














1702

J Soils Sediments (2013) 13:1692-1707

Fig. 7 Particle sizc distributions of source and suspended scdiment p
samples from cach basin where the particlc diamcter is plotted against
the pereent volume of the sample. Clay, silt, and sand sizec demarcations
arc indicated on cach distribution plot

during the winter months, which is when most of the stream
bank erosion occurred on several mid-Atlantic Piedmont
streams previously monitored for rates of bank erosion (e.g.,
Wolman 1959; Merritts et al. 2011), implying that we might
be underestimating the contribution of stream banks to the
total annual suspended sediment load in Ellerbe and the other
study basins.

Paved roads cover a large portion of the basin, but in the
mixing model, this represent only a 13+4% contribution to the
suspended load. A limited amount of fine-grained street resi-
due is available during storm events; thus, paved roads likely
contribute little sediment to the suspended load during long
duration or closely spaced storm events. Although active
construction sites exist within the basin, they are not a major
contributor to the suspended sediment load (19+17%). Active
construction sites are primarily found along the margins of the
basin and the fringes of the city of Durham, which occupying
the majority of the catchment was developed many decades
ago. The moderate contribution from forests (26+:18%) was
not expected in an urbanized drainage basin; however, this
may reflect the erosion of soils following commercial timber
harvesting in the upper catchment (Voli 2012). Though timber
harvesting can lead to a localized increase in sediment loads
from Piedmont forests, pre-harvesting sediment delivery
levels are typically re-established within 2-5 years, and
best management practices that reduce soil disturbance
and loss can minimize the negative water quality effects
associated with mechanized harvesting on erodible soils
(Aust and Blinn 2004).

4.1.2 Lick Creek

The Lick Creek basin is primarily forested, yet mixing model
results suggest that recent development occurring in only a
small portion of the basin is having a significant impact on
suspended sediment loads (43+19%). During our monitoring,
several active construction sites were located along the drain-
age divide between Lick and Little Lick creeks, where White
Store soils are prevalent (Fig. 2 and Electronic Supplementary
Material, Table 1). It has been observed that streams draining
areas experiencing active urbanization can have suspended
sediment concentrations 10-20 times higher than those
draining woodlands (Wolman and Schick 1967). These dif-
ferences in sediment concentrations may be even higher in
basins such as Lick Creek, where active construction is taking
place on highly erodible soils (Cawthorn 1970).

Radiocarbon geochronology and magnetic susceptibility
results show no evidence of legacy sediments within the
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Fig. 8 Montc Carlo simulation results for cach drainage basin where the
percent contribution from a given source is plotted against the number of
modcled occurrences that fall within each 1% bin. The number of model
iterations varied between 5,000 and 10,000, depending on the number of

Lick Creek valley bottom (Fig. 5). The moderate structure
of the stream bank soils, not found along the other study
streams, is also indicative of a soil that has not formed
recently, yet the trunk channel is characterized by steep
banks, which contribute the second highest amount
(27+16%) to the suspended sediment load. This suggests
that the stream bank morphology and erosion within the
basin may be a result of recent channel incision. Small to
moderate-sized basins typically display a 2-3 times increase
in peak discharge following urban-to-suburban development
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sources are arranged in order of increasing mean percent contribution for
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(Booth 1990). Such hydrograph modifications result in
increased shear stress exerted on the bed and banks of
the channel that in turn cause greater sediment entrain-
ment as well as channel incision and widening. This
suggests that the recent development in the upper por-
tions of the basin is causing not only an increase in fine
sediment from construction sites, but may also be re-
sponsible in large part for the recent incision and chan-
nel widening of the creek, and thus enhanced erosion of
stream bank sediments.
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Table 3 Montc Carlo-based geochemical mixing model results reported as mean and median percentages by contributing source and their 1-0

uncertainty for cach catchment

Ellerbe Creek Construction Paved road
Mean contribution 19 13
Median contribution 14 13
1-6 uncertainty” 3 to0 36 9to 17

