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ABSTRACT

The equations of Darcy, Kostiakov, Ostashev, Philip, and four modified Philip equations were evalu-
ated for use in predicting and controlling rainwater infiltration and rainfall excess in crop and range-
lands. These eight equations were least-square fitted to data from ring, border-irrigation, closed-top,
and sprinkling infiltrometers. Kostiakov's equatfon satisfled the evaluation criteria better than the
other seven equations. The parameters of Kostiakov's equation were physically interpreted by retlating
their magnitudes to some physical, biologfical, and hydraulic characteristics of the infiltration system.
These characteristics included several infiltratfon abatement and augmentation processes and factors that
are controlled at the soil surface by land management practices. The eight equations were also fitted to
rainfall data to permit calculating runoff from small surface areas about the size of a typical crop
plant. Conmparison of the regression curves for infiltration and rainfall suggested that land management
practices that appropriately alter the soil surface will permit wide-range control of fnfiltration, run-
off, and erosion; and thereby achieve conservation and more efficient use of soil and water resources for
crop production. The most important soil surface conditions affecting infiltration were nicrorcughness,
macroporosity, plant litter, and effective surface head.

INTROBUCTION

Rainwater infiltration and runoff are hydrologic processes of vital importance to plants and people,
and thus deserve considerable modeling effort. Models which are simple, yet physically scund, are needed
by land managers to implement better use and protection of land resources. Such models can advance the
understanding of basic hydrologic processes; and this understanding, in turn, can lead to the prediction
and control of such processes. Control of rajnwater infiltration and runoff can help alleviate land man-
agement problems such as excessive runoff and erosion; flash floocding of upland watersheds; sedimentation
of waterways and reservoirs; non-point source pollution of surface waters; inadequate soil water for seed
germination, seedling establishment, and optimal plant growth; excessive leaching of soluble salts ard
plant nutrients; pollution of ground waters; slow aquifer recharge and declining water tables; excessive
loss of water by surface evaporation; and accelerated land deterforation and desertification.

The cost of such land management problems to society is of gigantic magnitude. Worldwide desertifi-
cation alone is estimated (Dregne, 1978) to be costing 15.6 billfon dollars a year in lost agricultural
production, 3.2 billion due to waterlogging and salinization, 6.8 billion to rangeland deterioration, and
5.6 billion to deterioration of rain-fed cropland. Such land deterioration is usually only partiaily
reversible by even the best land management practices.

Much effort has already been expended on the development of point or small area infiltration models
(Parr and Bertrand, 1960). In a series of papers, Dixon and coworkers (Dixon, 1977) have evolved a de-
scriptive concept for controlling rainwater infiltration, referred to as the air-earth interface (AEI)
concept. The main purpose of the study reported herein was to evaluate several! simple infiltration equa-
tions for use in quantifying the 4EI concept. This concept indicates that surface microrcughness and
macroporosity (or their hydraulic counterpart - - effective surface head) control rainwater infiltration.
Quantification involved the selection of a simple Inf{ltration equation having parameters sensftive to
these AET conditions. Such an infiltration equatfon will be useful {n predicting maximm cumulative in-
filtration for a given land management practice. However, prediction of excess rainfall, surface runoff,
and non-point source pollution requires use of a reference rainstorm. Dixon (1966) showed that a maxi-
mum-intensity storm could be generated for reference purposes by plotting maximum rainfall depths (50-
year frequency) against their duration times. This yields a cuwlative rainwater curve similar in shape
to that for cumulative infiltration. This paper investigates the possibility that inf{ltration equations
can also be fit to the maximum-depth rainfall data that are available (Hershfield, 1961) for mumerous lo-
catfons throughout the United States. The area between corresponding infiltration and rainfall curves

The authors are, respectively, Soil Scientist, Hydrologist, and Hydrologist, Science and Educaticn Adnin-
istration, Southwest Rangeland Watershed Research Center, 442 East Seventh Street, Tucson, A7 85705.
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would then provide 3 quantitative indication of either the rainwater or infiltration capacity excess.

