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ABSTRACT

Intra-annual precipitation patterns are expected to shift towardmore intense storms and longer dry periods

because of changes in climate within future decades. Using satellite-derived estimates of plant growth

combined with in situ measurements of precipitation and soil moisture between 1999 and 2013, this study

quantified the relationship between intra-annual precipitation patterns, annual average soil moisture (at 5-cm

depth), and plant growth at nine grassland sites across the southern United States. Results showed a funda-

mental difference in the response to varying precipitation patterns between mesic and semiarid grasslands.

Surface soil moisture in mesic grasslands decreased with an increase of high-intensity storms, whereas in

semiarid grasslands, soil moisture decreased with longer dry periods. For these sites, annual average soil

moisture was a better indicator of grassland production than total annual precipitation. This improved ability

to predict variability in soil moisture and plant growth with changing hydroclimatic conditions will result in

more efficient resource management and better-informed policy decisions.

1. Introduction

Soil moisture plays an integral role within the hydro-

logic cycle as a critical link between soils, climate, and

biogeography (Legates et al. 2011). Soil moisture has

been shown to influence soil respiration (Geng et al.

2012), act as a thermal reservoir that impacts cloud

formation andwind fields (Ek andHoltslag 2004; Findell

and Eltahir 2003; Entekhabi et al. 1996), and directly

influence precipitation formation (Koster et al. 2004).

As the understanding of the importance of soil moisture

within an ecosystem increases, the effect precipitation

patterns have on the ability of rainfall to infiltrate into

the soil becomes an important area of study. If the re-

lationship of intra-annual precipitation events on soil

moisture can be better understood, models of pre-

cipitation and soil moisture can be improved.

Climates across the world are undergoing unprece-

dented changes. While global precipitation has been

reported to exceed the 1961–90 average every year

since 1995 (Dore 2005), climatic variability at the local

scale is shifting toward intra-annual patterns of ex-

treme weather such as longer growing seasons, larger
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temperature ranges, increased storm intensity, and

longer dry periods (Frich et al. 2002; Zhang et al. 2013;

Easterling et al. 2000). In the early twenty-first century,

grassland regions of the United States have experienced

a prolonged warm drought (MacDonald 2010) and a shift

to larger, more infrequent storms (Moran et al. 2014).

This has raised concern because grasslands have the ca-

pacity to respond, through shifts in water use efficiency

and biomass production, to variability in precipitation

patterns. In fact, there is evidence that grasslands may be

the most responsive biome to future climate changes

(Ponce-Campos et al. 2013).

Recent studies of the impact of intra-annual rainfall

variability on grassland productivity have been based

almost exclusively on simulation of increased event size

and longer within-season drought periods. Results have

shown that a shift toward more intense storms will have

a significant impact on grassland soil moisture and,

consequently, on aboveground net primary production

(ANPP). In semiarid regions, manipulated studies have

shown that a shift to fewer but larger events, with no

change in total rainfall, led to greater soil water content at

depths of 20 cm (Heisler-White et al. 2008). In mesic re-

gions, longer dry intervals between events led to below-

average soil water content (Heisler-White et al. 2009;

Knapp et al. 2002). These changes in soil moisture were

sufficient to increase ANPP in arid grassland by 30% and

decrease ANPP in mesic grassland by 18%. Fay et al.

(2008) found that the response of grassland ecosystems to

extreme rainfall patterns was dependent upon the com-

bination of event size, interval between rainfall events,

and total rainfall. It is expected that the sensitivity of

grasslands to extreme intra-annual precipitation patterns

will be greater during periods of prolonged drought, and

particularly in arid regions (Knapp et al. 2002). Cherwin

andKnapp (2012) used rainfall manipulations in semiarid

grasslands to induce extreme drought and reduce soil

moisture at the 20-cm depth; however, they reported that

ANPP was not reduced when intra-annual rainfall pat-

terns were characterized by large rain events.

Though these manipulated experiments provide good

insights into the mechanisms behind the relation between

extreme precipitation patterns and soil moisture, ecosys-

tem responses to precipitation changes are not necessarily

a simple combination of the responses of the individual

factors (Shaw et al. 2002; Zhang et al. 2013; Knapp et al.

