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Table 2 Source and suspended
sediment grain size (D5U) and
calculated correction factors used

in the geochemicalmixing model
for each catchment

Construction Forest Stream Pasture Dirt Paved Road Suspended
bank road road cut sediment

Ellerbe Creek

D50 (urn) 18.1 27.5 24.8 - - 46.3 - 27.7

Correction factor 0.65 0.99 0.90 - - 1.67 - -

Lick Creek

D5o (um) 19.5 31.1 22.3 - 22.9 - - 18.5

Correction factor 1.06 1.69 1.21 - 1.24 - - -

Little Lick Creek

D50(urn) 22.5 31.8 19.2 24.6 - - - 24.3

Correction factor 0.93 1.31 0.79 1.01 - - - -

New Light Creek

D50 (um) - 24.6 21.4 15.8 19.6 - 22.4 20.2

Correction factor
-

1.22 1.06 0.78 0.97
-

1.11
-

the dominant source in New Light (62 ±12%), Ellerbe
(58± 16%),and LittleLick (33±20%) creeks,while construction
sites are the dominant source in Lick Creek (43±19%). A
summary of the modeled estimates of source sediment contri
butions and 1-sigma uncertainty ranges is given in Table3. The
small number of sediment samples collected from the basins
results in large uncertainties for many of the contribution esti
mates. New Light Creek is the one basin that produced low
uncertainties,which we attribute to the near identical signature
between the stream bank and suspended sediment geochemical
data used in the mixingmodel (see Section4.1.4). Despitelarge
uncertainties, most of the mixing model results are normally
distributed, with the exception of the sources whose mean
contributions are close to zero, as the model does not allow for

negativecontributions(Fig. 8 and Table3). The largenumber of
tracers used in the mixing model resulted in contributions sum
ming to both less and more than 100%. A mass balance con
straint to prevent the model from summing to more or less than
100%was added to the mixing model, but the large number of
tracers used rninimized its effectiveness. The deviation from

100% increases with an increasing number of tracers entered
into the mixing model. This has the effect of generating more
uncertainty in the model results than if we had weighted the
mass balance parameter more heavily in the model.

urbanization led to the accumulation of a significant amount
of aggraded valley bottom sediment. Radiocarbon geochro-
nology and magnetic susceptibility measurements confirm
that several meters of legacy sediment currently buries the
pre-European floodplain along the upper portion of the basin
(Fig. 4 and Electronic Supplementary Material, Table 4). The
presence of these easily-eroded sediments combined with a
mid-twentieth century U.S. Army Corps of Engineers chan
nelization project in the lower basin has left the majority of
Ellerbe Creek incised from its source to its confluence with

Falls Lake. High peak discharges resulting from the large
amountof impervioussurfeces across the basin coupled with
theunstablebanks ofits incisedchannelsundoubtedlyleads to
high ratesofstreambank erosion, and is likely why the mixing
model results indicatestream banks as the primary contributor
(58±16%) to suspended sediment loads in this basin (Fig. 8).

The Ellerbebasin is the only one of the four study basins
forwhicha long-termestimateofthe averageannualsediment
yield exists. Brown and Caldwell (2010) report an annual
suspended sediment yield of 2.4 T ha-1 year-1 at our
suspended sediment collection site. For comparison,
Mukundan et al. (2011) obtained a 4-year average sediment
yield of 0.78 T ha-1 year-1 for a somewhat larger Georgia
Piedmontbasinwherein they assert that it is experiencing both
significant bank erosion of legacy sediment and has a higher
sediment yield than do less disturbed Piedmont basins. While
this is a single comparison, it serves to highlight the fact that
Ellerbe Creek exports a large amount ofsuspended sediment
to theFallsLakeReservoirand thata significantpercentageof
this sediment is the result of bank erosion into legacy
sediments.