THEQRETICAL CONSIDERATIONS

All infiltration equations can be interpreted in terms of the general transport law:

FLUX _ TRansMISSION _ ORIVING o\ apcey

. x FORCE «x
VOLUNE ~ COEFFICIENT GRADIENT TIME

The flux volume is conveniently expressed as unit depth of surface water inf{ltrating I,,; the driving
force gradient, as a drop in hydraulic head # per unit sofl depth L or as a dimensicnless hydraulic gra-
dient (¢ = #/L); and the transmission coefficient as a proportionality (permeability) constant or hydrau-
lic conductivity k¥ given numerically by the flux volume when both the gradient and time are unity. Thys,
for infiltration volume in centimeters (om) and time i{n hours (fr), the general transport equation be-
comes ¢

I, (en) = K (en/hr) x i (em/om) X T (hr)

The equations of kostiakov (1932}, Philip (1957), Ostashev (1936), and Darcy (1856) were considered
for study because they all (1) express infiltration volume 7, (or depth of surface water) as an explicit
function of time; (2) contain two parameters (A & 5) after aﬁding constant terms to Ostashev's and
Darcy's equations; (3) transform easily to linear forms for least-square regression analyses; and (4)
differentiate readily to infiltration rate I and infiltration deceleration I, forms (Table 1)

.

Table 1. Four Historic Infiltration Equations, Thelr Linear Transforms, and Their First
and Second Derivatives,

INFILTRATION LINEAR 1ST DERIVATIVE (~)2ND DERIVATIVE
EQUATION TRANSFORN (RATE) (DECELERATION)*
{1) Kostiakov i, elna+Bint aprPel AB(2-B)TP=2
I, = ATB
(2) Philtp 11 a4+ BT /2 AT 5+ B 174 ar/2
Iv - AT‘, + BT
(3) Ostashey I=att+ 8 12 a7 " 174 a7~3/2
I =
v
(4) Darcy I, =AT + B A ]
Iv = AT

*Deceleration is the negative of the 2nd derivative.

Darcy's equation was derived empirically to describe the volume of water absorbed by a satyrated
stable sand bed having water ponded at the top and free drainage at the bottom. For viscous flow in a
stable saturated porous media, the absorption coefficient A 1s given by the product of the hydraulic con-
ductivity X and the hydraulic gradient ¢ or 4 = ki, For the simple inf{ltration system that Darcy used,
both X and { could be maintained time invariant. Even in wet infiltrating soils, nefther X nor { are
constant because of incomplete water saturation, soil instabilities {particularly near the surface), and
changing water potentials at {rregular upper and lower sofl boundaries. Natural sofl infiltration sys-
tems are never open to atmospheric pressure along their lower boundaries. Instead, they range from par-
tially open to completely closed. Darcy's equaticn applies best to infiltration in wet stable sofls,
wherein ¢ is approximately unity and infiltration is driven almost entirely by the gravitational force.
In a dry-sofl infiltration system, i and X are iInterrelated variables, both of which are functions of the
soil water content with X increasing and ¢ decreasing with increasing water content. Since £ usvally
decreases more rapidly than x increases, the rate of infiltration tends to decrease with time,

Ostashev's equation was derived to describe the volume of water absorbed horizontally (gravitational
gradient = 0) by a dry stable homogeneous porous media. The infiltrated volume decreases with T™ owing
to the abatement in capiliary pressure gradient as the wetting front advances. Similar to Darcy's equa-
tion, the absorption coefficient 4 may be interpreted as a product of mean timesweighted X and 1 during
the first time unit. However, in this case X Is the unsaturated hydraulic conductivity which is several
orders of magnitude less than the saturated hydraulic conductivity and ¢ is the hydraylic gradient pro.
duced by capillarity, Vertical infiltration into a dry stable system, where gravity as well as capillar-
ity is driving the process, will abate more slowly than pernitted by 7%, The time exponent would thus be
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somewhat greater than 1/2. The wetter the sofl initially, the greater would be the relative gravitation-
al contribution, and the greater would be the exponent, Thus, in Darcy's equation where absorption 1s
driven only by the force of gravity, infiltration is proportional to T; whereas, in Ostashev's equation
where capillarity is the sole driving force, infiltration is proportional to 7‘{‘5

Phlip‘s equation was derived amalytically for the downward absorption of water into an initially
dry stable porous rmedfum. The first and second terms give the inf{ltration contributions of the capil=
lary and gravitatioral driving forces, respectively. Thus, Philip's equation accounts for the infiltra-
tion effects of both forces, essentially by combining (adding) Ostashev's and Darcy's equations, Para-
seters 4 and B may be regarded as capillary and gravitational absorption coefficients, respectively.

Kostiakov's equation was empirically derived to describe the time-course of infiltration as an ni-
tially dry soil absorbs irrigation water - - ysually at a decreasing rate until) soil saturation is close-
ly approached. The absorption coefficient 4 may be interpreted in much the same way as the corresponding
coefficients in Darcy's and Ostashev's equations; 1.e., as the product of the mean X and £ for the first
unit of time. Large A values are associated with sof) surfaces that are microrough and macroporous or
with conditions favoring a relatively large contribution of the gravitational force to infiltration
{Dixon, 1977 and Dixon and Simanton, 1977), In contrast, small A values are associated with a smooth
microporous surface where capillarity is the major force driving infiltration. Parameter A gives the I,-
time curve its magnitude, whereas parameter B gives this curve fts shape. For 0cBel, the infiltration
rate is abating wih time (the usual case) and for &1 inf{ltration is increasing or augmenting with time
{the exceptional case).