2008). Conditions that affect soil moisture and increase

production through 2 years can cause simplifications in the

food web after 5 years (Suttle et al. 2007). Chronic intense

storms will alter both the mean and temporal variability of

soil moisture, resulting in long-term shifts in community

composition (Knapp et al. 2002). Even with extended

drought, plants show somepotential to increase their water

use efficiency to buffer the short-term effects of climate

change (Ponce-Campos et al. 2013; Knapp and Smith

2001). Long-term field studies provide the opportunity to

study how ecosystems are affected by climatic changes.

There remains some controversy about whether the ef-

fects of the storm size or frequency will have greater in-

fluence on annual and perennial vegetation in grasslands.

In a rainfall simulation experiment in an arid regionof Iran,

Jankju (2008) reported that the effects of storm size were

more significant than storm frequency on plant community

composition. In contrast, field studies of grasslands in

China have shown that precipitation frequency and the

timing of dry days in relation to the event intensity had

a significant influence on the ability of soils to storewater at

depths of 20–40cm (He et al. 2012; Wu et al. 2012). Wu

et al. (2012) concluded in their study of worldwide sites

that precipitation frequency is an overlooked or under-

estimated parameter in the relationship between pre-

cipitation and soil moisture because of lack of available

data. Cherwin and Knapp (2012) reported a strong inverse

relation between sensitivity to drought and event size,

where larger events resulted in less sensitivity. They ex-

plained that when rainfall events were sufficiently large,

ANPP was uncoupled from total precipitation amount.

The objective of this research was to study the impact

of varying storm intensity and prolonged dry periods on

grassland soil moisture during the early twenty-first-

century drought at sites across the southern United

States. We hypothesized that there exists a fundamental

difference in the soil moisture response to extreme

precipitation patterns between mesic and semiarid pre-

cipitation regimes. This study builds on previously pub-

lished work, yet it is distinctive in several ways. It is one of

only a few studies to include consistent observations over

a range of precipitation from semiarid to mesic regimes. It

is also one of the first studies to address this objective with

long-term observations, in this case extending from 1999

to 2013. Instead of studying the soil moisture at depths 20–

30 cm, this study is based on measurements at 5-cm depth

for two reasons. First, the bulk of grassland root biomass is

reported to be in the top 0–10 cm of the soil, that is,;50%

in mesic grasslands and up to 90% in semiarid systems

(Knapp et al. 2002; Cox et al. 1986). Second, the currently

orbiting Soil Moisture Ocean Salinity (SMOS) and plan-

ned Soil Moisture Active Passive (SMAP) sensors will

provide globalmeasurements of soilmoisture at this depth

(Kerr et al. 2001; Entekhabi et al. 2010).

2. Methods

a. Study sites and data selection

Nine sites were selected across the southern United

States (Fig. 1), composed of seven Natural Resources
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Conservation Service (NRCS) Soil Climate Analysis

Network (SCAN) stations, one U.S. Department of

Energy (DOE) Atmospheric Radiation Measurement

(ARM) site, and one DOE AmeriFlux site (Baldocchi

et al. 2004). The datawere obtained from the International

Soil Moisture Network (ISMN), and within this network,

all data were subjected to automated quality control

to ensure reliability of the dataset (Dorigo et al. 2013).

Locations of sites ranged from a small grassland field

approximately 150m 3 200m to a site surrounded by

everal square kilometers of grassland or scrubland (Table 1).

All locations were classified as either mesic or semiarid

according to their mean annual precipitation Pa during

the study period between 1999 and 2013. That is, sites

with Pa $ 500mm were considered mesic (Starkville,

Little River, Little Washita, and Pawhuska) and sites

with Pa , 500mm were classified as semiarid (Adams

Ranch, Pinenut, Vaira Ranch, WillowWells, andWalnut

Gulch). Additionally, the NRCSWeb Soil Survey (WSS)

was used to determine the field capacity QF and soil

FIG. 1. Distribution of study sites across the southern United States. Sites with lettering in white are mesic and sites

with lettering in black are semiarid.

TABLE 1. Site locations and descriptions. The EVI site column designates sites where MODIS EVI data were obtained and used for analysis.

