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F	looding is among the worst natural disasters  
	in the United States in terms of both economic  
	costs and loss of human life. Flash f loods are 

particularly severe because of the short time avail-
able to warn and to respond to such events. The U.S. 
National Weather Service defines flash floods to be 
those that are produced within 6 hours of a caus-
ative event (Michaud et al. 2001), although because 
“flash flood” can mean different things in different 
regions and in different situations, they can gener-
ally be thought of as high velocity flows that occur 
in a short period of time (Gruntfest and Huber 1991). 

Effective prediction has been a major goal of f lash 
flood research during the past decade (Hapuarachchi 
et al. 2011). Advancements in flash flood prediction 
require improvements in observation networks, me-
teorological predictions, and hydrological models 
because f loods have a variety of causative mecha-
nisms and involve a “synergy” between hydrological 
and meteorological factors (Davis 2001). That is, 
the nature of the flooding is modulated not only by 
atmospheric conditions (which affect the intensity 
and duration of storm precipitation) but also by the 
time-dependent hydrological states (e.g., soil moisture 
and snowpack) within a watershed. Forecasting flash 
flooding is further complicated because the forecast 
should provide information not only about the oc-
currence but also about the timing and magnitude 
of the flood flow (Doswell et al. 1996; Davis 2001).

Recent advancements in meteorological forecasts 
have been particularly important in flash flood situa-
tions. For example, estimates of total fallen precipita-
tion [i.e., quantitative precipitation estimates (QPEs)] 
have improved because of the combination of spatially 
distributed radar data, with accurate point measure-
ments from rain gauge data (e.g., Krajewski 1987; Smith 
and Krajewski 1991; Seo et al. 1999; Todini 2001). In 
addition, estimates of immediate future precipitation 
[i.e., quantitative precipitation forecasts (QPFs)] have 
improved (especially at short lead times) because of 
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increased ability to combine numerical weather pre-
diction (NWP) model output with patterns derived 
from observed radar, satellite, and gauged rainfall 
trends (e.g., Smith and Austin 2000). In addition, there 
has been increasing communication of uncertainty 
(e.g., Collier 2007), which is sometimes accomplished 
through the use of ensemble predictions.

Improvement in hydrological models’ ability 
to utilize these new hydrometerological products 
is needed in order to better predict f lash f loods. 
Currently, process-based models, which have rep-
resentations of the relevant physical processes, are 
commonly used at many operational forecast centers, 
because the models can be applied in a variety of 
environments and they do not require an extensive 
historical dataset to calibrate them. For example, 
the majority of National Weather Service (NWS) 
Regional Forecast Centers (RFCs) use the Sacramento 
Soil Moisture Accounting Model (SAC-SMA) for its 
f lash flood guidance (FFG) system. However, such 
models are often lumped to increase computational 
efficiency and lower data requirements. These models 
can be improved by using distributed modeling 
because such models can account for the local-
ized nature of many flash flood producing storms. 
Increased computing power and the increasing avail-
ability of high-resolution distributed datasets make 
such models attractive for f lash f lood forecasting 
(Hapuarachchi et al. 2011).

Modeling of snow distributions is an important 
component that is often overlooked in f lash f lood 
modeling. Although snowmelt by itself often occurs 
too slowly to be considered capable of producing flash 
flooding, snow and snowmelt can contribute to flash 
flooding when rain falls on top of snow, especially if 
the combined rainfall and snowmelt rates are high. 
Snowmelt can also cause antecedent conditions that 
make an area prone to flash flooding, as soil moisture 
reservoirs are filled to capacity during and after the 
melting of a significant snowpack (Hirschboeck et al. 
2000). When rain falls on snow, a snowpack can rap-
idly lose its cold content because of latent heat release 
as rain freezes on the snowpack. In addition, turbulent 
transfer to the snow surface, especially in windy con-
ditions, can cause condensation and additional snow-
melt (Marks et al. 2001). During these events, rainfall 
intensities, freezing levels, and snowpack conditions 
all influence the magnitude of the resulting stream-
flow (McCabe et al. 2007). Furthermore, rainfall can 
enhance snowmelt by penetrating and mobilizing the 
snowpack, resulting not only in significant flooding 
but also in significant transport of sediment and even 
debris flows. Rain-on-snow events can be especially 

severe if ground is already saturated (e.g., due to recent 
snowmelt), especially since the atmosphere is often too 
cool for there to be significant evaporation.