Lick Creek Construction Dirt Road
Mean contribution 43 22
Median contribution 44 19
1-6 uncertainty 241061 6to 37

Little Lick Creek Construction Pasture
Mean contribution 18 22
Median contribution 16 21
1-6 uncertainty 41033 91034

New Light Creek Road Cut Dirt Road
Mean contribution 6 9
Median contribution 5 6
1-6 uncertainty 1to 11 2to 18

Forest Stream bank

26 58

23 59

8to43 42t0 74

Forest Stream Bank

9 27

7 25

2t015 11t0 43

Forest Stream Bank

31 33

31 31

18t0 44 13t0 52

Pasture Forest Stream Bank
13 16 62

12 15 62
51022 7 to 24 50t0 74

All contributions and uncertainties arc rounded to the nearcst 1%

" Based upon non-parametric quintile values that correspond to 1-sigma (68%) uncertainty

4.1.3 Little Lick Creek

Little Lick Creek is primarily an urban drainage basin situated
on the outskirts of the city of Durham. The basin is similar in
size, geology, and soils to Lick Creek, but did not have as
many active construction sites during the fingerprinting study.
The lack of active construction sites coupled with a moderate
density of impervious surfaces is reflected in the mixing
model results, which show stream banks (33+20%) and con-
struction sites (18+15%) as the largest and smallest contribu-
tors, respectively (Fig. 8). Forest soils (31+13%) are the
second largest mean contributor, similar to observations from
the Ellerbe Creek catchment, which again may be due to
commercial timber harvesting, especially when the trees are
harvested across ephemeral channels (Voli 2012). Material for
radiocarbon dating and magnetic susceptibility measurements
were not collected along Little Lick Creek. However, the
morphology and stratigraphy of the stream banks are similar
to Lick Creek, and thus it is assumed that the high stream
bank-derived suspended sediment contributions are from ero-
sion and incision caused by the high peak flows associated
with this urban drainage basin (Table 1).

The lack of legacy sediment within the Lick and Little Lick
Creek valley bottoms can be explained by the geologic and
pedologic conditions. White Store soils, derived from Triassic
sedimentary rocks, are dominant in these basins (see Electronic
Supplementary Material Data, Table 1). Because White Store
soils have a narrow range of suitable moisture regimes and low
natural fertility, they have not been used extensively for
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agricultural production (Kirby 1976; Daniels et al. 1999;
Helms 2000). In addition, the lack of resistant lithologies
and low stream gradients render the valley bottoms as
unfavorable locations for the construction of water-
powered mill-dams (Heron 1978). These agricultural and
industrial limitations likely resulted in relatively little post-
European valley bottom sediment aggradation and storage
in these basins.

4.1.4 New Light Creek

The New Light Creek basin is undeveloped with current land
use dominated by forest and pasture lands (Fig. 2d and
Table 1). Historic aerial photographs reveal that a substantial
number of today’s woodlands and pastures were farms during
the nineteenth and early twentieth century (Voli 2012).
Historic maps also show the presence of several mill-ponds
along New Light Creek (Bevers 1871). Many of the stream
banks expose several meters of aggraded sediment, and the
radiocarbon geochronology and magnetic susceptibility mea-
surements suggest that almost 1 m of valley bottom aggrada-
tion has occurred during the last three centuries (Fig. 6 and
Electronic Supplementary Material, Table 4).

With well-vegetated woodlands and pastures currently cov-
ering much of the basin, stream bank erosion contributed
62+12% to the suspended sediment load (Fig. 8). With only
relatively small volumes of sediment captured by the sampler
during storm events, a hydrograph with low peak flows during
those events (Fig. 3), and New Light Creek’s absence from the
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North Carolina 303(d) list, suggest that this stream is not
moving a substantial amount of suspended sediment during
storm events. This result is expected in an undeveloped drain-
age basin with minimal non-vegetated surface area where half
to three quarters of the suspended load is likely derived from
stream bank erosion of predominantly aggraded legacy
sediments.