The magnitude of parameter B in Kostiakov's equation reflects the net effect of numerous interrelat-
ed and interacting infiltration abatement and augmentaticn processes and conditions (Dixon, 197Sb and
1976). The abatement processes and conditions include (1) decreasing capillary pressure gradient due to
deepening wetting front; (2) surface sealing under raindrop impact; ?3) decreasing capillary pressure
gradient due to increasing moisture content with depth; (4) sofl settling causing macropores to collapse:
(5) decreasing sofl wettability with depth; (6) increasing water repellency with depth; (7) decreasing
available storage space with time; (8) decreasing storage space with depth because of increasing moisture
content, rock, etc.; (9) decreasing macroporosity both in number and continuity with depth; (10 swelling
of clay colloids with corresponding shrinkage of macropores; (11) anaerobic slime formatfons (12) rising
soil air pressure and the consequent entrapment of soi) air in macropores; and (13) freezing of the in-
filtrated water with consequent blockage of fluid flow routes. The augmentation processes and conditions
include (1) increasing flow dimensionality with time; (2) eluviation and illyviation leading to micropipe
formation; (3) increasing soil wettability with depth; (4) decreasing water repellency with depth; (Sg
increasing ponded-water depth with time; (6) soil water absorption of entrapped air: (7) macropore forma-
tion through solution of soluble salts; (8) increasing ponded surface area with time; and (9) melting of
soil ice by the infiltrated water,

Parameter 8 values ranging from 0.0 to 0.5, 0.5 to 1.0, and 1.0 to 1,5 indicate the dominance of
abatement factors, little dominance of either abatement or augmentation factors, and dominance of augmen-
tation factors, respectively. Since the abatement and augmentation processes and factors interact with
each other in different combinations and intensities to control the timeeweighted means for hydraulic
conductivity and hydraulic gradient, parameters A and B in Kostiakov's equation are interrelated.
Kostiakov's equation is a general equation in a relative sense, since parameter B can assume values appro-
priate for almost any combination of the abatement and augmentation processes. In contrast, the equa-
tions of Darcy and Ostashev represent special cases of Kostiakov's equation (Dixen, 1976). Philip's
equaticn, as indicated previously, is essentially a combination of these two special cases. The form of
Darcy's equation accounts for no infiltration decay or augmentation, and those of Ostashev's and Philip's
account for only one of the infiltration abatement and augmentation factors; i.e., the decrease in capil-
lary pressure gradient resulting from the increasing distance of the wetting front from the ponded-water
source.

The equations of Darcy, Ostashev, and Philip are often said to be physically based -- meaning that
the parameters have physical significance. Such physical significance, however, {s restricted to the
simple ideal infiltration systems for which these equations were derived. All infiltration equations
are, or become, empirical when applied to the complex soil and water-source conditions found in crop,
forest, and rangelands. The magnitude of a parameter determined by fitting an infiltration equaticn to
data from such land areas, usually reflects conditions not present in the simple {deal system. Conse-
cuently, an adequate physical interpretation of the parameter must account for the major factors affect-
ing this parameter in the natural infiltration system being studied. To assume that the theoretical
physical significance still holds can be extremely misleading, thereby leading to much confusfion,

PROCEDURE

EVALUATION CRITERIA

Evaluation criteria were developed to (1) facilitate inftfal screening of the many infiltration
equations for selecting several for subsequent fitting accuracy tests and (2) guide final selection of
the best equation for modeling the AEI concept. These criteria included:



Parameter number restricted to two.

Infiltration expressed explicitly as a function of time.

Equation parameters sensitive to AEI conditions,

Infiltration volume approaches zero as time approaches zero.

Infiltration rate approaches zero as time approaches infinity or as the unfilled profile

storage space approaches zero.

Infiltration rate approaches infinity as time approaches zero.

Equation accounts for net infiltration effect of diverse interacting {nf{ltration abatement

and augmentation processes or factors that are affected by AEI conditions.

8. Equaticn gives consistently accurate fit of data collected under widely varying condi-
tions of surface microroughness, surface macroporosity, and effective surface head.

