-week window was not too large (possibly hiding dynamics that might affect the relationship between variables at the seasonal scale), time lags were also estimated using one-day and one-week windows. The results from this analysis are similar to those obtained with a two-week window (Fig. S2 in the SI), which are presented throughout the main text. All observations, including \(T_s \), GPP, and \(R_s \), were also aggregated into two-week intervals accordingly.

Our hypotheses state that phase shifts between key driving and response variables are primarily responsible for generating the observed hysteresis. To quantify the time lags (or offsets) between \(R_s \) and \(T_s \), as well as the time lag between GPP and \(T_s \), a cross correlation analysis was conducted. Two data series \(X \) and \(Y \) were thus related as:

\[
y(t) = aX(t-h) + b
\]

where \(t \) is time and \(h \) is the lag (both \(t \) and \(h \) are defined by a unit increment corresponding to 2 weeks), and \(a \) and \(b \) are regression parameters. To evaluate the time lag, \(X \) was shifted both forward (positive \(h \)) and backward (negative \(h \)) by an interval of \(h (h=1, 2, 3, \ldots) \); \(Y \) was then linearly regressed with the newly generated shifted time series (i.e., \(X(t-h) \)), and finally the best-fit regression (i.e., maximum \(R_s^2 \)) was used to identify the time lag.

2.6. GPP and soil temperature time lag within FLUXNET2015 dataset

As a final step in the analysis, we determined the potential for lags between GPP and \(T_s \) to drive the seasonal hysteresis across a wide range of biomes by extending the cross-correlation analysis to data from 129 sites in the FLUXNET2015 Tier1 dataset (http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/). We selected the \(T_s \) measured closest to the surface and used the GPP product based on the nighttime partitioning approach by Reichstein et al. (2005). We only used original measurements or gap-filled data of good quality (gap filling flag = 0 represents original measurement, while gap filling flag = 1 or 2 represent gap filling with high or medium quality). The GPP–\(T_s \) lag was then evaluated at all sites of the FLUXNET2015 Tier1 dataset by using the aforementioned methods (Eq. (10)), and using a time step of one week.

3. Results

3.1. Simulating soil respiration-temperature hysteresis using conceptual models

Combining GPP and \(T \) in the \(R_s \) models successfully generated hysteresis in the relationship between \(R_s \) and \(T \) (Fig. 1a). Specifically, a clockwise hysteresis appeared when the annual peak of \(T \) lagged GPP (red curve in Fig. 1a), while a counterclockwise hysteresis appeared when the annual peak of \(T \) preceded GPP (black curve in Fig. 1a). The extent of the hysteresis increased as a function of the absolute phase angle difference and shrunk to zero when GPP and \(T \) were in phase (blue curve in Fig. 1a). When effects of \(\theta \) and \(T \) were incorporated into the model, a figure-8 loop emerged (Fig. 1b), with the direction of the loop dependent on the value of the phase angle shift of \(\theta \). Combining GPP, \(\theta \) and \(T \) with various phase angle shift combinations generated more diverse patterns in the hysteresis relationships (Fig. 1c and d).

3.2. Hysteresis in field measurements and numerical models

Nearly all hysteresis patterns that have been reported in previous studies were represented in the field data considered here (Fig. S3). We present three typical patterns in Fig. 2, i.e., the clockwise direction in US-Dk2 in 2003 (Fig. 2a), the counterclockwise direction of the control plot in US-SRM (Fig. 2b) and the figure-8 pattern in US-Wkg (Fig. 2c) (see Table 3 and Fig. S3 in the SI for all sites). Although seasonal hysteresis effects were strong, \(T_s \) still explained much of the seasonal variation in \(R_s \) in the mesic sites of US-Dk2, US-Dk3, Duke-OP, US-MMS, US-Ha1-E1 and US-Ha1-E2 (\(R_s^2 \) range 0.64–0.94, see Table 4).

Table 2
Characteristics of the selected sites. MAT (°C) and MAP (mm) are mean annual temperature and mean annual precipitation, respectively.