This paper describes a coupled modeling system 
that considers the localized nature of many f lash 
f lood–producing storms, and the importance of 
snowmelt, and allows high temporal and spatial 
resolutions required for accurate f lash f lood pre-
diction. The coupled model (called KINEROS/
hsB-SM) combines the Kinematic Erosion and Runoff 
(KINEROS) overland f low/channel routing model 
and the hillslope-storage Boussinesq Soil Moisture 
(hsB-SM) modular modeling framework. KINEROS 
is an event-oriented, physically based overland flow 
simulation model (Woolhiser et al. 1990; Goodrich 
et al. 2012) that was developed by the U.S. Depart-
ment of Agriculture Agricultural Research Service 
(USDA-ARS) Southwest Watershed Research Center 
(SWRC) to model floods, primarily resulting from 
overland f low in semi-arid and arid regions. The 
hsB-SM was developed at the University of Arizona 
and includes physical descriptions of processes related 
to baseflow generation (Carrillo et al. 2011), which is 
more applicable in humid areas. In this application, 
hsB-SM also includes an energy balance snow model. 
The resulting combination is an operational modeling 
system that has the following features:

•	 fully distributed (KINEROS divides watersheds up 
into a series of channel elements and overland flow 
planes, and hsB-SM runs on a 0.0125° × 0.0125° 
grid);

•	 continuous (i.e., keeps track of catchment wetness 
and snow water equivalent);

•	 applicable in a variety of environments as it 
accounts for snow, multiple f low generation 
mechanisms (infiltration excess or saturation 
excess), evapotranspiration, canopy intercep-
tion, subsurface flow, overland flow, and channel 
routing (see Fig. 1);

•	 flexible spatial and temporal resolution;
•	 includes a framework to easily calibrate the models 

using historical streamflow data and historical 
meteorological data as model input; and 

•	 real-time operation, using hourly precipitation 
estimates of rain that has already fallen and NWS 
forecasts to predict streamflow up to 24 hours into 
the future.

We have implemented and tested KINEROS/
hsB-SM for five catchments in the Catskill Mountains 
in southeastern New York State (Fig. 2). There are two 
watersheds along the main stem of the west branch 
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Delaware River (defined by outlets at the towns of 
Walton and Delhi, New York), and three smaller, 
steeper watersheds (East Brook, Town Brook, and 
Platte Kill). These catchments range in size from 36 
to 870 km2 and have different degrees of “flashiness.” 
The region is sparsely populated and there are no 
major dams or reservoirs, though there is a signifi-
cant amount of farming and pasture land. The area 
is cool and humid, with annual precipitation totaling 
in excess of 1300 mm. Of this, roughly 800 mm 
becomes runoff, giving annual runoff coefficients 
of ~0.65. In general, the 
area receives adequate pre-
cipitation throughout the 
year, though streamflows 
are general ly higher in 
the spring and snowmelt 
is a significant factor in 
many of the watersheds. 
Low f lows occur during 
the summer because evapo-
transpiration is high and 
soils are drier. Floods most 
commonly occur during 
the winter and spring be-
cause of a combination of 
rain and snowmelt over wet 
soils, but intense summer 
thunderstorms and tropi-
cal storms can also cause 

floods and flash floods during the summer and fall. 
The model is currently being used at the National 
Weather Service Binghamton, New York, Weather 
Forecast Office in an experimental fashion.

MODEL DESCRIPTION. This section contains a 
general overview of KINEROS/hsB-SM; however, for 
a more detailed explanation, we refer you to the model 
documentation, which can be found in the electronic 
supplements for this article. KINEROS/hsB-SM 
involves a loose coupling between the KINEROS 
and hsB-SM models, meaning that, at this point, the 
components of each model run semi-autonomously 
from the other. The hsB-SM model’s primary purpose 
is to keep track of distributed snow and soil moisture 
conditions between events. This implementation of 
hsB-SM is also fully distributed with a spatial resolu-
tion of 0.0125° × 0.0125° (about 1 km) and has a high 
temporal resolution (1 h  between events and 5 min 
during events). This gives it appropriate capabilities 
to resolve impacts from precipitation events that are 
limited in spatial extent. This capability is especially 
important during the summer, when storms are more 
localized, and allows the model to take advantage of 
fine-resolution distributed rainfall datasets.