9. Fitting of equation to infiltraticn data always ylelds positiveevalued parameters.

10. Equation, with positive-valued parameters, ylelds rates that can efther decelerate, or
remfn constant, or accelerate with increasing time.

11. Mathematical and physical interpretation of parameters valid for widely varying ARr condi-
tions,

12. Equation form aids data interpretaticn, sucmarization, extrapolation, and interpolation.

13. Simple first and second derivative forms of the infiltration voluze equation for calculate.
ing infiltration rates and rate changes.

14. Equation easily least-square fitted to infi)tration data to obtain parameter estimates,

15. Infiltration easily calculated using equation and parameter estimates.

16. Equation has simplest form possible, yet satisfies preceding criteria,
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EQUATIONS TESTED

The first two evaluation criteria limited to four the possible choices of published infiltration
equations available for subsequent testing (Table 1), Initfal testing suggested that the fitting accu~
racy of Philip's equation could be improved somewhat by selecting powers of time that would be more ap-
propriate for complex infiltration systems than the 1/2 and 1 that pertain strictly to the simple system
for which the equation was derived. Accordingly, the four modified Phil1p equations (given in Table 2)
were tested in addition to those given in Table 1. These modified equatfons are of the form,

I=a™ ¢ p¥

where the values of = In the four equations range from 0.1 to 0.3 and y from 0.8 to 1.1. Parameters A
and B can be interpreted in a similar minner to that given previously when discussing the theoretical
basis for Philip's equatfon. However these parameters probably have more physical significance for a
natural infiltration system than the corresponding paramsters in Philip's equaticn, but less signifi-
cance for the ideal system assumed by Philip.

Table 2. Modifled 2-Parameter Philip Equations, Their Linear Transforms, and Their First and Second

Derivatives,

TG e mesow Tgune G s
(5) I, = A70.1 + pri.d 1"/1'0-1 = A+ BT 0.2477%:% 4 1,1570.1 0.09A7-1.9 . 0,11B7-9.9
{(6) I, = ar%2 4 pr1s2 I/1%:2 = 4+ BT 0,247-0.8 4+ 1,2879.2 0.I6AT-1.8 = 0, 2¢B7-0.8
(7) I, «ar0.d 4 priod I /703 e« A+ BT 0.3470.7 4 1,3870.3 0.21a11.7 . 0,3987-9.7
(8) 1, ¢+ 47193 + pro.e I/70-3 = 4+ BT9.5  0,84T0.7 4 0,887T%0:2  0,2747"1.7 _ 0, 1887~1.2

EQUATION FITTING

The equations of Kostiakov, Philip, Ostashev, Darcy, and the four modified Phi11p equations (Tables
1 and 2) were evaluated by fitting them to field infiltrometer dats, This evaluation included the fol-
lowing steps:

Transform infiltration equations to their linear form as given in Tables 1 and 2.

Perform least-square linear regressicn analyses to obtain parameter values.

Use parameter values in the untransformed equations (except {n Darcy's and Ostashev's equation)
to obtain calculated Infilitration values.

Evaluate differences between calculated and observed inf{ltration by statistically testing

for fitting accuracy.

5. Den:v'-m:v'\e data group means and standard devfation of these means for the fitting-accuracy
statistics.

& N —
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6. Select infiltration equatfion giving the most accurate data fit by ranking the data group
means and their standard deviatfons.

As reflected in steps 3 through 6, the untransformed equaticns (with the two exceptions) were used
to determine data fitting accuracy. The magnitude of correlation coefficients for the transformed equa-
tions of Philip and the modified Philip equations were not useful in evaluating fitting accuracy. This
type of linear transformation often causes the regression line slope to fluctuate around zero, with con-
sequent low correlation coefficients, even though the equation fit might be quite accurate, as indicated
by closeness of observed and calculated infiltration values. MNevertheless, these transforms provided a
reliable (and simple) method for estimating parameter values as verified by a fterative computer method
for accurately determining parameter values. The statistical tests of fitting accuracy referred to in
step 4 included the (1) relative mean absolute deviation (RMAD) of calculated infiltration from observed
infiltration, (2) slope of the regression line (SRL) for calculated infiltration versus observed infil-
tration, (3) intercept of the vertical axis (IvA) by the regression line for calculated infiltration ver-
sus observed infiltration, and (4) coefficient of determination (CD) for the 1inear regression of calcu-
lated infiltration versus observed infiltration. The accuracy of equation fit approaches perfection as
the means for RMAD, SLR, IVA, and CD approach rero, one, 2ero, and one, respectively; and as the standard
deviations for RMAD, SLD, IVA, and CD all approach zero,

DATA SOURCES

Infiltration and rainfall data sets used in evaluating the eight infiltration equations are summar-
ized in Tables 3 and 4. Published rainfall data (Table 5) were selected from locaticns near the field
infiltration sites of the authors and their cowarkers in order to generate reference rainstorms for use
in interpreting the infiltration data.