Site

Network Vegetation classification

Precipitation

regime Pa (mm) EVI site

Soil

textureName Abbreviation

Starkville, MS SV SCAN Agricultural pasture Mesic 1521 — Loam

Little River, GA LR SCAN Agricultural pasture Mesic 1069 — Loamy

sand

Little Washita, OK LW SCAN Temperate and boreal

shrubland and grassland

Mesic 826 X Loam

Pawhuska, OK PA ARM Temperate and boreal

shrubland and grassland

Mesic 804 X Loam

Adams Ranch, NM AR SCAN Temperate and boreal

shrubland and grassland

Semiarid 319 X Loam

Pinenut, NV PT SCAN Warm semidesert scrub

and grassland

Semiarid 277 X Sandy

loam

Vaira Ranch, CA VR FLUXNET

(AmeriFlux)

Mediterranean scrub

and grassland

Semiarid 275 — Silt

loam

Willow Wells, NM WW SCAN Temperate and boreal

shrubland and grassland

Semiarid 259 X Sandy

loam

Walnut Gulch, AZ WG SCAN Warm semidesert scrub

and grassland

Semiarid 258 — Sandy

loam
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texture at each site (NRCS 2014). The WSS records QF

as an estimate derived from the water content retained

at a pressure of 1/3 bar. The soil texture at semiarid sites

was predominately sandy loam with two sites classified as

silt loam and loam, while the soil texture atmesic sites was

predominately loamwith one site classified as loamy sand.

The soil moisture and climate datasets were obtained

from in situ weather stations that measure daily pre-

cipitation and soil moisture at 5-cm depth. At SCAN

sites, soil moisture was also measured at 20-cm depth.

The soil moisture was measured with different sensors

depending on the network being used. SCAN sites uti-

lized an analog or digital HydraProbe sensor, the ARM

site utilized a Campbell Scientific Model 229L Matric

Potential Sensor, and the AmeriFlux site utilized the

Delta-T ThetaProbe ML2. The SCAN HydraProbe has

a reported accuracy of 60.013m3m23 (Seyfried et al.

2005). TheARMMatric Potential Sensor andAmeriFlux

ThetaProbe both claim an accuracy of 60.05m3m23

(Schneider et al. 2003; Delta-T Devices 2014).

Daily precipitation data were compiled from rain

gauges at the same location as the soil moisture probes.

Rain gauges for SCAN sites consisted of tipping buckets

or storage-type rain gauges. SCAN precipitation data

were given in cumulative amounts and daily rainfall data

were obtained by subtracting the annual cumulative total

from the previous day’s annual cumulative total. Daily

precipitation data from the ARM and AmeriFlux net-

works were collected using a tipping-bucket rain gauge.

Even with a quality-controlled dataset, oftentimes

sites had periods of missing or unreported data. The

threshold for discarding a year of data because of un-

reported soil moisture or precipitation was set at 31

continuous days. The 31-continuous-day threshold al-

lowed less than 10% of the yearly missing data to be

interpolated to create a complete year of representa-

tional data. Soil moisture data were interpolated by

averaging the soil moisture values from reported values

on dates before and after data were missing. In-

terpolation to fill gaps in data for soil moisture needed to

be done in approximately 155 instances; approximately

143 of those times were for 1- or 2-day periods. For the

other 12 times, soil moisture data were interpolated for

time periods between 3 and 16 days.

If precipitation data were missing for 1 day and there

was a change in the accumulated precipitation value

from before and after the unreported data, we recorded

that the difference in the accumulated values was the

amount of precipitation that fell on the unreported date.

For the approximately 11 times precipitation data were

missing between 2 and 31 days, precipitation data gaps

were filled using a two-step process. First, we made

a calculation of the precipitation that fell during the

period that data that were missing. This was accom-

plished by subtracting the annual cumulative pre-

cipitation value immediately after reliable data were

reported from the annual cumulative precipitation im-

mediately before the station began to report errors. If

the precipitation that fell during this time period was

.1mm, the total amount of precipitation that fell during

the missing gap was then temporally distributed in levels

as storms and dry periods based on precipitation records

from weather stations within 30 km operated by the

National Oceanic and Atmospheric Administration and

accessed through the National Climatic Data Center.

b. Satellite data

To study the ecosystem effects of soil moisture on bio-

mass production, the NASA Moderate Resolution Im-

aging Spectroradiometer (MODIS) enhanced vegetation

index (EVI) was used as a cross-site indicator of plant

activity (Huete et al. 2002). The dataset for this study

was taken from the MODIS product subset MOD13Q1

over the time period from 2001 to 2013. A footprint of

2.25 km 3 2.25 km (9 3 9 pixels) was obtained over

a homogenous area, where the EVI data could then be

averaged to produce a single value representative of the

in situ measurements (Table 1). If a site was not sur-

rounded by a homogeneous area large enough for the

MODIS footprint, EVI data were not retrieved.MODIS

data utilize a pixel-based quality assurance scheme to

limit noise from aerosols or other atmospheric in-

terference within the dataset. Software developed by

Jönsson and Eklundh (2004) was then used to further

smooth the dataset before integrating between the start

and end of the growing season to produce a proxy for the

ANPP known as the integrated EVI iEVI. The iEVI

value has been shown to be a reasonable approximation

of ANPP (Zhang et al. 2013; Ponce-Campos et al. 2013).