Perhaps the most novel feature of this flash flood 
modeling system is the inclusion of a distributed 
energy balance snow model [which is broadly similar 
to the Utah Energy Balance Snow Model developed 
by Tarboton and Luce 1996)]. The snow model, which 
was developed to make snow predictions with high 
spatial and temporal resolutions, has been included to 
better predict floods that result from a combination 
of rainfall and snowmelt. It includes representations 

Fig. 1. Model schematic for the KINEROS/hsB-SM 
system that shows important modeled physical pro-
cesses. Both KINEROS and hsB-SM are distributed and 
take into account a variety of surface and subsurface 
processes that are important for flash flooding.

Fig. 2. Site map showing the modeled upper Delaware basin watersheds. 
Shown are the locations of streams and stream gauges, watershed boundaries, 
delineated hillslopes used for KINEROS, and ~1-km grid boxes on which the 
snow and subsurface models run.
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of turbulent (latent and sensible) fluxes at the snow 
surface, heat that is advected by precipitation, canopy 
interception, and vegetation effects on incoming 
radiation using Beer’s law, and it takes into account 
local topographic effects on solar forcing (Whiteman 
and Allwine 1986).

The hsB-SM model also includes modules that 
describe canopy interception of rainfall (Deardorff 
1978), infiltration [which is computed as a modified 
time-compression approximation of Philip’s equation 
(Philip 1957), a solution to the Richards equation 
under a simplified set of initial and boundary condi-
tions, as in Milly (1986), Famiglietti et al. (1992), and 
Troch et al. (1994)], estimates of evapotranspiration 
(Teuling and Troch 2005), and vertical water trans-
port in the upper soil layer, and it has a shallow and 
a deep aquifer. Baseflow from the deeper aquifer is 
modeled as a simple nonlinear reservoir model, but 
baseflow from the shallow, unconfined aquifer, where 

the water table interacts directly with the unsatu-
rated zone, is modeled based on the hillslope-storage 
Boussinesq equation (Troch et al. 2003).

In KINEROS/hsB-SM, to preserve the regional-
ization impacts of localized rainfall events, as well 
as to better diagnose areas of partial saturation, the 
hsB model is applied for kilometer grid boxes and the 
rates of outflow are used to predict water transport 
between adjacent grid cells. This distributed model-
ing drastically increases the computational demand 
of the model, which must remain relatively fast for 
operational purposes (as well as for calibration, which 
requires repeated multiyear simulations). Therefore, 
we have chosen to emulate the model as nonlinear 
reservoirs q = aXb and aquifer height models of the 
form h(x) = kXh0(x), where q is discharge, X is grid cell 
aquifer storage, and h0 is a characteristic distribution 
of aquifer heights, (a, b, and k are fitting parameters 
such that the simpler models are able to reproduce 

the behavior of the hsB 
model). The parameters of 
each of these reservoirs are 
informed by the behavior 
of hsB for a part icular 
watershed. Figure 3 illus-
trates how this model emu-
lation characterizes hsB’s 
behavior in terms of both 
streamf low and aquifer 
heights. This emulation 
step results in dramatic 
speed increases for the 
subsurface portion of the 
model and allows the simu-
lation of regionally varying 
impacts on the groundwater 
system due to the location 
of precipitation.

In KINEROS/hsB-SM, 
runof f  generat ion can 
occur either as infiltra-
tion excess overland f low 
(when the rainfa l l rate 
overcomes the infiltration 
capacity of soils), leading 
to Horton overland f low, 
or from saturation excess, 
which usually occurs next 
to streams and can arise 
when the water table rises 
to the surface because of 
rapid infiltration in place 
and/or rapid movement of 