Table 3. Cumulative Infiltration Data Used to Test Fitting Accuracy of Eight Infiltration

Equations.
SOILS RUMAER DATA  TEST
LOCATION(S) AND INFILTROMETER DESCRIPTION  OF TESTS  POINTS  TIME
VEGETATION AND REPS. PER TEST (KOURS)
U.S. Survey, 68 soil Wide range Constant-head, single ring, 124 H 3
sites (Free et al.,, in both 23 c¢m 0.D., 6l cn Jong 24
1940)
Wisconsin, Montana, Wide range Modified Purdue sprinkling 15 8 2
Nevada, and Arijzona in both type, 10 cm/hr full cone noz- 2
soil sites (Dixon, zle, l-meter-square plot frame
1977) (Dixon & Peterson, 1964 & 1968)
Site near Fallon, NV Loamy Border-frrigaticn type, l.meter- 12 10 3
{Dixon & Linden, Border- square plot frame, ponded-water 2
1972) irrigated depth same as variable irrigae
alfalfa tion head
Site near Reno, NV Loamy Double-square closed-top type 59 8 7
Border- (Dixon, 1975a) 5
irrigated
alfalfa
Santa Rita Experi- Loamy to Modified Purdue sprinkling type, 2 8 1
mental Range, Cont- sandy 10 cm/hr full-core nozzle, 1-
inental, AZ (Authors, Partial meter-square plot frame (Dixon &
unpubl {shed) grass Peterson, 1963 & 1968)
cover
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Table 4. Rainfall Maximum Depth-Duration Data Used to Test Fitting Accuracy of Eight Infiltration

Equations.
FREQUENCY NUBER BATA MAX TR
LOCATIGN(S) AND SOURCE TESTED OF POINTS DURATION
(YEARS) TESTS PER TEST {HOURS)
1. Madison, WI; Sidney, MT; Reno, NV; 1, 10, 100 30 6 2
Tombstone, AZ; & Continental, AZ
{Hershfield, 1961)
2. Madison, WIl; Williston, ND; Miles Ma x foum 5 6 2
City, MT: Reno, NV; Tucson, AZ Recorded
(Shands and Amnerman, 1963)
3. Malnut Gulch Experimental Watershed, 18100 20 6 1

Tombstone, AZ (Authors, unj

RESULTS AND DISCUSSION

EGUATION RANKING

The last step in the fitting procedure described previously was to select the infiltration equation
giving the most accurate data fit by ranking data group means and their standard deviations. In the
ranking of each data group, the means and standard deviations for the four fitting-accuracy statistics
(RMAD, SLR, IVA, and CD) were all given the same weight. Then each data group was weighted equally to
determine the grand ranks given in Table 5. The overal) grand rank may be determined from the “rank
total” column in this table.

In general, the rank of an equation reflects fts ability to accurately predict the nature of the
time dependency of cumulative infiitration or maximum depth rainfall relative to the other equations., In
turn, the equation's ability to correctly assess this time dependency s a functiocn of the exponents of
time appearing in the equation (Table 6). As a group, the four modified equations (No. 5 to 8) ranked
better than the four historic equations since the time exponents of these equatfons were especially cho-
sen to be appropriate for complex natural infiltration systems. Darcy's equation (No. 4) ranked surpris-
ingly well relative to the other historic equatfons, apparently because of some strong Infiltration aug-
mentation processes operative ynder sprinkled-water infiltration {n semiarid regions. Increasing surface
ponded area (and depth of pondings and increasing capillarity with sofl depth interact to produce Se
shaped cumylative iInfiltration cunves (Dixon, 1977), The straight 1ine of Darcy's equation fits such
data better than the curves of the other equations. However, Kostiakov's equation fits the S-shaped in-
filtration curves almost as well as Darcy's equation since the fitted-parameter B will approximate unfty
in such cases. Because of its constant term, Darcy's equation stil) has a slight advantage over
Kostiakov's for fitting this kind of data,

Table 5. Table 6.

