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ABSTRACT

In formulating the equations describing the flow of water on the surface of a watershed, *"■«"£„, is to
lifications fthe substitution of a simple geometry for a more complex one) must be made. The problem is to
U cues for and consequences of such simplifications; and thereby to develop objective procedures for

.lification of complex watersheds. Watershed geometry is represented by a series of planes and
cnanneis in cascade When overland flow and open channel flow in the cascade are described by the kinematic
wave equations the resulting mathematical model is called the "kinematic cascade model.

Planes are fitted to coordinate data from topographic maps by a least squares procedure. Residuals of this
t-iancs arc iiiucu «.« >-» __. ^. „ »£_ ; «_. „„,»». ,.«;»<> f-Vu. m«an elevation. Channel ele-

of Tstream is the indlx of concavity, a channel goodness-of-fit statistic. An overall goodness-of-fit statis-
Uc is thTdrainJge dtsUy ratio (the ratio of drainage density in the cascade of planes and channels to drain-
age density of the watershed).

The kinematic impulse response is the solution of the kinematic cascade model for an impulse

amfnlrthan for turbulent flow. A goodness-of-fit statistic measuring how well a ^"^"'P^ic surface
narabolic slooe is related to the resulting peak discharge of the impulse response from the parabolic surrace
aTfrom the cascade of planes approximation' This statistic can also be used "determine the number of planes
in cascade necessary to approximate the kinematic impulse response from a parabolic surface.

For a concave channel, the index of concavity is related to the error in peak discharge ofaroutj

age densitHncreases The degree of apparent nonlinearity is affected by drainage density as a measure of the
relative proportions of laminar and turbulent flow.

The mean value of a hydrograph goodness-of-fit statistic, as the improvement over using the mean discharge,
increlses as the geometric goodness-of-fit statistic increases but decreases as the drainage density increases.

A combined eoodness-of-fit statistic, the product of the drainage density ratio and the geometric
nHnlfof fit fSistic is related to ihe degree of distortion in optimal-hydraulic roughness parameters

S «r onsin watershed geometry result in optimal roughness parameters smaller than the corresponding empir
ically derived values for simple watersheds where less distortion is involved.

Given rainfall runoff, and topographic data for a small watershed, it is possible to define the simplest
kinJtic cascade geom^ry which when'used in simulation will, on the average, preserve selected hydrograph
characteristics to a given degree of accuracy.

iv



Chapter I

INTRODUCTION

1.1 General Statements

To address the problem of surface runoff as

related to watershed features one must study fundamen

tals of the past as well as current research. How can

the hydrologic processes be understood? One way is to

investigate the properties of simple mathematical mod

els constructed to simulate the operation of nature

with respect to specific quantities of interest. If

the model is understood, then one attempts to infer

properties of its prototype. This method is a stan

dard tool, a mathematical model. The method can be

summarized as an oversimplification in the following

sequence: Nature - Questions - Mathematical Model -

Understanding - Inference. There is a great deal of

mire between each element in the sequence. Unfortu

nately, the sturdy links are for the most part based

on experience and judgment and (for want of more pre

cise terms) creativity, cleverness, and insight. For

tunately, there is a partial solution by way of ob

served data--supportive or negative empirical

evidence, i.e., observed data provide the means of

testability.

Considering surface runoff, the thesis is that

mathematical models can be strengthened by systemati

cally incorporating more basin or watershed character

istics into them. By this means, the links between

the phases discussed above are strengthened so that

they become more objective. By constructing the mod

els based upon theory and by testing them with data

the result is a procedure with systematic and empiri

cal import, i.e., the theory helps to distinguish laws

from accidental generalizations and the observed data

provide the basis for testing hypothesized relation

ships. Thus, theories are introduced to explain a

system of regularities but they must be definite

enough to allow testing.

Before proceeding, we would like to define some

terms basic to this discussion. The terms "water

shed," "drainage basin," and "catchment" are synony

mous. "Watershed" means an area above a specified

point on a stream enclosed by a perimeter. The

"watershed perimeter" is an area in which surface run

off will move into the stream or its tributaries above

the specified point. Thus, "watershed" connotes a

physical entity for which statements of continuity can

be made. With respect to surface runoff, the water

shed boundaries are, except for the stream outlet, the

locus of points where there is no mass flux of water.