Fig. 3. Charts illustrating the aquifer calibration of hsB-SM: (a) master as well 
as individual baseflow recession curves for the Delaware River (Walton) using a 
long (~60 years) streamflow time series (in the model, the upper portion of the 
baseflow recession corresponds to the discharge time scale of the hsB aquifer, 
and the lower portion of the recession corresponds to the deep aquifer time 
scale); (b) model schematic illustrating the catchment width function used in 
the hsB model, as well as a typical distribution of aquifer heights predicted by 
the model; (c) storages and discharges predicted by the hsB model, as well as 
the simpler storage–discharge model used to emulate it; and (d) as in (c), but 
in terms of the distribution of aquifer heights predicted by the two models.
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water downhill from upslope areas. Of the two flow 
generation mechanisms, saturation excess overland 
flow is less fully understood, as it is not definitively 
known how old water in the soil profile gets displaced 
by new water (e.g., Pearce et al. 1986; Sklash et al. 
1986; McDonnell 1990) or the relative importance 
of this displacement mechanism in relation to the 
rapid movement of subsurface storm flow through 
macropores (large soil pores in which water is not held 
by capillary forces). Infiltration excess overland flow 
results from high intensity rainfall events, and is very 
important for flash flooding in the western United 
States, while saturation excess overland flow is, to a 
greater degree, influenced by overall precipitation 
amounts and antecedent hydrological conditions and 
is important in wetter catchments. It is important to 
represent both of these processes in an area like New 
York’s Delaware basin, which has flooding resulting 
from lower intensity storms during the winter, often 
in combination with snowmelt, as well as intense 
convective storms during the summer.

Finally, runoff is routed to the channel outlet. 
KINEROS (Woolhiser et al. 1990; Goodrich et al. 
2012) is used as the runoff model. In KINEROS, over-
land flow and channel routing are simulated using a 
kinematic wave approach over a network of hillslope 
(plane or curvilinear) and channel model elements, 
and it is used to simulate overland flow and channel 
routing of runoff from hsB-SM (for more detailed 
information, see www.tucson.ars.ag.gov/kineros). 
The overland flow and channel model elements are 
derived from the morphology of the landscape using 
the Automated Geospatial Watershed Assessment 
Tool (AGWA; Semmens et al. 2008; www.tucson 
.ars.ag.gov/agwa) and therefore do not follow the 
1-km grid of the other model components. To map 
between the 1-km grid and the KINEROS hillslopes, 
a weighting scheme is developed that indicates 
the relative contributions of each grid cell to each 
KINEROS model element. Because of computational 
constraints, we also use a simple routing model that 
is that is based on catchment geometry and the Saint 
Venant equations for shallow-water transport (Mesa 
and Mifflin 1986; Troch et al. 1994) during continu-
ous past simulations (those involving many years of 
simulation at one time) used to calibrate parameters 
related to infiltration and evapotranspiration.

IMPLEMENTATION AND CALIBRATION. 
KINEROS/HsB-SM is designed to be easy to learn to 
use and to implement. Model components are coded 
in Fortran (KINEROS) and the Mathworks Matlab 
(HsB-SM), while most of the interface is written in 

Matlab, making it relatively simple to modify model 
components and to visualize model results. Although 
Matlab is proprietary software, the model can be 
compiled with the built-in Matlab Compiler and 
distributed with runtime libraries for free (though 
end users will not be able to modify the code directly 
without Matlab). KINEROS/hsB-SM also relies on 
widely available national spatial and hydrometeoro-
logical forcing datasets, giving it the capacity for broad 
implementation. Spatial data include digital elevation 
data, vegetation data, and soils data, which can be 
obtained from the U.S. Geological Survey (USGS) 
and the National Resource Conservation Service 
(NRCS). In addition, the model uses the capabilities 
of the USDA’s AGWA, which allows for watershed and 
hillslope delineation, as well as intersection with spa-
tial datasets (Semmens et al. 2004; Miller et al. 2007).