Summary Ranking of Eight Infiltration Equations Approximate Proporticnality of Cumulative Infil.
Relative to Their Ability to Accurately Fit Data tration and Powers of Time for the Eight Infil.
from the Sources Given in Tables 3 and 4. tration Equations Evaluated.
FQATION — TRFILTRAS T TQATION FORERS AT
KUMBER TICN DATA DATA TOTAL - NUMBER SMALL TIMES LARGE TINES

(1) 5 2 ? 1) >0.0 >0.0

(2) 6 3 9 (2) 0.5 1.0

(3) ? 5 12 (3) 0.5 0.5

(4) 4 8 12 (4) 1.0 1.0

(5) ! 7 8 (5) 0.1 1.1

(6) 2 6 8 (6) 0.2 1.2

(7) 3 4 7 {7) 0.3 1.3

(8) 4 1 5 (8) 0.5 0.8

The poorest fits of infiltration data were obtained with Philip’s and Ostashav's equations (No. 2
and 3) since they generally tend to overestimate infiltration at small times, and sometimes underestimate
it at large times, Where early infiltration abatement processes are strong, the overestimation of infil-
tration by the first term fn Philip’s equation is compensated for by the second term which becomes
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negative in the least-square fitting procedure. Consequently, the negative-valued parameter 8 for such a
natural infiltration system is a coefficient that corrects for the wrong assumption made in the first
term, rather than a coefficfent related to saturated hydraulic conductivity and the gravitational contri-
bution as assumed in the equation's derivatfon (Taylor and Ashcroft, 1972),

The equations containing two time terms (No. 2, 5, 6, 7, and 8) have an inherent data fitting advan-
tage. However, this advantage is diminished somewhat if time exponents are inappropriate. The exponent
in the first term should be relatively small to reflect the rapid rate of {nfiltration abatement at small
times, whereas the exponent in the second term should be relatively large to reflect the slow rate of in-
filtration abatement (sometimes actually augmentation) at large times. Our results indicate that an ex-
cellent fit for a given set of data can be obtained by letting = in equatfon No. 9 equal one standard
deviation less than the mean parameter M in Kostiakov's equation, and by letting y equal one standard
deviation greater than this parameter’s mean value, where parameter # {s calculated by the least-squares
linear regression methed or estimated by simply dividing the 60-minute infiltration rate by the 60-minute
infiltration volume.

Whenever the net effect of interacting (and often compensating) infiltration abatement and augment-
ation processes caused infiltration to proceed approximately at the power(s) of time of one of the infil-
tration equations, then that particular equation would fit the data quite wel). However, such circum-
stantial and fortuitous equation fits should not be construed as verifying theory or the physical sound-
ness of the equation. Adequate validation of theory requires that an equation accurately fit the data
for the reasons assumed in the derivation of this theory.

The results of this fitting study indicate that Darcy's equation fits infiltration data accurately
when infiltration approaches linearity as caused by weak abatement processes or strong augmentation pro-
cesses, or a combinaticn of the two. Therefore, accurate fitting of Darcy's equation was favored by a
(1) microrougsh macroporous soil surface, (2) sprinkled-water source, (3) initially wet soils, and (4)
semiarid or arid climate. Darcy's equation fitted data poorly when infiltration abatement processes were
relatively intense, such as in the case of a rapidly sealing soil surface under raindrop impact.
Ostashev's and Philip's equations fitted infiltration data accurately when infiltration abatement and
augmentation processes were at moderate levels of intensity. Thus, accurate fits were obtained for soils
that were (1) initially dry and fully wettableg (2) stable, smooth and microporous at the surface; (3)
completely covered with vegetation and (4) relatively deep.

Of the four historic equations, only Kostiakov's equation satisfied evaluation criterfa Ho. 7 and 8
by consistently fitting infiltration data accurately regardless of the intensities and combinations of
the various infiltration abatement and augmentation factors. Kostiakov's equatfon also satisfied each of
the remaining 14 evalvation criteria as well as, or better than, the other equations (Table 7). Although
the four modified equations fit the data slightly better than Kostiakov's equation (Table 5), they are
more complex and, thus, more difficult to interpret both mathematically and physically. The results of
this study indicate that Kostiakov's equation is a general infiltration equation possessing sufficient
flexibility to account for a wide range of natural conditfons affecting infiltratien,

Table 7. Evaluation Criteria Satisfied by Each of Eight Infiltration Equations.

TEVALUATION CRITERTON SATISFIED (+)
EQUATICH LIST NUMBER*
KUMBER
1 2 3 4 5 6 8 9 10 11 12 13 14 15 16 TOTAL

(1) T S S R T R TR S + + + + + + + 16
(2) [ T Y + + + + 8
(3) + ¢+ L + + + 8
(4) L S + + + 6
(5) + 0+ o+ e + o+ o+ + + + n
(6) + o+ ¢+ LI + + + n
(7) + + . + + o+ 0+ + + + n
(8) + + + o+ o+ + + + [}

sfumerical listing is given in secticn entitled “Evaluation Criteria.”