<table>
<thead>
<tr>
<th>Site ID</th>
<th>Location</th>
<th>MAT (°C)</th>
<th>MAP (mm)</th>
<th>Ecosystem type</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>US-Ha1(E1)</td>
<td>42°54’ N, 72°17’ W</td>
<td>6.62</td>
<td>1071</td>
<td>Deciduous Broadleaf Forest</td>
<td>Savage et al. (2008)</td>
</tr>
<tr>
<td>US-Ha1(E2)</td>
<td>42°54’ N, 72°17’ W</td>
<td>6.62</td>
<td>1071</td>
<td>Deciduous Broadleaf Forest</td>
<td>Phillips et al. (2010)</td>
</tr>
</tbody>
</table>
Fig. 1. Dependence of normalized soil respiration (χ in Eqs. (3.1), (3.2) and (3.3)) on temperature (T) under various scenarios by combining (a) temperature and gross primary productivity (GPP) with phase angle shifts of $\pi/6$, 0 and $-\pi/3$ (positive values indicate GPP precedes T, and negative values indicate GPP lags T), (b) temperature and soil moisture (θ) with phase angle shifts of $\pi/6$, 0 and $-\pi/3$ (positive values indicate θ precedes T, and negative values indicate θ lags T), (c) temperature, GPP with phase angle shift of $\pi/6$ and soil moisture with phase angle shifts of $\pi/6$, 0 and $-\pi/3$, (d) temperature, GPP with phase angle shift of $-\pi/3$ and soil moisture with phase angle shifts of $\pi/6$, 0 and $-\pi/3$. Solid dots denote the start of the seasonal cycle when t = 0 in Eq. (2) (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).

Fig. 2. Measured hysteresis patterns of soil respiration (R_s) in response to soil temperature (T_s) at the three representative sites (a) US-Dk2 of 2003, (b) US-SRM control plot and (c) US-Wkg; the arrows indicate the progression of a year cycle, with the red and blue arrows indicating the first and second half of the cycle, respectively; (d–f) the dependence of R_s on gross primary productivity (GPP, used as a proxy for canopy photosynthesis supporting root and rhizosphere respiration) at the three sites; (g–i) the relationship between R_s and soil moisture (θ) at the three sites (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
However, at the semi-arid sites (US-SRM and US-Wkg), T_s poorly explained the variation in seasonal Rs across treatments (R^2 range 0.06–0.40, see Table 4). In addition to T_s, GPP also correlated well with total soil respiration (comprised of root and heterotrophic respiration) across sites (Fig. 2d–f as examples, see Fig. S4 in the SI for all sites), and can explain 52–90% of seasonal variations in Rs (Table 4). Soil moisture had no discernible effects on Rs across the mesic sites (Fig. 2g as an example for US-Dk2, see Fig. S5 for other mesic sites). At the semi-arid sites of US-SRM and US-Wkg, a positive linear function of Q explained 20–43% of the variation in Rs (data not shown, but see Fig. S5g–i and j in the SI).

Across all sites, the seasonal time lag between GPP and T_s was strongly correlated with the lag between R_s and T_s (Fig. 3); a possible interpretation of this correlation is that respiration of recently assimilated carbon has a strong impact on seasonal respiration rates. After interpretation of this correlation is that respiration of recently assimilated carbon has a strong impact on seasonal respiration rates. After incorporating GPP and the parameter n in Eq. (6), which implicitly reflects the contribution of photosynthate to root respiration in the Q10 model, the hysteresis patterns at most sites were reproduced more accurately than by a simple temperature-dependent model (Fig. 4a–c for representative examples, and Fig. S6 for all sites), with improvements in R^2 (Table 4) and RMSE (compare Table S2 and S1). Model improvement was also reflected by the lower AICc of Eq. (6) compared with that of Eq. (4) at most sites, indicating that adding the variable GPP and parameter n is statistically justifiable. Hence, Eq. (6), which incorporates GPP, was able to reproduce the R_s-T_s hysteresis by capturing the phase angle of R_s, because the time lag was close to 0 between modeled and measured R_s series (data not shown). However, incorporating GPP did not capture the hysteresis at US-Ha1-E2 (Fig. S6i–l).

Similarly, after incorporating Q in the Q10-based temperature response function (Eq. (7)), the model improvement was pronounced in most sites, as reflected by the increased R^2, as well as lowered AICc (Table 4) and RMSE (Table S3). Including Q effects in the model further improved agreement between the simulations and the observations at several sites, including the clockwise hysteresis at US-Dk2 of 2003 (Fig. 4d), counterclockwise behavior at US-SRM-control (Fig. 4e), and the figure-8 pattern at the US-Wkg (Fig. 4f). See Fig. S7 for all sites.