AU of the suspended sediment samples analyzed for this
basin along with the majority from the other three basins were
collected during the summer and fall months, thus stream
bank contributions do not account for sediment added to the

suspended sediment load through freeze-thaw bank erosion

4 Discussion

4.1 Catchment-specific sources ofsuspended sediment

4.1.1 Ellerbe Creek

Today, the city of Durham and the Ellerbe Creek basin are
densely developed (Fig. 2a and Table 1); yet less than two
centuries ago, the basin was primarily composed of forests
and farms. Decades of forest clearing and farming prior to
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Fig. 7 Particle size distributions of source and suspended sediment•
samples from each basin where the particle diameter is plotted against
the percent volume ofthe sample. Clay, silt, and sand size demarcations
arc indicated on each distribution plot

during the winter months, which is when most of the stream
bank erosion occurred on several mid-Atlantic Piedmont

streams previously monitored for rates of bank erosion (e.g.,
Wolman 1959; Merritts et al. 2011), implying that we might
be underestimating the contribution of stream banks to the
total annual suspended sediment load in Ellerbe and the other
study basins.

Paved roads cover a large portion of the basin, but in the
mixingmodel, this represent only a 13±4% contribution to the
suspended load. A limited amount of fine-grained street resi
due is available during storm events; thus, paved roads likely
contribute little sediment to the suspended load during long
duration or closely spaced storm events. Although active
construction sites exist within the basin, they are not a major
contributor to the suspended sediment load (19±17%). Active
constructionsites are primarily found along the margins ofthe
basin and the fringes of the city ofDurham, which occupying
the majority of the catchment was developed many decades
ago. The moderate contribution from forests (26±18%) was
not expected in an urbanized drainage basin; however, this
may reflect the erosion of soils following commercial timber
harvestingin the upper catchment (Voli2012). Though timber
harvesting can lead to a localized increase in sediment loads
from Piedmont forests, pre-harvesting sediment delivery
levels are typically re-established within 2-5 years, and
best management practices that reduce soil disturbance
and loss can minimize the negative water quality effects
associated with mechanized harvesting on erodible soils
(Aust and Blinn 2004).

4.1.2 Lick Creek

The Lick Creek basin is primarily forested, yet mixing model
results suggest that recent development occurring in only a
small portion of the basin is having a significant impact on
suspended sedimentloads(43±19%). During our monitoring,
several active construction sites were located along the drain
agedivide betweenLick and LittleLick creeks,where White
Storesoils are prevalent (Fig. 2 and Electronic Supplementary
Material, Table 1). It has been observed that streamsdraining
areas experiencing active urbanization can have suspended
sediment concentrations 10-20 times higher than those
draining woodlands (Wolman and Schick 1967). These dif
ferences in sediment concentrations may be even higher in
basins such as Lick Creek, where active construction is taking
placeon highly erodible soils (Cawthom 1970).

Radiocarbon gee-chronology and magnetic susceptibility
results show no evidence of legacy sediments within the
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Ellerbe Creek

Fig.8 MonteCarlo simulation results for eachdrainagebasin wherethe
percent contribution from a given source is plotted against the number of
modeled occurrences that fall within each l% bin. The number of model

iterations varied between 5,000 and 10.000, depending on the number of

Lick Creek valley bottom (Fig. 5). The moderate structure
of the stream bank soils, not found along the other study
streams, is also indicative of a soil that has not formed

recently, yet the tmnk channel is characterized by steep
banks, which contribute the second highest amount
(27±16%) to the suspended sediment load. This suggests
that the stream bank morphology and erosion within the
basin may be a result of recent channel incision. Small to
moderate-sized basins typically display a 2-3 times increase
in peak discharge following urban-to-suburban development
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New Light Creek

StreamBank

solutions eliminated for producing a zero-percent contribution. Modeled
sourcesarearranged in order of increasing mean percentcontribution for
each basin

(Booth 1990). Such hydrograph modifications result in
increased shear stress exerted on the bed and banks of

the channel that in turn cause greater sediment entrain-
ment as well as channel incision and widening. This
suggests that the recent development in the upper por
tions of the basin is causing not only an increase in fine
sediment from construction sites, but may also be re
sponsible in large part for the recent incision and chan

nel widening of the creek, and thus enhanced erosion of
stream bank sediments.
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Table 3 Monte Carlo-based geochemical mixing
uncertainty for each catchment

model results reported as mean and median percentages by contributing source and their 1-c