The accuracy of equation fit to the rainfall data (Table 5) may also be interpreted with the aid of
the time exponents given in Table 6. A graphical plot of maximm rainfal) depths versus their durations
reveals a marked abatement (convex curvature upward) both at smal) and large times. Therefore, the rel-
atively accurate fit of equations Npo. 1 and 8 and the inaccurate fit of equation Ho. 4 to the rainfall
data would be anticipated from the relative magnitude of the time exponents in these equations. Thus,
Xostiakov's equation appears well suited to modeling a reference rainstorm of this type in addition to
cunulative rainwater infiltration. This hypothetical storm will tend to overestimate cumulative rainfall
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for the specific return frequency, especially during the first 30 minutes. The physical signifiance of
modeling reference rainstorms with Kostiakov's equation is befng studied, and will be discussed in great-
er detail elsewhere.

EQUATION SIGNIFICANCE

The equatfon of Kostiakov has both mathematical and physical significance for the natural infiltra.
tion systems it attempts to model. The genera) physical significance of Kostiakov's equation relative
to the other equations was briefly discussed in an earlier section.

Mathematically, Kostiakov's equation is extremely simple, with infiltration volune I, being ex-
pressed as a one-term power function of time. Infiltration rate Ip and the deceleration Ip in this rate
are given by the first and second derivative forms of Kostiakov's equation (Table 1), The integral and
derivative forms of Kostiakov's equation indicate that where 0 < B < 1

) I, =0 and I, and Ip are undefined for T = 0;
(2) I,+0,Ip+=and I+ =as T+ 0;and
(3) Iv*w,IR»OandID‘oasT‘-.

Thus, the infiltration volume fncreases at a decreasing rate monotonically with increasing time; and the
infiltration rate and its deceleration decrease at a decreasing rate approaching zero asymptotically at
large times. The conditfon 0 < B < 1 holds for most data sets from natural infiltration systems; however,
infrequently the condition B > 1 prevails, indicating that the infiltration rate is increasing with time,

The mathematical interpretation of the parameters in the integral and derivative forms of
Kostiakov's equation is readily apparent, If the unit for time is hours, then parameter 4 may be intere
preted as either the first-hour infiltration volume I, or the mean first-hour infiltration rate Ix; the
parameter product A3 is the {nstantanecus infiltration rate Ip at the end of the first hour or at T = J,
parameter B is first-hour end rate divided by the mean rate or B = Ig/Tp for T = 1, and the time coeffi-
cient (AB(1-B}} 1s the deceleration (defined as the negative of acceleration) of the infiltration rate at
T = 1. Thus, sets of infiltration data may be conveniently and meaningfully summarized in terms of the A
and B parameters and the time period upon which they are based. Such summarizations give the first-hour
infiltration and its abatement ratio and permit calculation of inf{itration volume, rate, and decelera-
tion for any selected time. Parameter A usually ranges from 0 to 20 (assuming I, is in cm) and gives the
integral curve its magnftude, whereas parameter B usually ranges from 0 to 1, and gives the integral
curve its shape.

The 4 and B parameters may be quickly estimated from infiltration data since A = I, and 4B = Ip at
T = 1; however, better estimates are usuvally obtained by transforming the integral form to obtain the
linear equation:

InI =lnd+8lnT,

which can be least-square fitted to infiltration data, Such fits are easily performed with hand calcu-
lators programmed for simple linear regressfon analysis.

A physical interpretation of Kostiakov's equation and its parameters relative to the AEI concept {s
possible, although not as readily apparent as the preceding mathematical interpretation. In general, the
AEI concept assumes that all infiltrating surface water is subsequently stored in the soil profile. Thus,
I, becomes the storage volume of infiltrated water, Ip {s the storage rate, Ip {s the deceleration in
storage rate, T {s the elapsed time after incipient ponding during which storage has been occurring,
parameter A4 is the storage during the first hour, 48 {s the storage rate at the end of the first hour,

and B is a dimensionless ratio of AB and A which reflects the degree of storage rate abatement during the
first hour.

Specifically, the AEI concept assumes that the two {nteracting and interrelated soil surface physi-
cal properties - - microroughness and macroporosity - - control free-water infiltration into soils.
Surface microroughness and s011 macroporosity interconnect and interact with each other to form ponded-
witer intake and sofl-air exhaust circuits that govern the entry of water into soils. Dixon (1977) has
shown that the hydraulic equivalent of these two surface conditions {s the effective surface head; where-
as the biological equivalent appears to be plant V{tter. Thus, the AET concept as presently formulated
indicates that iInfiltration is controlled at the sofl surface - - physically by interconnected micro-
roughness and macroporosity; hydraulically, by effective surface heads and biologically, by plant litter.