If attention is limited to stream channels that

are conceptualized as single lines, then the resulting

line diagram is called a "channel network." A simple

concept of the surface of a watershed is that it con

sists of the channel network and the interchannel

areas of overland flow within the watershed perimeter.

Flow from this surface is called "surface runoff."

1.2 Scope and Objectives

Although many of the concepts discussed here may
have wider applicability, the study excludes urban

watersheds. Emphasis is on rainfall excess-surface

runoff relationships on small rural watersheds. Data
from artificial watersheds are used in developing

relationships, but the main interest is in natural
and cultivated agricultural watersheds.

Before the analyses, the basic models are

presented and discussed. Then the theory of overland

flow over complex surfaces. Next, the analyses are

extended to natural watersheds, and, finally, to

parameter estimation and model testing.

The four preliminary or auxiliary objectives are:

1. To select hydrograph characteristics which

should be preserved in simulating surface runoff from
small agricultural watersheds.

2. To develop statistics which can be used to

determine when the selected hydrograph characteristics

have been preserved to a given degree in a surface

runoff simulation.

3. To select a set of watershed characteristics

which should be preserved in simulating surface run

off from small agricultural watersheds.

4. To develop statistics which can be used to

judge when the selected watershed characteristics have

been preserved to a given degree in a simplified

geometrical representation of the watershed.

With these objectives as prerequisites, the major

objective in this study is then to relate statistics

of the simplified geometry to watershed characteris

tics and to hydrograph characteristics to define the

simplest geometry which when used in simulation will

preserve the selected hydrograph characteristics to a
given degree of accuracy.

1.3 Brief Review of Relevant Literature

Only a few representative or typical articles are

reviewed. Of the many papers read, only those direct

ly relevant (explicitly used) to this study are cited.

Obviously, these references are only a small portion

of the extensive body of excellent literature avail

able. This review is intended to provide a short list

of select quality sources that should provide both a

starting point for introduction to the literature and

an overview of sources influential in the present en

deavor.

Three areas of fundamental import here are

kinematic wave theory, unit hydrograph theory, and

the theory of incorporating basin characteristics in

surface runoff models. Kinematic wave theory via the

kinematic cascade model is the basic tool for surface
runoff simulation used here. References chosen are

those which show the development of this theory. Al

though the flow of papers on unit hydrographs is

seemingly endless, the noteworthy steps in its devel
opment can be traced in a few sources. The literature

on incorporating basin characteristics in surface run

off models is enormous, but relevant ones are implic

itly defined by the conceptual form of the kinematic

and unit hydrograph models. For the kinematic wave

theory, characteristics distributed over the basin are
relevant, while for the unit hydrograph theory lumped
parameters can be used.

Under conditions where the momentum equation
can be approximated to a good degree by maintaining

only terms expressing bottom slope and friction slope,

flow is called "kinematic." Under these conditions,



local depth and discharge on a plane have a simple

functional relation

ah" (1.1)

where: Q = local discharge, h = local depth, a =

coefficient incorporating slope and roughness, and n =
exponent reflecting flow type (laminar or turbulent).
These definitions are for flow over a hydraulically

smooth plane. However, the same form can be used for
irregular surfaces where the mean flux per unit width
is proportional to the storage in an incremental area.

An early reference (Lighthill and Whitham, 1955) pre
sented the theory of kinematic waves. The next step

is to sources developing the kinematic cascade.

Henderson and Wooding (1964) applied the theory

to flow over a plane and compared their results to

data with a good reproduction of observations. Then
Wooding (1965a, 1965b, and 1966) extended the theory
to a watershed model, discussed numerical solutions,

and compared results with observed runoff data. This
extension was an important step in developing a gener

al watershed model based upon kinematic flow. A com
plex watershed was modeled as two symmetric lateral
planes contributing to a channel bisecting the area.
Schematically the model could be compared to an open

book with the channel in the center so that there is
a lateral slope for the planes but also a down channel

slope for the channel and planes. This model is
referred to as the Wooding model and will serve as a

standard for comparison as well as a first approxi
mation throughout this study.