The full model, which incorporated both GPP and Q constraints into the Q10-based temperature response function (Eq. (8)) when data were available, was able to reproduce all the observed hysteresis dynamics (Fig. 4g–i as examples, see Fig. S8 for all sites) with relatively higher R^2 (Table 4) and lower RMSE than the simpler models (Table S4). However, the model performance was not necessarily improved when comparing AICc with the scenarios considering T_a alone, considering GPP alone, combining T_a and GPP, and combining T_a and Q (Table 4).

Table 3
Summary of the hysteresis direction in the field measurements.

<table>
<thead>
<tr>
<th>Site</th>
<th>Counterclockwise</th>
<th>Clockwise</th>
<th>Figure-8 pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>US-SRM-control</td>
<td>US-Dk3</td>
<td>US-MMS-control</td>
<td></td>
</tr>
<tr>
<td>US-SRM-girdled</td>
<td>US-MMS-girdled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US-SRM-open</td>
<td>US-Wkg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US-Ha1-E2-2003</td>
<td>US-Ha1-E1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US-Ha1-E2-2006</td>
<td>US-SRM-control</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4
Performance of soil respiration predictive equations based on soil temperature (Eq. (4)), GPP (Eq. (5)), soil temperature and GPP (Eq. (6)), soil temperature and soil moisture (Eq. (7)), soil temperature, GPP and soil moisture (Eq. (8)). Here, the performance was evaluated by means of the coefficient of determination (R^2) or the adjusted R^2 ($adj. R^2$) and the corrected Akaike’s Information Criterion scores (AICc). AICc scores should be compared only across models for a single site. The root mean square error (RMSE), the significance level of the fitting (p) and the fitted parameters can be found in Table S1–S4 in supplementary information.

<table>
<thead>
<tr>
<th>Site</th>
<th>Eq. (4)</th>
<th>Eq. (5)</th>
<th>Eq. (6)</th>
<th>Eq. (7)</th>
<th>Eq. (8)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R^2</td>
<td>AICc</td>
<td>R^2</td>
<td>AICc</td>
<td>$adj. R^2$</td>
</tr>
<tr>
<td>US-Dk2-2003</td>
<td>0.64</td>
<td>22.00</td>
<td>0.76</td>
<td>12.63</td>
<td>0.73</td>
</tr>
<tr>
<td>US-Dk2-2005</td>
<td>0.65</td>
<td>11.91</td>
<td>0.74</td>
<td>2.16</td>
<td>0.64</td>
</tr>
<tr>
<td>US-Dk3</td>
<td>0.92</td>
<td>15.92</td>
<td>0.89</td>
<td>9.71</td>
<td>0.94</td>
</tr>
<tr>
<td>Duke-OP</td>
<td>0.79</td>
<td>7.39</td>
<td>0.86</td>
<td>15.63</td>
<td>0.84</td>
</tr>
<tr>
<td>US-MMS-control</td>
<td>0.68</td>
<td>28.92</td>
<td>0.87</td>
<td>49.93</td>
<td>0.87</td>
</tr>
<tr>
<td>US-MMS-girdled</td>
<td>0.86</td>
<td>18.94</td>
<td>0.87</td>
<td>18.94</td>
<td>0.87</td>
</tr>
<tr>
<td>US-SRM-control</td>
<td>0.06</td>
<td>7.62</td>
<td>0.67</td>
<td>28.75</td>
<td>0.61</td>
</tr>
<tr>
<td>US-SRM-girdled</td>
<td>0.31</td>
<td>25.31</td>
<td>0.90</td>
<td>28.75</td>
<td>0.90</td>
</tr>
<tr>
<td>US-SRM-open</td>
<td>0.40</td>
<td>42.62</td>
<td>0.90</td>
<td>28.75</td>
<td>0.90</td>
</tr>
<tr>
<td>US-Wkg</td>
<td>0.25</td>
<td>16.18</td>
<td>0.93</td>
<td>64.57</td>
<td>0.92</td>
</tr>
<tr>
<td>US-Ha1-E1</td>
<td>0.94</td>
<td>15.04</td>
<td>0.52</td>
<td>14.61</td>
<td>0.95</td>
</tr>
<tr>
<td>US-Ha1-E2-2003</td>
<td>0.82</td>
<td>15.78</td>
<td>0.74</td>
<td>9.82</td>
<td>0.77</td>
</tr>
<tr>
<td>US-Ha1-E2-2004</td>
<td>0.90</td>
<td>20.25</td>
<td>0.80</td>
<td>6.67</td>
<td>0.89</td>
</tr>
<tr>
<td>US-Ha1-E2-2005</td>
<td>0.90</td>
<td>8.63</td>
<td>0.90</td>
<td>8.39</td>
<td>0.89</td>
</tr>
<tr>
<td>US-Ha1-E2-2006</td>
<td>0.80</td>
<td>12.4</td>
<td>0.67</td>
<td>2.68</td>
<td>0.75</td>
</tr>
</tbody>
</table>
3.3. Extending the scope of the analysis to FLUXNET sites