Physical interpretation of Kostiakov's equation in terms of the AEI concept involves relating the
parameters of this concept to those of Kostiakov's equation. Dixon (1977) found that parameters 4 and 8
were sensitive to standard microroughness-macroporosity treatments. Assigning equivalent effective sur-
face heads to these treatments, facilitated expressing 4 and B parameters as functions of surface treate
ments. Relationships between A and B and effective surface head were also determined, A closed-tap in.
filtrometer was used to obtain infiltration data (Table 3) under effective surface heads ranging from -6
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to +6 cm of water head. Parameters A and 3 were then detemmined by least-square fitting of Kostiakov's
equation to the data points as shown in Fig, 1, These parameters were then related to effective surface
head - - again by the least-sguare linear regression methad (Fig. 2.). Graphs 1ike this can serve to
quantify the air-earth interface concept of infiltration and thereby facilitate absolute control over ine
filtration through soll surface mnagement, The microroughness-macroporosity and plant litter equiva-
lents of effective surface head can also be included on the horizeontal axis. In practice then, soil sur-
face management would be directed to achieving levels of the AEI concept parameters that would give the
desired control over rainwater infiltration.

Rainwater excess (or runoff) can be approached similarly, except that a reference rainstorm fis re-
quired for calculating the runoff data, This approach is illustrated in Fig. 3, 4, and 5 for the plant
litter parameter. For simplicity, only extreme levels of the plant litter parameter are shown, These
figures indfcate that (1) litter provides a factor-of-ten control over infiltration (Fig. 3), (2) runoff
from the litter-covered surface under the 100-year storm is neglfgible (Fig. 4), and (3) runoff from the
bare surface is 0% of the total cumulative rainfall (Fig. 5). Dixon (1977) has also reported an order-
of-magnitude control of infiltration for the other two AEI concept parameters,

In the example shown in Fig. 5, potential runoff or precipitation excess is determined by subtract.
ing accumulative infiltration from accumulative rainfall, using either the actual data or data calculated
with the fitted Kostiakov equations, This provides a set of calculated runoff data to which Kostiakov's
equation can again be fitted. The resulting A and B parameter for runoff can then be analyzed in a man-
ner similar to that shown in Fig. 2 for infiltration, This approach should facil{tate prediction and
control of runoff not only from individual plant-sized land areas, but from larger land areas as well,
The physical significance of modeling precipitation excess or rainwater runoff with Kostiakov's equation
will be discussed in a subsequent paper.
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SUMMARY AND CONCLUSIONS

Kostiakov's equation was selected for modeling the AEI concept of infiltration because of its simple
mathematical form, its abilfty to accurately and consistently fit data from diverse sources, and {ts
meaningful parameters which provide a convenient method for sumar{zing {nfiltration data and predicting
and controlling infiltration and runoff, Use of this equation for quant{fying the AEI concept involves
the determination of functional relationships between equatfon parameters and concept parameters,

Kostiakov's equation also accurately fits maximun-depth rainfall-duraticnn data that is widely
available. This provides a reference vainfall curve for comparing with infiltration curves, and thus,
the opportunity for calculating rainfall excess or potential runoff, Kostiakov's equation will also fit
such calculated data and the resulting parameters can then be related to the AE7 concept parameters, In-
filtration and runoff control would then be achieved by directing l1and management practices to effecting
appropriate levels of the AEI concept parameters. The 45T concept has a bielogical, a physical, and a
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hydraulic parameter, each of which appear to exert an equivalent and controtling influence on the infile
tration process. These parameters are plant litter, surface microroughness-macroporosity, and effective
surface head.

Additional research is needed to (1) develop better methods for field evaluating the AEI concept
parameters, {2) evaluate the concept parameters under diverse field conditions, (3) relate measured para-
meters to measured infiltraticn, and (4) develop econcmic methods for imposing and maintaining infiltra-
tion and runoff control treatments on large land areas. Since the green plant {s the best land manage-
ment tool available for holding soil and water resources in place and for increasing the soil resource,
the sample size for this research should be approximately equal to the space occupied by several crop
plants in a monoculture, and several plant communities in a multiculture. Control of key hydrologic pro-
cesses at this spatial scale will help keep the vital land resources - - sofl and water - - within easy
reach of plant roots. Consequently, such control can lead to improved 1and management practices for in-
creasing and stabilizing land productivity.
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