The SMOS satellite provides global soil moisture

measurements once every 3 days with an expected accu-

racy of 0.04m3m23. One pixel of SMOS data covers ap-

proximately 50km 3 50km on the ground, an area far

greater thanwhat is obtained from the in situ soil moisture

probes (Barre et al. 2008). SMOS data were obtained in

the form of the level 3 (L3) product from the Centre Aval

de Traitement des Données SMOS (CATDS), operat-
ed for the Centre National d’Études Spatiales (CNES;
France) by the Institut français de recherche pour l’ex-
ploitation de la mer (IFREMER; Brest, France). The

level-3 soil moisture (m3m23) global data are a 1-day

product and contain filtered data gridded at 25-km spatial

resolution. The best estimation of soil moisture and di-

electric constant are selected (based on the minimization

of the data quality index) for each node when several

multiorbit retrievals are available for a given soil moisture
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User Data Product (UDP). Once data were acquired us-

ing the in situ locations, soil moisture values were ex-

tracted from the ascending measurements for the 2011,

2012, and 2013 hydrologic years. There were 10 site years

where both SMOS and in situ probe measurements were

available at each site over the same timeframe that al-

lowed for direct comparison.

c. Data analysis

Mean annual soil moisture at 5-cm Qa and total annual

precipitation Pa were used for each hydrologic year

available from 1999 to 2013 at each site to derive the two

main metrics of our study. To recognize common patterns

in the temporal relationship between precipitation and

soil moisture, the precipitation and soil moisture values

were normalized using the z score. This statistic allows

data to be compared for generalized relationships across

time for all sites. The long-term annual soilmoisturemean

at 5 cm Qal, mean annual precipitation, and the standard

deviation S
Qa

or SPa
from each site between 1999 and 2013

were used to create soil moisture and precipitation z

scores, later referred to as normalized soil moisture at

5 cm Qan and normalized precipitation Pan, where

Qa
n

5

Q
a
2Q

a
l

S
Q

a

(1)

and

Pa
n

5
P
a
2P

a

SP
a

. (2)

For each year and site, precipitation data were pro-

cessed to determine the maximum consecutive dry day

length CDD and the simple daily intensity index SDII as

defined by Frich et al. (2002). CDD is the maximum

length of consecutive dry days over the year, where

CDD5Max No: of consecutive days with

precipitation, 1mmday21 . (3)

SDII is an indicator for the value of the average storm

intensity (mmday21) throughout the year. SDII is de-

rived from the annual precipitation divided by the num-

ber of days with precipitation greater than 1mm, where

SDII5
Pa

No: of days with precipitation$ 1mm
. (4)

SDII is a proxy for actual storm intensity because it is

based on daily precipitation over the course of the year.

A day with 10mm of precipitation in a 1/2 h will have the

same SDII value as 10mmof precipitation over 5 h, even

though the two storms would impact soil moisture very

differently. Therefore, changes in SDII may be related

to shifts from less intense winter rainfall to more intense

summer rainfall. To address if changes in precipitation

in the cool seasons, versus the warm seasons, were cor-

related with SDII, we computed the percentage Pa be-

tween October and March PC%. This was done by

summing the precipitation amounts between October

and March PC and dividing by Pa, where

PC% 5
PC

P
a

. (5)

CDDand SDII were used to classify each year at each site

into high or low CDD and SDII. This followed previous

work by Zhang et al. (2013), where the relationship be-

tween iEVI and annual precipitation was found to be af-

fected by high and low storm intensity. The demarcations

between high and low SDII and CDD were determined

according to themedian value of SDII andCDD formesic

and semiarid sites, thus retaining a similar number of site

years within each classification. The median for SDII in

mesic sites was 12.49mmday21, and from this value, high

and low mesic SDII were classified as above and below

12.50mmday21, respectively. The median for SDII in

semiarid sites was 7.22mmday21, creating a boundary

between high and low SDII at 7.00mmday21. In semiarid

sites, the median CDDwas 72.5 days, which gave the high

and low CDD split at 75 days. Meanwhile, the median of

mesic CDD was 24.5 days and the distinction between

high and low CDD was 25 days (Table 2).