Forcing data comes from a variety of sources. 
For past simulation, the North American Land Data 
Assimilation System (NLDAS) forcing product is 
used to provide estimates of humidity, wind, and 
incoming shortwave and longwave radiation, and it is 
combined with the PRISM climate dataset to provide 
elevation-dependent estimates of air temperature and 
pressure. NLDAS is a 1/8° product that is developed 
using North American Regional Reanalysis (NARR) 
output but is further enhanced by using bias corrected 
radiation estimates. NLDAS precipitation data are 
replaced with higher-resolution NWS radar rainfall 
estimates using the NWS Multisensor Precipitation 
Estimator (MPE) product. MPE, which is generated 
on a 4 km × 4 km grid, combines gauge precipitation 
measurements with radar-estimated spatial rainfall 
fields. During the flood events, however, the model 
uses high-resolution (1 km × 1°) radar data from 
the Binghamton Next Generation Weather Radar 
(NEXRAD) radar site with the NWS’s standard Z–R 
relationship (300 × R1.4) to provide radar estimates of 
rainfall at a 5-min temporal resolution. Radar rainfall 
estimates are then subject to a bias field, such that the 
precipitation amounts in each MPE grid box match 
the MPE (which already incorporates information 
from rain gauges) amounts. This provides a result that 
the precipitation fields are nearly identical in terms 
of their averages with the spatial pattern derived 
from the high-resolution radar data. In addition to 
the forcing data that are used to drive the model, 
snow water equivalent (SWE) estimates from the 
Snow Data Assimilation System (SNODAS) are used 
to verify snow model results. For real-time simula-
tion, the same data are used with the exception of 
NLDAS product, which is not available for real-time 
operation. Instead, forecast values of the necessary 
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quantities are obtained from the National Digital 
Forecast Database (NDFD).

KINEROS/hsB-SM also requires model calibra-
tion. The calibration process for KINEROS/hsB-SM 
seeks to provide a calibration that is physically con-
sistent with the hydrological processes that are simu-
lated in the model. During the calibration process, 
parameters that are associated with individual 
processes are calibrated separately and iteratively, 

similar to the process described in Carrillo et al. 
(2011). KINEROS/hsB-SM also includes subroutines 
to easily automate any portion of this calibration pro-
cess. It is also easy to perform some calibration steps 
manually, which may lead to greater insight into how 
model parameters relate to a certain process, while at 
the same time automating others, so that the model is 
still manageable to set up and to calibrate.

The first calibration step involves the determination 
of the perched aquifer prop-
erties such that modeled 
aquifer discharge matches 
observed winter basef low 
recessions. That is, the 
modeled aquifer discharge 
is determined from peri-
ods when the catchment is 
relaxing from prior rainfall/
snowmelt inputs. To find 
the baseflow recessions, we 
first apply a low-pass filter 
to the streamflow hydro-
graph to separate baseflow 
from quicker stormf low 
(Lyne and Hollick 1979). 
Once we separate out the 
basef low time series, we 
connect each individual 
basef low recession to the 
master recession curve ac-
cording to the low stream-
flows in the tails of the re-
cessions. We only consider 
winter baseflow recessions 
to minimize effects from 
growing vegetation and 
evapotranspiration losses, 
so that the baseflow reces-
sions are mainly controlled 
by aquifer properties. Once 
the master recession curve 
is built, we infer that differ-
ent portions of the baseflow 
recession curve are repre-
sentative of contributions 
from different aquifers. 
The upper portion of the 
basef low recession curve 
is steeper, and represents 
a quicker release of water 
than the lower portion. We 
consider the upper por-
tion to be indicative of the 

Fig. 4. Screenshots of real-time model output from KINEROS/hsB-SM: 
(a) time series of recent and predicted discharge values; (b) historical and 
predicted model values (including precipitation, temperature, snow water 
equivalent, soil moisture, and streamflow); and, (c) example spatial output 
from the model. Note that that all units on the model output are English units 
to match the conventions of other operational products in the United States.
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release from the shallow hsB aquifer, while the lower 
portion is indicative of the deeper bedrock aquifer and 
the corresponding model is parameterized appropri-
ately to match the baseflow recession characteristics.

The remaining portions of the model are calibrated 
using multiple year simulations. Parameters are only 
varied a few at a time (e.g., parameters that relate to a 
specific process are calibrated separately), but in most 
cases the model is optimized to be able to reproduce 
multiple years of observed streamflow using a stan-
dard optimization routine (Nelder and Mead 1965). 
The only exception is the calibration of parameters 
that are associated with snow. In this case the model 
is optimized to match multiyear observations of 
snow (or systems such as the Snow Data Assimilation 
System, which involve a model but also assimilate 
snow observations). The snow parameters are, by and 
large, meant to be applicable everywhere. After the 
calibration of the snow model, parameters describ-
ing evapotranspiration, infiltration, and overland 
flow/channel routing are calibrated iteratively to get 
the best possible representation of streamflow. In 
addition, KINEROS is also tested and, if necessary, 
calibrated during simulation of individual f lood 
events or the long time series simulation. The second 
electronic supplement gives results of this continuous 
calibration, as well as case studies illustrating the per-
formance of KINEROS/hsB-SM during flood events.