Ellerbe Creek Construction Paved road Forest Stream bank

Mean contribution 19 13 26 58

Median contribution 14 13 23 59

l-o uncertainty0 3 to 36 9 to 17 8 to 43 42 to 74

Lick Creek Construction Dirt Road Forest Stream Bank

Mean contribution 43 22 9 27

Median contribution 44 19 7 25

l-o uncertainty 24 to 61 6 to 37 2 to 15 11 to 43

Little Lick Creek Construction Pasture Forest Stream Bank

Mean contribution 18 22 31 33

Median contribution 16 21 31 31

1-o uncertainty 4 to 33 9 to 34 18 to 44 13 to 52

New Light Creek Road Cut Dirt Road Pasture Forest Stream Bank

Mean contribution 6 9 13 16 62

Median contribution 5 6 12 15 62

1-a uncertainty 1 toll 2 to 18 5 to 22 7 to 24 50 to 74

All contributions and uncertainties are rounded to the nearest 1%

0Baseduponnon-parametric quintilevaluesthat correspond to 1-sigma (68%)uncertainty

4.1.3 Little Lick Creek

LittleLickCreek is primarilyan urban drainagebasinsituated
on the outskirts ofthe city of Durham. The basin is similar in
size, geology, and soils to Lick Creek, but did not have as
many activeconstruction sitesduringthefingerprinting study.
The lack ofactive construction sites coupled with a moderate
density of impervious surfaces is reflected in the mixing
model results, which show stream banks (33±20%) and con
struction sites (18± 15%)as the largestand smallestcontribu
tors, respectively (Fig. 8). Forest soils (31±13%) are the
secondlargestmean contributor, similar to observations from
the Ellerbe Creek catchment, which again may be due to
commercial timber harvesting, especially when the trees are
harvested across ephemeral channels (Voli 2012).Material for
radiocarbon dating and magneticsusceptibilitymeasurements
were not collected along Little Lick Creek. However, the
morphology and stratigraphy of the stream banks are similar
to Lick Creek, and thus it is assumed that the high stream
bank-derived suspendedsedimentcontributions are from ero
sion and incision caused by the high peak flows associated
with this urban drainage basin (Table 1).

The lackof legacysediment within the Lick and LittleLick
Creek valley bottoms can be explained by the geologic and
pedologic conditions. White Store soils, derived from Triassic
sedimentary rocks, aredominant in these basins (see Electronic
Supplementary Material Data, Table 1).Because White Store
soils havea narrowrangeof suitable moisture regimes and low
natural fertility, they have not been used extensively for
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agricultural production (Kirby 1976; Daniels et al. 1999;
Helms 2000). In addition, the lack of resistant lithologies
and low stream gradients render the valley bottoms as
unfavorable locations for the construction of water-

powered mill-dams (Heron 1978). These agricultural and
industrial limitations likely resulted in relatively little post-
European valley bottom sediment aggradation and storage
in these basins.

4.1.4 New Light Creek

TheNew Light Creek basin is undevelopedwith current land
use dominated by forest and pasture lands (Fig. 2d and
Table 1).Historic aerial photographsreveal that a substantial
numberoftoday's woodlandsand pastureswere farmsduring
the nineteenth and early twentieth century (Voli 2012).
Historic maps also show the presenceof several mill-ponds
along New Light Creek (Bevers 1871). Many of the stream
banks expose several meters of aggraded sediment, and the
radiocarbon geochronologyand magnetic susceptibilitymea
surements suggest that almost 1 m ofvalleybottom aggrada
tion has occurred during the last three centuries (Fig. 6 and
Electronic Supplementary Material, Table 4).

With well-vegetated woodlands andpastures currently cov
ering much of the basin, stream bank erosion contributed
62±12% to the suspended sediment load (Fig. 8). With only
relatively smallvolumes of sediment captured by the sampler
during stormevents, a hydrograph with lowpeakflows during
thoseevents(Fig.3), andNew LightCreek's absencefromthe
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North Carolina 303(d) list, suggest that this stream is not
moving a substantial amount of suspended sediment during
stormevents. This result is expectedin an undeveloped drain
agebasin with minimal non-vegetated surface areawhere half
to three quarters of the suspended load is likely derived from
stream bank erosion of predominantly aggraded legacy
sediments.