CDD and SDII were also normalized to minimize the

site-to-site bias of longer CDD periods or inherently

higher SDII values associated with different precipitation

regimes. CDD and SDII were normalized with the mean

CDD and SDII, and the standard deviation SCDD and

SSDII from each site, where

CDDn 5
CDD2CDD

SCDD

(6)

and

SDII
n
5

SDII2 SDII

SSDII

. (7)

TABLE 2. Summary of high and low SDII and CDD classifications.

Index Units Classification Mesic Semiarid

CDD days Low #25.0 #75.0

High .25.0 .75.0

SDII mmday21 Low #12.5 #7.0

High .12.5 .7.0
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These variables CDDn and SDIIn were then used to

determine their cross-site relation with normalized

mean annual soil moisture and an assumed linear re-

lationship, where

Q
a
n

5 a(P
a
n

)1 b(CDD
n
)1 c(SDII

n
) , (8)

Qa
n

5 d(Pa
n

)1 e(SDIIn) , (9)

and

Qa
n

5 f (Pa
n

)1 g(CDDn) . (10)

First, a generalized linear relationship between soil

moisture and precipitation was found both across sites

and within sites. Second, to evaluate the interaction of

CDD and SDII on the relationship between soil moisture

and precipitation at mesic and semiarid locations, sites

were analyzed by comparing the linear regressions of

ungrouped normalized soil moisture and normalized

precipitation data to the linear regressions of grouped

data with similar precipitation patterns, that is, high or

low CDD and SDII. The linear regressions of the high

or low CDD and SDII were tested with analysis of

variance (ANOVA) to determine if the CDD and SDII

term was significant, based on differences in their

slopes or y intercepts. Third, the normalized CDD and

SDII values were also used as continuous variables to

see if they were significant within a linear regression to

explain normalized soil moisture. Finally, the effects of

high or low CDD and SDII on normalized mean annual

soil moisture were addressed with a two-sided Stu-

dent’s t test.

3. Results and discussion

a. Extent and depth of annual average soil moisture

values

A basic premise of this study was that the results

obtained with soil moisturemeasurements at 5-cm depth

would compare well with previously reported results

based on measurements at 20-cm depth. At the SCAN

sites where mean annual soil moisture at 5- and 20-cm

depths were available over the same annual period

(n5 40), the soil moisture at the two depths was strongly

correlated (coefficient of determination R2
5 0.96, p ,

0.001; Fig. 2). The high correlation between mean an-

nual soil moisture at 5- and 20-cm depths provided

confidence in the ability of the 5-cm soil moisture to be

representative of soil moisture at lower depths at these

grassland sites at the annual time scale.

In addition, our decision to use soil moisture mea-

sured at 5-cm depth was based partly on the fact that the

currently orbiting SMOS, launched in 2009, and planned

SMAP sensors will provide global measurements of soil

moisture at this depth. For the SMOS and in situ mea-

surements where both datasets were of good quality and

available over the same timeframe (n 5 10), we found

a reasonable relationship (R2
5 0.48, p 5 0.027) be-

tween Qa and the 50 km 3 50 km footprint of annual

mean soil moisture data obtained from the SMOS sat-

ellite (Fig. 3). Considering the difference in scale, this

gives some credibility to interpreting the results ob-

tained herein for application with satellite-based mea-

surements by SMOS and SMAP sensors, as well as

a general understanding for how well the point-based

FIG. 2. The linear relationship between mean annual soil mois-

ture observed at 5- and 20-cm depths over the dataset when both

observations were available (n 5 40).

FIG. 3. Linear regression ofmean annual soil moisture (cm3 cm23)

measurements at 5-cm depth obtained from the SMOS satellite

and from in situ probes within the SCANnetwork when both SMOS

and in situ measurements were available (n 5 10, p , 0.05).
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measurements from soil moisture probes are represen-

tative of field-scale soil moisture values that ultimately

affect plant production.

b. Cross-site Qa–Pa and Qa–iEVI spatial
relationships

Across sites where iEVI was available, we found that

Qa was strongly related to iEVIwhere sites with lower soil

moisture supported lower ANPP, as indicated by low

iEVI values (Fig. 4a; R2
5 0.79, p , 0.001). The correla-

tion between Pa and iEVI (Fig. 4b; R2
5 0.66, p, 0.001)

was weaker than between Qa and iEVI. Two outlying

points of higher iEVI decreased the correlation between

iEVI and Pa, while soil moisture was able to reconcile the

same two points within a single linear regression that has

a higher correlation between iEVI and Qa than between

iEVI and Pa. This demonstrated that mean annual soil

moisture was likely a better indicator of plant production

than total annual precipitation at these sites.