By leveraging the FLUXNET2015 Tier1 dataset, we found that the GPP-Ts lag spans a wide range from −25 to 25 weeks, with a mean (μ) and standard deviation (σ) of 2.1 and 6.8 weeks, respectively (Fig. 5). The GPP-Ts lag also showed strong inter-annual variation at the site level (see Table S5 for details). Spatially, the GPP-Ts lag varies with latitude (Fig. 6); specifically, it ranges from negative values at low latitudes to positive values with increasing latitude. Additionally, the GPP-Ts lag depends on vegetation type (Fig. 7), with savannas and closed shrublands on the two ends of GPP-Ts lag spectrum. In savannas, GPP is more likely to lag Ts with a mean GPP-Ts lag of −8.8 weeks, whereas in closed shrublands, GPP is more likely to precede Ts with a mean GPP-Ts lag of 6.6 weeks. The GPP-Ts lags for other vegetation types fall within the aforementioned range. Using the relationship in Fig. 3, GPP-Ts lag predicts a mean of 0.1 week for the Rs-Ts lag for the FLUXNET sites (Fig. 5). However, the expected Rs-Ts lag across the FLUXNET sites also varies considerably, from −24.6 to 21.0 weeks. Furthermore, the Rs-Ts lag of 64% site-years is higher than ±1 week.
4. Discussion

Hysteresis in the relationship between soil respiration and temperature suggests that important information is missing in conceptual models for Rs, including the widely used Q10 model (Bond-Lamberty and Thomson, 2010b; Lloyd and Taylor, 1994), which links Rs primarily to Ts. Although this phenomenon is commonly reported in the literature (see Table 1), there remains substantial disagreement on the mechanisms that determine the magnitude and direction of the hysteresis. While numerous studies have established that Rs responds exponentially to changes in Ts, recent reports of a hysteretic pattern for this relationship at seasonal timescales suggest that other factors likely mediate this relationship. Our results show that variation in GPP and θ can indeed lead to hysteresis in the Rs-Ts relationship, and that such patterns occur commonly (e.g., in nearly 60% of the site-years investigated), supporting our hypothesis. Our results provide new insights for understanding the sources of seasonal variability in Rs and demonstrate the importance of incorporating recently assimilated carbon and soil moisture into ecosystem models.

4.1. Effects of photosynthesis

Results from our modeling exercise reveal that lags in the seasonal variation of canopy photosynthesis and soil temperature can explain both clockwise and counterclockwise hysteresis patterns, depending on the direction of the lag (Fig. 1a), in a way that is consistent with field data in a wide range of sites (Fig. S3). In other words, the agreement between the model predictions and field observations supports the hypothesis that the time lag between soil respiration and temperature can originate from the lag between canopy photosynthesis and temperature (Fig. 3). Photosynthesis provides the substrate for respiration of both roots and microbes (Finzi et al., 2015; Högberg et al., 2001; Kuzyakov and Gavrichkova, 2010; Mencuccini and Hölttä, 2010; Tang et al., 2005), but belowground allocation and the transport between leaves and roots can range from hours to weeks (Baldocchi et al., 2006; Barron-Gafford et al., 2014; Kuzyakov and Cheng, 2001; Stoy et al., 2007; Tang et al., 2005; Vargas et al., 2011; Zhang et al., 2013; Zhang et al., 2015). The time lag between canopy photosynthesis and soil temperature has been previously invoked to explain the Rs-Ts hysteresis at diurnal timescales (Bahn et al., 2008; Oikawa et al., 2014; Parkin and Kaspar, 2003; Savage et al., 2013; Vargas et al., 2011; Zhang et al., 2015) and the figure-8 hysteresis pattern recorded in field experiments (Zhang et al., 2015). Our results indicate that a similar conclusion also holds at the seasonal timescale, consistent with previous work (Phillips et al., 2010). The figure-8 pattern can reflect the dynamic of substrate allocation to roots (Zhang et al., 2015), because the substrate input can significantly regulate the temperature sensitivity of soil respiration (Boone et al., 1998; Zhu and Cheng, 2011; Zhang et al., 2015). Therefore, when photosynthesize supply is out of phase with Ts, simple Ts-based models will not accurately capture temporal dynamics in Rs.