5 Conclusions

The mitigation ofnonpoint-source pollutants, such as sediment,
in larger basins is rarely a straightforward procedure due to the
number of sourcesand erosional processescontributing to their
concentration in waterways. Sediment fingerprinting revealed
that streambank erosion in general, and of legacy sediments in
particular, fromvalleybottoms ofstreams draining toFallsLake
is at the root of the regionalsediment loadingproblem.Several
methodshave previously been employedto restoremid-Atlantic
Piedmont streams suffering from high sediment loads arising
from the erosion of legacy sediments. Traditional stream resto
ration methods promote the protection of incised stream bank
reaches with large structures, such as boulder and/or rootwad
revetments, or bank stabilization through grading to a stable
angle followed by revegetation (Brown 2000). The bank pro
tection approach is often expensive and fails to reduce bank
erosionin streamscharacterized by high sediment loads,excess
shear stress, and easily erodible banks, where stabilizingstruc
turesare often stranded in the middle ofchannels in the years to
decades after implementation (e.g., Miller and Kochel 2010).
Alternative approaches have focused on valley bottom removal
oflegacy sediments in order to restore Piedmont streams to their
pre-legacysediment condition (Merritts et al. 2011). The legacy
sediment removal option would ensure a large reduction in the
contributionofstream bank sediment to the suspended load, but
is likely unfeasible in large and often heavily developed basins.
We suggest that tins leaves a combination of better stormwater
managementaimed at reducing peak flows, and stabilization to
reduce erosion of near-vertical banks produced by both high
flow events and freeze-thawactions as the preferable method of
sediment mitigation in Ellerbe Creek.

Lick and Little Lick Creek could also benefit from addi

tional stormwater management implementations, as it appears
that a substantial amount ofstream bank erosion and channel

incision in these basins is due to increased peak flows. New
Light Creek is not on the North Carolina 303(d) list and thus
does not currently need mitigation, but the amount of valley
bottom legacy sediment storage demonstrates that there is
potential for high suspended sediment loads here during the
late winter and early spring months following gravitational
failure ofbank sediments aided by freeze-thaw processes.

There is also potential to reduce sediment contributions
from surface sources within the studied basins. Limiting the
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amount of time soils are left unvegetated and enforcing ero
sion and sediment control measures will further mitigate con
struction site erosion. Timber harvesting on gentle slopes
away from stream channels and re-vegetating skid trails fol
lowing harvesting shouldreduce forest soil contributions.

Our results demonstrate that stream bank erosion resulting
from anthropogenic alterations of the pre-European valley
bottom is the largest contributor to the suspended sediment
load in three of four Falls Lake tributary basins and a signif
icant contributor in the fourth. Valley bottom aggradation of
legacy sediments is evident along Ellerbe and New Light
creeks, from both of which stream banks contributed >50%
of the suspendedsediment load during the monitoring period.
Stream bank erosion by means of channel incision and wid
ening due to increased stormwater runoff appears to add to
stream bank contributions in the Ellerbe, Lick, and Little Lick
Creek basins, but plays a less significant role where the
presence of legacy sediment is diminished (Lick and Little
Lick Creeks). Although we document a significant stream
bank erosion component to the suspended sediment load in
each ofthese basins, our results may underestimate the annual
percent contribution from stream banks, since the bank ero
sion is often more prevalent during the winter months
(Wegmann et al. 2012; Starek et al. 2013). Sources of sedi
ment other than stream bank erosion that had large contribu
tions were exposed forest soils, presumably from commercial
timber harvesting activities, and sediment runoff from active
construction sites. Better use and enforcement ofexisting best
management practices and erosion and sediment control mea
sures will likely decrease contributions from forests and
construction sites, respectively. Without taking the proper
measures to address and mitigate nonpoint sources of
suspended sediment, particularly stream bank erosion, these
streams will continue to contribute to surface water turbid

ity problems via the transport of high TSS loads to Falls
Lake, a regionally important drinking water source, into the
foreseeable future.
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