Brakensiek (1967) made the essential step from
Wooding1s model to the kinematic cascade model. This
step is fundamental because rather than a single plane
discharging into a channel--a lumped nonlinear model--
Brakensiek broke the lateral flow portion into a se

quential series (cascade) of planes. With this cas
cade formulation an obvious extension was to let each
plane have its own characteristics resulting in a dis
tributed model. Kibler and Woolhiser (1970, p. vii)
defined a kinematic cascade as: "...a sequence of n
discrete overland flow planes or channel segments m

which the kinematic wave equations are used to des
cribe the unsteady flow. Each plane or channel xs
characterized by a length, lk> width, wk> and a rough

ness-slope factor, a^-"

Thus, the kinematic cascade is a distributed
(since each element may have different characteris

tics, including rainfall excess) model with lumped
parameters in the subelements. It is nonlinear since
values for n in Eq. 1.1 are generally not equal to
one. For examples of recent applications in urban
and rural agricultural watersheds, see Harley, et al.,
(1970) and Singh (1974).

A great many papers have been published on unit
hydrographs. Many papers are repetitive or merely
familiar applications on a new or slightly different

watershed. However, because the concept is so ele
gantly simple and historically and practically basic
to rainfall-runoff studies, it is also used as a stan
dard for comparison as well as a first approximation

in this study. In all of the following the instanta
neous unit hydrograph (IUH), rather than finite dura
tion unit hydrographs, are used. The reason for this
is that the IUH or linear impulse response character

izes a linear, time-invariant system.

Define a delta function or impulse as a function

so that

and

6(t-t0) = 0 when t

f 6(t-t )dt = 1.0

(1.2)

(1.3)

i.e., an impulse or delta function is a function with

some properties, such as homogeneity, so that

(1.4)

and

a «(t-tQ) = 0, t t tfl

/ a S(t-t )dt = a (1.5)

where a is a real constant. A delta function also

has the sifting property

6(t-to)dt = (1.6)

where $(t) is a function of time.

Consider a linear time-invariant system which
has the properties of superposition, time invariance,

and homogeneity. Superposition requires that if an
input to the system, x^ produces an output, yi> and

an input of xj produces y^ then xi * x. produces

y ♦ y . "Time invariance" means that xi produces

y. without regard to time, and "homogeneity" means

that axi as input produces &yt as output. The

linear system response to a delta or impulse input
denotes the linear impulse response or the instanta

neous unit hydrograph (IUH).

Let h(t) be the linear impulse response, x(t)
be an arbitrary input or rainfall excess function, and
y(t) be the surface runoff response to this arbitrary

input.

6(t) produces h(t) (1.7)

by definition,

6(t-x) produces h(t-x) (1-8)

by time invariance,

x(t) 6(t-x) produces x(t) h(t-x) (1.9)

by homogeneity, and

/" x(t) 6(t-x) dx produces / x(x) h(t-x) dx (1.10)
-CO "

by superposition. By substituting Eq. 1.6 in the left
side of Eq. 1.10 is then x(t), the arbitrary input
producing y(t) as the response. Therefore the
right side of Eq. 1.10 is identically y(t), the

response. Hence

y(t) = / x(t) h(t-x) dx. (1.11)



as the familiar convolution integral. Gupta (1966)

developed Eq. 1.11 on which the above is based. Dooge

(1973) is a complete and excellent source on linear

theory in hydrology.

Obvious questions are how well does the linear

model conform with observed data from watersheds and

how to obtain h(t). Dooge (1973) discussed the sec

ond question, and the first question will be investi

gated in a later chapter.

A much more difficult question is how are basin

characteristics incorporated into rainfall-runoff

models? First one might ask, why is it necessary to

incorporate basin characteristics into the models?

Many models are used to simulate surface runoff, given

parameters for the model, input data, and initial con

ditions. Efficients methods for a_ priori estimation

of parameters are fewer. Surface runoff on ungaged

basins must be estimated, and unlike the situation

for gaged basins (where parameters may be obtained by

optimization), parameter estimates for ungaged basins

are not based on observed rainfall-runoff data for the

basin in question. Hence, the desire to develop re

lationships between basin characteristics and surface

water response. Also the hydrologic consequences of

changing land use on small watersheds must be esti

mated. Hopefully, geomorphic parameters can be a

useful means of quantifying these changes ir. ways that

will be logically reflected in hydrologic models.

Significant Geomorphic Parameters Which May Be

Incorporated into Specific Mathematical ModelTT
Geomorphic parameters of interest here can be classi-

fied into four main groups: (1) Linear factors of

channel systems, (2) Areal factors of channel systems,

(3) Relief factors of basins, (4) Energy factors on

the watershed surface. The last category includes

both potential and dissipative factors. Judging which
parameters are significant is a subjective matter,

however, aside from those parameters necessary for

description in a classical sense, only those parame

ters which can be incorporated into a specific model

are judged significant with respect to that model.