Identifying the lags and hysteresis at multiple timescales between GPP and Rs across ecosystems may provide insights on the rate and timing of carbon transport from canopy to soils and back to the atmosphere (Vargas et al., 2011; Barron-Gafford et al., 2014; Zhang et al., 2015). Our analysis of the links between GPP and Ts from 129 FLUXNET sites revealed that lags between GPP and Ts were common and of significant magnitude, ranging from ~25 to 25 weeks across the selected sites. The resulting Rs-Ts lag also spans a wide range from ~24.6 to 21.0 weeks (Fig. 5). Negative lags between GPP and Ts (associated with counterclockwise Rs-Ts hysteresis) were more prevalent at low latitudes, whereas positive lags between GPP and Ts (associated with clockwise Rs-Ts hysteresis) were more prevalent at high latitudes (Fig. 6).

Further support for the important role of canopy photosynthesis in driving hysteresis comes from sites where plot-level experimental treatments affected the delivery of photosynthesizes to the soil, but did not significantly affect site micro-climate. As shown in our study, the results from US-SRM indicate that hysteresis is most pronounced in the control plots (Fig. S5g), intermediate in girdled plots (Fig. S5h), and least pronounced in the inter-canopy plots (Fig. S5i), where lower plant density probably provides lower carbon inputs to the soil. The incorporation of photosynthesis in the Q10 model indeed improved the model-data agreement by reproducing the Rs-Ts hysteresis for most selected sites (Fig. S6), pointing out the benefit of considering the hysteresis effect in Rs modeling, which currently still suffers from a large amount of uncertainty (Xu and Shang, 2016). To what extent these explanations hold across ecosystems still requires further exploration in the field with substrate transport measurements and time lag evaluation.

4.2. Effects of soil moisture

Our results further demonstrate that a time lag between Ts and θ can introduce the figure-8 pattern (Fig. 1b), which was observed and simulated in several field sites (see Fig. S7 and Table 3). Large lags between Ts and θ can also produce the counterclockwise hysteresis observed at US-SRM (Fig. S3g-i), which experienced significant water stress early in the growing season. Other work has demonstrated that water stress late in the growing season results in clockwise hysteresis (Gaumont-Guay et al., 2006; Harper et al., 2005; Vargas and Allen, 2008). These dynamics are linked to the fact that low θ inhibits Rs directly (e.g., Borken et al., 2006; Curiel Yuste et al., 2007; Griffiths et al., 2004; Ruehr et al., 2010) either by slowing decomposition rates (Manzoni et al., 2012) or by suppressing photosynthetic rates (Chaves et al., 2002) that provide substrate for root and rhizosphere respiration. Incorporating θ effects in our simulations significantly improved the RMSE, AICc, and correlations between simulated and observed Rs, especially in the semi-arid sites (US-SRM and US-WKg). It should be noted that most soil biogeochemical models include both temperature and soil moisture rate modifiers for decomposition (for a review, see Bauer et al., 2008). Because of the multiplicative form of these modifiers (similar to Eqs. (3)-(2) and (7)), these models can capture...
hysteretic loops driven by out-of-phase temperature and soil moisture seasonality.

4.3. Effects of substrate input

Litterfall addition has also been suggested as a possible cause of the seasonal R_s-T_s hysteresis (Curiel Yuste et al., 2005; Jasal et al., 2005; Jia et al., 2013; Oe et al., 2011). In deciduous canopies, litterfall addition late in the growing season may provide a pulse of the substrate for microbial respiration. For example, decomposition of recent litterfall contributes 12% to soil respiration in the Harvard Forest (Bowden et al., 1993). This mechanism may explain the high R_s late in the growing season at US-Ha1-E2 site in 2003, 2004 and 2006 (Figs. S3i, m and o). Intra-annual variation of decomposable substrate driven by litterfall has long been believed to decouple R_s from T_s and has been well represented in some modeling approaches (e.g., Gu et al., 2004; Kirschbaum, 2006). Similarly, plant senescence late in the growing season can also introduce clockwise hysteresis (Kirschbaum, 2004, 2006) as a result of respiration decline due to root decay (Zhang et al., 2013). In addition, the respiratory costs of fine root production can exhibit a hysteretic response to temperature (Abramoff and Finzi, 2015; Kitajima et al., 2010; but see Curiel Yuste et al., 2005), which in turn may also drive the seasonal R_s-T_s hysteresis.