The general within-site temporal relationship be-

tween soil moisture and precipitation was studied by

using the normalized values of soil moisture and pre-

cipitation. For both mesic and semiarid sites, there were

weak but significant correlations between Qan and Pan

(Fig. 5;R2
5 0.51 andR2

5 0.33, respectively; p, 0.001).

The scatter in these relations is partly explained by the

additional impact of precipitation patterns (i.e., SDII

and CDD) on soil moisture.

c. SDII influence on linear Qan–Pan relationship

For mesic sites,Qan and Pan data classified by high and

low SDII were less dispersed along the respective

FIG. 4. The relationship between iEVI and (a) soil moisture at

5-cm depth and (b) precipitation. Data are given for sites where

iEVI was available (n 5 30).

FIG. 5. Linear regression of normalizedmean annual soil moisture

and normalized annual precipitation for (a) mesic and (b) semiarid

sites, where each data point represents a site year (n 5 32 for each

precipitation regime).
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regression lines, resulting in higher coefficient of de-

termination for classified data versus unclassified data.

The linear regression R2 value increased from 0.51 to

0.65 for high SDII and to 0.70 for low SDII (Fig. 6a,

Table 3). The intercepts of the high and low SDII re-

gressions differed significantly (p , 0.01), while the

slopes of each line were not significantly different (p 5

0.218). The intercept of the high and low SDII regression

lines were 20.50 and 0.34, respectively (Fig. 6a). When

SDII was kept as a normalized continuous variable to

explainQan , SDIIn was found to be significant (p, 0.01)

in mesic regimes (Table 4). The similar slopes demon-

strate that the underlying contribution of precipitation

to soil moisture remains unaffected; however, the differ-

ent intercepts represent a natural decrease of normalized

soil moisture values by 0.84. This represented an average

difference in soil moisture of 0.02m3m23 in mesic sites

or, on average, 10% of the mean annual soil moisture

content at these sites.

For semiarid sites, results were inconsistent. For years

with high SDII, the correlation between Pan and Qan

increased from R2
5 0.33 to 0.57, whereas for years with

low storm intensity, the correlation decreased fromR2
5

0.33 to 0.16 (Fig. 6b, Table 3). There was a significant

difference in the intercepts between the high and low

SDII classification (p 5 0.050), but there was no sig-

nificant difference in slopes between each linear

regression (p 5 0.319). Furthermore, when SDIIn was

a continuous variable, it did not contribute significantly

to the explanation of Qan in semiarid regimes. The low

correlation between normalized precipitation and nor-

malized soil moisture at semiarid sites with low SDII

may be due to other factors, such as surface temperature

or changing vegetation cover that were not taken into

account in this study (Legates et al. 2011).

Storm intensity is an important factor in the correla-

tion between Qan and Pan at mesic sites, but not so at

semiarid sites. The unique impact of storm intensity on

soil moisture at mesic sites may likely be a result of the

difference between Qa and QF at mesic sites. On aver-

age, for all mesic sites, Qa was 0.013m
3m23 above QF .

At semiarid sites, the difference between Qa and QF

was, on average, 0.10m3m23 below QF (Fig. 6c). There

was a significant difference (p, 0.001) betweenQa and

FIG. 6. Linear regression of normalized mean annual soil moisture

and normalized annual precipitation for (a) mesic (n 5 32) and

(b) semiarid sites (n5 32), where sites were classified into high and low

SDII as described in Table 2. (c) The distribution of the difference be-

tween field capacity andmean annual soil moisture (QF 2Qa) at mesic

(n 5 32) and semiarid sites (n 5 32). The boldface line represents the

median, theupper and lower limits of thebox represent thefirst and third

quartiles, and the dashed lines extend to the max and min values.

TABLE 3. Linear regressionR2 with data combined or split by SDII

and CDD. Boldface values indicate significance at p , 0.05.