REAL-TIME OPERATION. Once calibrated, 
KINEROS/hsB-SM is designed to be run in real time 
with NWS forcing data. It is forced with radar-derived 
rainfall products (MPE or ~1-km radar products), and 
pulls forecasts for all other required hydrometeoro-
logical variables from the NDFD. Like past simula-
tions, real-time model runs are continuous and update 
automatically every hour. In addition, the model can 
be run more frequently during events, as the model 
time step is set to be 5 min during real-time operation. 
There is also some assimilation of observations during 
real-time operation of KINEROS/hsB-SM. For ex-
ample, daily snow estimates from SNODAS (which is a 
snow modeling system that is corrected with observed 
data) are downloaded and displayed for comparison 
with KINEROS/hsB-SM’s snow model and can be 
used to update the model snow water equivalent as 
the model runs. Also, USGS streamflow observations 
are downloaded continuously and used to make sure 
that modeled streamflows match observations for the 
historical period. In addition to using the forecasted 
values of precipitation, the model can also be run 
with different precipitation scenarios, so that multiple 
streamflow scenarios can be viewed simultaneously.

There are three main methods to display the model 
results. First, the model outputs a graph similar to 
what is found on the NWS’s Advanced Hydrologic 
Prediction Service web page, where recent stream-
f lows (for the past 48 hour) are shown alongside 
streamflow forecasts with information about flood 
stage for the next 24 hours (Fig. 4a). The user can 
also view time series charts for more modeled and 
observed quantities (precipitation, temperature, 
SWE, soil moisture, and streamflow) for the past 30 
days (Fig. 4b), as well as spatial maps showing where 
in each catchment there are potentially areas of high 
soil moisture or a lot of snow (Fig. 4c), which might 
exacerbate flooding problems. All of this is intended 
to give forecasters a fairly complete picture about 
potential flash flood threats.

CONCLUSIONS. While KINEROS/hsB-SM takes 
into account many aspects of flash flood prediction 
in small to medium sized nonurban watersheds, it is 
just a step toward flash flood forecasting, and there 
is much room for improvement. For example, flash 
f lood producing storms are often associated with 
other natural hazards such as landslides, which also 
present potentially serious hazards to life and prop-
erty. Using such a model in conjunction with a land-
slide model (e.g., Ren et al. 2010) would make sense 
in some cases. We are also optimistic about the use 
of such flash flood models in the future given fewer 
computational constraints and greater data avail-
ability, especially of high-resolution precipitation data 
that can be used consistently throughout the model-
ing periods (e.g., the National Weather Service’s Q2 
precipitation product). For this study, while we have 
sought to be as consistent as possible with our forcing 
data, the differences between the forecast period and 
the observed period, in terms of the temporal and 
spatial resolutions of the available forcing products, 
currently presents some challenges (see subsection 
“Evaluation of the temporal characteristics of precipi-
tation during a spring flood and a fall flood” in online 
supplement). Nevertheless, we believe that KINEROS/
hsB-SM offers improvements over existing flash flood 
forecasting systems, including the use of a snow model 
to help improve flash flood predictions for rain-on-
snow events. It also has many other essential features 
of successful f lash f lood prediction, including the 
use of quantitative precipitation estimates and fore-
casts; a continuous distributed hydrological model 
that operates at the same spatial scale as convective 
storms, which can be a major cause of flash flooding; 
a programmatically assisted method of calibration/
validation; and real-time operation. The model is 
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also designed to provide a balance between model 
parsimony, which allows for the successful and flex-
ible model implementation, and enough complexity 
to be able to represent a range of important processes 
for flooding. These aspects are among the many po-
tential improvements over traditional methods used 
for operational flash flood forecasting.
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