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well be a problem and it is for this reason that for some installations we have
provided for ease of removal of relatively short and light individual screen
sections.

With respect to the sensitivity of velocity distribution to design parameters
we paid particular attention to the spacing and percentage of area of the inner
sleeve perforations. In general, the greater the open space the poorer the velocity
distribution. It is necessary to create a head loss through the inner sleeve in
order to distfibute the flow over the entire sleeve area. Open area was varied
to obtain the desired distribution with minimum head loss. There are many
possible variations of spacing of the inner perforations and we are presently
preparing for model tests to study this for a new project with intake criteria
somewhat different from the original project discussed in our paper.

Quazi suggested the adjustment of the distance between the intake and the
protective dolphins to reduce scouring and sedimentation problems. It is interest-
ing to note in this connection that the dolphins, which were tested singly and

_ in multiples at several locations, were not very effective in keeping debris from
floating over or jmpinging on the intake. If they were enlarged to be more
effective, the undesirable effect on the river bottom was greater. If they were
moved upstream to reduce this effect on the intake, they were ineffective as
barriers. We carried the tests only far enough to solve our particular problem.
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StocHasTICS CONSIDERATIONS IN THUNDERSTORM MODELING®
Discussion by Herbert B. Osborn? and Kenneth G. Renard,® Members, ASCE

The author has attacked an important area of runoff prediction—thunderstorm
rainfall. Thunderstorms produce the maximum flood peaks on small watersheds
and significant runoff on larger areas throughout the country. In the Southwest,
thunderstorms produce almost all arid-land runoff. In discussing the physics
of thunderstorms, Corotis correctly stated that thunderstorms occur from con-
vective heating and along unstable frontal systems, as well as along squall lines.
He stated the user must specify whether he wants to simulate an air-mass
or bank-type thunderstorm, without stating what the difference will be in his
STORM program.

Storm Occurrance.—In western Texas and eastern New Mexico, major thun-
derstorm events are usually associated with frontal activity, whereas, in western
New Mexico and southern Arizona, most major thunderstorms are air mass

sJaly, 1976, by Ross B. Corotis (Proc. Paper 12231).
2Research Hydr. Engr., Southwest Watershed Research Center, U.S. Dept. of Agr.,
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atmospheric conditions and because of differing mathematical expressions (Fig.
9). Those for air-mass thunderstorms (prevalent in the Southwest) are generally
much-more limited in areal extent than those in the Midwest (Fig. 9). The author's
depth-area-curves (Figs. 7 and 8) would plot similar to the three flatter Midwestern
curves. Although the six air-mass thunderstorm curves seem somewhat similar
when plotted for a 2-in. (51-mm) storm, there are obvious differences in rainf-
volumes that increase with depth. For example, the first writer and Lane :
showed that the relationships between center depth and area is non-linear, w.
more rapid decay of the depth-area curves with greater depths.

Storm Development.—The senior writer found for Southwestern thunderstorn
that despite wind direction, the location of the *‘second’’ storm cell in air-m:
thunderstorms usually occurred randomly with respect to direction from thc
“first™* cell, and that subsequent cells tended to develop in the same direction
as the second cell. Prevailing wind direction was important in the dissipating
nonrunoff-producing portion of the thunderstorm (41). Ludlam (37) pointed out
that "*When a storm has become intense and persistent, it is difficult to know
how to measure the wind and other properties in its environment." Also, a
6-hr storm may not be realistic for air-mass thunderstorms in the Southwest.
Runoff-producing rainfall occurrences, simulated for air-mass thunderstorms,
correlated to real data when storms were assumed to dissipate completely within
2 hr. Then significant rainfall later the same day was predicted as a separate
event (41).

Examples of Applications.—The author's choice of a 144-sq mile grid for
simulation for storm area is acceptable. However, rather than using ‘‘storm
centers™ for the Atterbury data, he might have used ‘‘cell centers.” There
isno certainty that any of the 79 centers were the real storm maximum, particularly
on a long narrow drainage, like Atterbury.

Storm Magnitude.—Again, there are real differences in storm depths, depending
upon the type of thunderstorm. Otherwise, this section seems good.

Results. —Translation of Tucson data to Phoenix is acceptable, <ince air-mass
thunderstorms are the principal source of runoff-producing rawnfall at both
locations. However, the writers question why the author used Phoenix data,
since there are daily rainfall records available from 1957-1971 for the Tucson
NWS recording raingage at the Tucson International Airport. Also, daily rainfall
occurrence is based on one point, which underestimates the actual days o
measurable rain within a 144-sq mile arez. “.me rains will be recorded o
such an area in the Southwest without being recorded on a central gage.

Large-Scale Thunderstorms.—The example of a thunderstorm covering a ver-
large area reaffirms the writer's opinion that the author's model is best adapte.
to Midwestern large-scale thunderstorms and not to the much-smaller South-
western air-mass thunderstorms. Also, the author does not explain how his
model fits line thunderstorms. In the Southwest, fast-moving line thunderstorms
do not normally produce exceptional runoff from small watersheds. However,
when the storms stop ‘‘moving’ or *‘cast off’’ a cell that remains relatively
gtationary, then runoff can be exceptional. How does the author's model handle
such situations?

Conclusions.—The model presented by the zuthor seems more appropriate
for large-scale major thunderstorm occurrences in the Midwest. His model does
not satisfy several basic attributes of air-mass thunderstorm rainfall in the
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Southwest. The areal extent of air-mass thunderstorm rainfall is less than that
of frontal-convective events; the relationship between depth and areal extent
is nonlinear: storms are shorter in duration, usually lasting less than 30, min
and almost always less than 1 hr; there is daily persistence in rainfall and
pronounced diurnal effects of rainfall occurrence.

The writers feel that a ‘“‘universal’’ thunderstorm rainfall model may be
impractical. For example, in many parts of the West. there are strong orographic
influences on thunderstorm rainfall. Several regional models, based primarily
on climatic and topographic features, may be the solution.
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