Precipitation

regime

SDII CDD

Combined Low High Low High

Mesic 0.51 0.70 0.65 0.49 0.48

Semiarid 0.33 0.16 0.57 0.23 0.41
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QF at mesic and semiarid sites. This difference caused

the precipitation at semiarid sites to be incorporated

into the soil and to increase soil moisture regardless of

how quickly the precipitation fell. Because of the in-

herent property of soil moisture at the field capacity at

mesic sites, these sites needed more storms with less

rainfall per storm, that is, low SDII, to ensure runoff was

minimized and more precipitation was absorbed by the

soil, resulting in a higher normalized soil moisture value

than if that year were to have a high SDII value.

As mentioned previously, SDII is a simplification of

storm intensity based on precipitation data available at

the daily time scale. The suitability of SDII as a proxy for

storm intensity is arguable because of a potential greater

influence from shifts between summer and winter pre-

cipitation events than actual increases in annual average

storm intensity. We found that the correlation between

SDIIn and PC% was low at semiarid sites (R 5 20.079)

and at mesic sites (R 5 20.109). Thus, SDII provided

a reasonable proxy for storm intensity independent of

changes in seasonal precipitation at these sites.

d. CDD influence on linear Qan–Pan relationship

For mesic sites, the relation between Qan and Pan de-

creased from R2
5 0.51 to 0.48 with high CDD values

and to 0.49 with low CDD values (Fig. 7a, Table 3). The

slopes and intercepts of each line were not statistically

different (p 5 0.998 and p 5 0.313, respectively). The

analogous regression lines for high and low values of

CDD signify that annual soil moisture is insensitive to

CDD at mesic sites.

For semiarid sites, classification of years with high or

low CDD improved correlation between Pan and Qan

with high CDD and decreased correlation with low

CDD (Fig. 7b, Table 3). Compared to the general

Qan–Pan relationship, the R2 value increased from 0.33

to 0.41 (p5 0.010) with high CDD and yet decreased to

0.22 (p 5 0.054) with low CDD. The slopes of the re-

gressions of high and low CDD were not different (p5

0.341) as soil moisture increased at the same rate per

unit of precipitation. The y intercepts of each re-

gression were significantly different (p 5 0.065). This

p value is slightly above the significance level of 0.05;

however, it does lead to the assertion that higher CDD

lowers soil moisture in semiarid sites and that CDD is

an explanatory variable to model Qan . This assertion

TABLE 4. Linear regression variable coefficient (VC) estimates for Eqs. (8)–(10) that were identified in section 2c. TheR2 is reported in

the bottom row for the equation of each column. The p values for each variable are presented in parentheses after the estimated co-

efficient, and boldface values indicate significance at p , 0.05.

Eq. (8) Eq. (9) Eq. (10)

Variable VC Mesic Semiarid VC Mesic Semiarid VC Mesic Semiarid

Pan a 1.01 (p , 0.01) 0.52 (p 5 0.03) d 1.07 (p , 0.01) 0.74 (p , 0.01) f 0.61 (p , 0.01) 0.47 (p , 0.01)

CDDn b 20.09 (p 5 0.51) 20.31 (p 5 0.09) — — — g 20.18 (p 5 0.24) 20.33 (p 5 0.03)

SDIIn c 20.49 (p , 0.01) 20.07 (p 5 0.76) e 20.51 (p , 0.01) 20.26 (p 5 0.19) — — —

R2 0.64 0.44 0.64 0.37 0.52 0.43

FIG. 7. Linear regression of normalizedmean annual soil moisture

and normalized annual precipitation for (a) mesic and (b) semiarid

sites, where sites were classified into high and lowCDD, as described

in Table 2 (n 5 32 for each precipitation regime).
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was supported when only CDDn was found to be a sig-

nificant variable (p5 0.031), resulting in an R2 value of

0.43 (Table 4).

e. SDII and CDD effect on Qan

For mesic sites, averageQan was 0.049 with high storm

intensity and 20.049 with low storm intensity (Fig. 8a,

Table 5). Similar results occurred at the semiarid sites;

data classified with high and low storm intensity had

averageQan of20.060 and 0.068, respectively. Averages

of mean annual normalized soil moisture with high and

low storm intensity at bothmesic and semiarid sites were

not significantly different (p 5 0.776 and 0.698, re-

spectively). Similarly, at mesic sites the averageQan with

high CDD (20.28) and low CDD (0.28) were not sig-

nificantly different (p 5 0.103). However, for semiarid

sites, the average Qan of years with high CDD (20.38)

and low CDD (0.33) differed significantly (p 5 0.033;

Fig. 8b, Table 5) by 0.71 standard deviations. The de-

viation between high and low CDD represented an av-

erage 0.01m3m23 difference of mean annual soil

moisture or 15% of the mean annual moisture content

within the soil at semiarid sites.