Interestingly, our results reveal that the direction of hysteresis can vary in time as well as space. Within a site, the defining features of the hysteresis between R_s and T_s can change from one year to the next. For example, at US-Dk2, the direction of hysteresis changed between 2003 and 2004 (Fig. S3a and b), whereas at US-Ha1-E2, hysteresis was evident in most years, but not 2005 (Fig. S3n). Inter-annual variation in the extent to which soil respiration is substrate- or moisture-limited could explain these switches in the direction of hysteresis from one year to the next.

4.4. Hysteresis driven by autotrophic and heterotrophic respiration

The contrasting patterns in the control plots (with both heterotrophic and autotrophic respiration; Fig. S3g) and the inter-canopy plots (with heterotrophic respiration alone; Fig. S3i) at US-SRM indicate that the seasonal R_s-T_s hysteresis patterns are driven by the activity of autotrophs or heterotrophs in the soil. These results are consistent with previous studies that have more conclusively shown that heterotrophic and autotrophic respiration have different hysteresis response patterns to temperature (e.g., Savage et al., 2013; Song et al., 2015). Because autotrophic and heterotrophic respiration are controlled by different processes, thus, they may react differently to both biotic and abiotic factors (Baggs, 2006; Zhang et al., 2013). Heterotrophic respiration is primarily driven by the decomposition of soil organic carbon (either from organic matter or roots) and is therefore determined by the activity of microbes (Davidson et al., 2006a), which is in turn sensitive to both soil temperature and moisture (Manzoni et al., 2012; Moyano et al., 2013). Autotrophic respiration is driven by root metabolism, which is sensitive to photosynthetic and C allocation processes (Horwath et al., 1994), in addition to temperature (Way and Sage, 2008) and soil moisture (Chaves et al., 2002). The spatial variability of heterotrophic and autotrophic respiration may also differ. For example, Drewitt et al. (2002) reported pronounced hysteresis appearing in observations of R_s from some, but not all plots, implying a strong spatial constraint on R_s dynamics regulated by the spatial distribution of roots (Boone et al., 1998) or soil organic carbon.

4.5. Representing hysteresis in Q_{10} type models

Many efforts to predict R_s rely on a Q_{10}-type equation, where a reference respiration rate is modified by a temperature sensitivity function driven by the Q_{10} parameter. In many cases, a constant Q_{10} is commonly used to describe the temperature sensitivity of R_s and global studies have identified convergence in Q_{10} values to ~ 1.4 (Bond-Lamberty and Thomson, 2010b; Mahecha et al., 2010). However, using a constant Q_{10} value has been widely challenged (e.g., Davidson et al., 2006b; Janssens and Pilegaard, 2003), as we continue to learn more about the sensitivity of Q_{10} to the depth of soil temperature measurement (Graf et al., 2008; Pavelka et al., 2007; Latimer and Risk, 2016), soil temperature range (Gaumont-Guay et al., 2006; Qi et al., 2002; Wang et al., 2014), soil moisture (Gaumont-Guay et al., 2006; Wang et al., 2014; Tucker and Reed, 2016) and substrate supply to microbes (Davidson and Janssens, 2006). Here, we demonstrate that canopy photosynthesis and soil moisture are able to decouple R_s from T_s leading to hysteresis. Results from this work can guide efforts to elucidate whether seasonal hysteresis in modeled soil respiration really reflects improper specification of model parameters or instead reflects the phase of key model driving variables. Our work may also be useful to further improve gap-filling strategies for ecosystem-scale carbon fluxes (e.g., Falge et al., 2001; Moffat et al., 2007) and net ecosystem exchange (NEE) partitioning methods (e.g., Reichstein et al., 2005; Stoy et al., 2006) of eddy covariance measurements, which often rely on empirical approaches to the parameterization of soil respiration models rarely reflecting its hysteresis response to temperature (Phillips et al., 2017).