5 Conclusions

The mitigation of nonpoint-source pollutants, such as sediment,
in larger basins is rarely a straightforward procedure due to the
number of sources and erosional processes contributing to their
concentration in waterways. Sediment fingerprinting revealed
that stream bank erosion in general, and of legacy sediments in
particular, from valley bottoms of streams draining to Falls Lake
is at the root of the regional sediment loading problem. Several
methods have previously been employed to restore mid-Atlantic
Piedmont streams suffering from high sediment loads arising
from the erosion of legacy sediments. Traditional stream resto-
ration methods promote the protection of incised stream bank
reaches with large structures, such as boulder and/or rootwad
revetments, or bank stabilization through grading to a stable
angle followed by revegetation (Brown 2000). The bank pro-
tection approach is often expensive and fails to reduce bank
erosion in streams characterized by high sediment loads, excess
shear stress, and easily erodible banks, where stabilizing struc-
tures are often stranded in the middle of channels in the years to
decades after implementation (e.g., Miller and Kochel 2010).
Alternative approaches have focused on valley bottom removal
of legacy sediments in order to restore Piedmont streams to their
pre-legacy sediment condition (Merritts et al. 2011). The legacy
sediment removal option would ensure a large reduction in the
contribution of stream bank sediment to the suspended load, but
is likely unfeasible in large and often heavily developed basins.
We suggest that this leaves a combination of better stormwater
management aimed at reducing peak flows, and stabilization to
reduce erosion of near-vertical banks produced by both high
flow events and freeze-thaw actions as the preferable method of
sediment mitigation in Ellerbe Creek.

Lick and Little Lick Creek could also benefit from addi-
tional stormwater management implementations, as it appears
that a substantial amount of stream bank erosion and channel
incision in these basins is due to increased peak flows. New
Light Creek is not on the North Carolina 303(d) list and thus
does not currently need mitigation, but the amount of valley
bottom legacy sediment storage demonstrates that there is
potential for high suspended sediment loads here during the
late winter and early spring months following gravitational
failure of bank sediments aided by freeze—thaw processes.

There is also potential to reduce sediment contributions
from surface sources within the studied basins. Limiting the

amount of time soils are left unvegetated and enforcing ero-
sion and sediment control measures will further mitigate con-
struction site erosion. Timber harvesting on gentle slopes
away from stream channels and re-vegetating skid trails fol-
lowing harvesting should reduce forest soil contributions.

Our results demonstrate that stream bank erosion resulting
from anthropogenic alterations of the pre-European valley
bottom is the largest contributor to the suspended sediment
load in three of four Falls Lake tributary basins and a signif-
icant contributor in the fourth. Valley bottom aggradation of
legacy sediments is evident along Ellerbe and New Light
creeks, from both of which stream banks contributed >50%
of the suspended sediment load during the monitoring period.
Stream bank erosion by means of channel incision and wid-
ening due to increased stormwater runoff appears to add to
stream bank contributions in the Ellerbe, Lick, and Little Lick
Creek basins, but plays a less significant role where the
presence of legacy sediment is diminished (Lick and Little
Lick Creeks). Although we document a significant stream
bank erosion component to the suspended sediment load in
each of these basins, our results may underestimate the annual
percent contribution from stream banks, since the bank ero-
sion is often more prevalent during the winter months
(Wegmann et al. 2012; Starek et al. 2013). Sources of sedi-
ment other than stream bank erosion that had large contribu-
tions were exposed forest soils, presumably from commercial
timber harvesting activities, and sediment runoff from active
construction sites. Better use and enforcement of existing best
management practices and erosion and sediment control mea-
sures will likely decrease contributions from forests and
construction sites, respectively. Without taking the proper
measures to address and mitigate nonpoint sources of
suspended sediment, particularly stream bank erosion, these
streams will continue to contribute to surface water turbid-
ity problems via the transport of high TSS loads to Falls
Lake, a regionally important drinking water source, into the
foreseeable future.
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