The unique influence of CDD on semiarid sites and

the inability of SDII to influence soil moisture without

the incorporation of precipitation may be affected

by the difference in the length and variation of CDD or

SDII that each regime naturally experiences. Even

though SDII values between mesic and semiarid sites

were significantly different (P, 0.001; Fig. 8c), the SDII

influence on soil moisture at mesic sites is codependent

with precipitation. On the other hand, semiarid soil

moisture was influenced significantly between high and

low CDD. This may be a result of semiarid sites expe-

riencing an average CDD of 75 days with a standard

deviation of 55.5 days. These values are greater than the

mesic sites’ average CDD of 28 days, with a standard

deviation of 12.1 days. Even the mesic site maximum

CDD value of 62 days would place that year with

a semiarid low CDD classification (Fig. 8d). With this

difference of CDD values that mesic and semiarid sites

experience, mesic sites may not be influenced by CDD

FIG. 8. Boxplots of the normalized mean annual soil moisture for mesic and semiarid sites split by length of (a) SDII and (b) CDD, as

described in Table 2. Boxplots broken up by precipitation regime are shown for (c) SDII and (d) CDD. The boldface line represents the

median, the upper and lower limits of the box represent the first and third quartiles, and the dashed lines extend to the max andmin values

(n 5 32 for each precipitation regime within each boxplot).

TABLE 5. Mean normalized annual soil moisture values broken

down by extreme index classification. Boldface values indicate

there was a significant difference (p , 0.05) between the mean

normalized annual soil moisture of high and low CDD or SDII.

Precipitation

regime Low CDD High CDD Low SDII High SDII

Semiarid 0.33 20.38 0.068 20.060

Mesic 0.28 20.28 20.049 0.049

FEBRUARY 2015 HOTTENSTE IN ET AL . 115



because they experience a relatively low CDD and

a relatively small variation of CDD.

4. Conclusions

For nine grassland sites across the southern United

States, we investigated the differing impact of intra-annual

patterns of precipitation on soil moisture in mesic and

semiarid precipitation regimes. Soil moisture was strongly

related to ANPP, as measured by the iEVI. In fact, we

found that soil moisture was a better predictor of iEVI

than was total precipitation.We also found that our in situ

point measurements of soil moisture were correlated to

large-scale remotely sensed soil moisture measurements

that will allow for increases in the scale of similar studies.

In this study, we addressed the within-site temporal re-

lation between precipitation and soil moisture by normal-

izing soil moisture and precipitation to units of standard

deviation and analyzing the results for the sets of semiarid

and mesic sites. We concluded that the precipitation–soil

moisture relation was impacted by variations in storm in-

tensity for mesic sites and by the length of consecutive dry

days for semiarid sites. This was explained in relation to

general climate patterns and the associated distinctions

in soil texture in these two precipitation regimes. First,

the soil moisture at mesic sites tends to reside closer to

field capacity than soil moisture at semiarid sites. So,

precipitation associated with high or low storm intensity

events will infiltrate into the drier soils at semiarid sites,

whereas for mesic sites, precipitation associated with

high-intensity storms will result in greater water loss to

runoff and less infiltration into soil, compared to low-

intensity storms. Second, this field study attributed the

length of CDD as having a significant impact on soil

moisture only at semiarid sites. This is related to the fact

that the variation in length of CDD was naturally low at

mesic sites and not variable from year to year, in contrast

to the high variability of CDD at semiarid sites. For

semiarid sites, long periods of CDD decreased the mean

annual soil moisture regardless of the total precipitation

throughout the year.

While many factors influence how soil moisture varies

with precipitation, this research offers a consistent hy-

drometeorological explanation for how mesic and semi-

arid grasslands will be affected by changing precipitation

patterns and a changing climate. Incorporation of intra-

annual patterns of storm intensity inmesic grasslands and

consecutive dry days in semiarid grasslands will help

improve estimates of annual soil moisture and better

predict grassland production.
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