4.6. Opportunities for future research

Our results, together with those from previous studies, raise a few questions for future exploration. The first concerns the extent to which the seasonal hysteresis results from the depth of soil temperature measurement (Curiel Yuste et al., 2005; Drewitt et al., 2002; Gaumont-Guay et al., 2006; Sampson et al., 2007), because the dampening of seasonal temperature fluctuations with depth (Davidson et al., 2006a; Gaumont-Guay et al., 2006) may affect the amplitude of the hysteretic loop. In addition, the seasonal hysteresis response of root phenology to temperature (Abramoff and Finzi, 2015) may provide an explanation for the observed asynchronous R_s-T_s trajectories. The numerical models presented in this study assume that soil moisture and GPP act independently on R_s. However, soil moisture may also affect respiration indirectly, via changes in GPP. Therefore, our approach cannot fully disentangle soil moisture and photosynthesis contributions to the R_s-T_s hysteresis and should motivate future work. The research sites selected in this study span a wide range of climates, but we still know little on whether the hysteresis is associated with climate. However, our synthesis of FLUXNET2015 data reveals that lags between photosynthesis and temperature vary with latitude and vegetation, thereby motivating more synthesis work on the spatial distribution of the R_s-T_s hysteresis across FLUXNET sites. Such analyses would be greatly facilitated by more standardized approaches to sharing and accessing soil respiration data in a network context like within the existing FLUXNET.

5. Conclusion

The exponential temperature response of soil respiration underlies the most commonly used soil respiration models, however, observations of soil respiration and temperature are often differentially coupled at seasonal timescales, resulting in a hysteresis effect. Because these models are so widely used in various contexts, it is important to understand the cause of these hysteretic patterns. This study applies both numerical models and data-driven analyses across AmeriFlux sites to explain the mechanisms underlying this hysteresis on a seasonal timescale. The time lag of canopy photosynthesis and soil temperature introduces a lag of soil respiration and soil temperature that explains much of the seasonal soil respiration-temperature hysteresis. The hysteresis direction depends on the direction of the time lag between canopy photosynthesis and temperature. A clockwise hysteresis appears when photosynthetic activity precedes soil temperature, and a counterclockwise hysteresis appears when photosynthetic activity lags soil
temperature. The hysteresis is suppressed when the photosynthesis effect on soil respiration is eliminated. A synthesis of FLUXNET2015 data reveals that time lags between canopy photosynthesis and temperature are sufficiently long to result in the seasonal soil respiration-temperature hysteresis, which occurs in 64% of site-years, highlighting the potential for this phenomenon to be widespread. In water-limited ecosystems, soil moisture can decouple soil respiration rate from temperature and introduce a figure-8 shaped hysteresis, and can also produce clockwise or counterclockwise hysteresis if the lag between soil temperature and soil moisture is very large, as is the case in the semiarid ecosystems studied here. Incorporating photosynthesis or and soil moisture in the Q10 model improves its explanatory power by capturing the phase of the seasonal soil respiration time series. Because of their role in modulating respiratory seasonal cycles, recently assimilated carbon and soil moisture deserve special attention when dealing with the temperature response of respiration and its feedback to climate change.

Acknowledgements

The authors appreciate the constructive comments from the special issue guest editor and two anonymous reviewers. This work was supported by the AmeriFlux Management Project, administered by the US Department of Energy, and by the USDA Forest Service – Southern Research Station. Q. Zhang acknowledges support from the National Natural Science Foundation of China (Project NO. 51509187). S. Manzoni acknowledges support from the Swedish Research Councils and SIDA (VR 2016-06313 and VR 2016-04146). The authors thank E. Brzostek, C. Wayson, and T. Roman for their assistance in collecting and analyzing soil respiration data at US-MMS. The authors also appreciate the assistance from M. A. Giasson and J. W. Munger in preparing data from the US-Ha1 site. R. Scott thanks E. Hamerlynck, who was responsible for the establishment of the respiration measurements at US-RM site. The authors thank R. Oren, T. Mandra, K. Yi, S. Denham, M. Benson, M. Medicus, and L. Young. K. Beidler, M. Craig, S. Kannenberg, A. Keller, M. Podzowski, A. Scheibe for constructive feedback on earlier versions of the manuscript.

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doihttps://doi.org/10.1016/j.agrformet.2018.05.005.

References