Markovic (1966) gives an excellent description of

many geomorphic parameters and is a primary source for
much of the following.

1. Linear Factors of Channel Systems.

Stream Order, u. In the Horton-Strahler system

(Horton, 194S; Strahler, 1952) a first-order stream is

the smallest unbranched stream. Two first-order

streams join to form a second-order stream, etc. The

order of the main stream is the highest and is also

the order of the basin at that point on the main

stream. Strahler (1964, pp. 4-43) gives a summary of

the reasoning in judging the importance of stream

order: "Usefulness of the stream-order system depends

on the premise that, on the average, if a sufficiently

large sample is treated, order number is directly pro

portional to size of the contributing watershed, to
channel dimensions, and to stream discharge at that
place in the system. Because order number is dimen-

sionless, two drainage networks differing greatly in
linear scale can be compared with respect to corres

ponding points in their geometry through use of order
number."

Number of Streams of a Given Order u, N . The

number of streams of each order is counted up to

Nu = 1, where u is the basin order. Since a water

shed of order u may be modeled as a collection of

subelements of lower order, the number of streams of

each order is an important concept. A parameter

derived from N is the bifurcation ratio

N
u+1

(1-12)

which may be used as one index of hydrograph shape,

given two basins similar in other respects (Strahler,
1964).

Stream Lengths of Order u, L . The total length

of all streams of order u is the stream length, L ,

which can be used to define the mean stream length of
order u as

Lu = fT Cl-133

This term is also important in describing components

of a watershed.

Length of Main Stream, L . The length of the

main stream is the length of the highest order stream

projected back to the watershed divide. This parame

ter is important in determining hydrograph time char
acteristics (Gray, 1961).

Length of Overland Flow, L . The length over

which water must flow to reach a stream channel is the

length of the overland flow. Horton (1945) has a good

discussion of its importance. It is important to note

that perhaps in nature and certainly in many hydrolog

ic models the length of overland flow determines the
flow type.

2. Areal Factors of Channel Systems.

Watershed Area, A. The area enclosed by the

watershed perimeter projected on a horizontal plane is

the watershed area. Nearly all geomorphic parameters

in a basin are related to basin or watershed area.

Drainage Density, The ratio of the total

length of all streams in a watershed to the watershed

area is the drainage density. This is an important

parameter in hydrology because it is an index of

drainage efficiency and length of overland flow. The

average length of overland flow is approximately equal

to one over twice the drainage density (Horton, 1932).

Thus, drainage density is important as an index of the
relative proportion of overland and open channel

flow. Moreover, recent observations point to the im

portance of the areal distribution of drainage density

within a watershed to the hydrologic response of that
watershed. The apparent nonlinearity of the surface

response varies with the drainage density and areal

distribution of drainage density.

Watershed Shape. There are several parameters

expressing watershed shape, such as circularity or

elongation. These parameters may be important in

drainage efficiency or travel time characteristics.
Just how to assess these influences due to form is

not yet known. Recent regression studies have

indicated their importance, but perhaps a calibrated
hydrologic model could be used to analyze the influ
ence of basin shape.



3. Relief Factors of Basins.

Slope of the Main Channel, Sc> The main channel

of length, L , is the highest order stream projected

to the basin divide. Define Sc (Gray, 1961) as the

slope of the right triangle hypotenuse with the same
length and the same area as the area under the stream
profile. This slope is important in calculating main

channel velocity.

Average Watershed Slope, Sw- If a plane is fit

to watershed coordinate data by least squares, then
this slope of the best-fit plane is a measure of the
overall watershed slope. Moreover, this is one objec
tive method of fitting planes to subareas of a drain

age basin.

Total Relief, H. The total or basin relief is
the difference between the lowest (outlet) and the
highest (divide) points in the watershed. The total
relief provides a maximum elevation drop of surface

water.

Hypsometric Curve, f(x). The hypsometric curve
relates relative basin height to relative basin area
and is thus a measure of the distribution of elevation

with respect to area. The hypsometric integral is the

area under this curve.

Average Watershed Elevation, h". The average
watershed Slevation can be defined in several ways.
We define average elevation as the mean of the verti
cal coordinates of distance above base level.

4. Energy Factors of the Watershed Surface.

Potential Energy, U. The total potential energy
of a uniform depth of water on the watershed surface
is equivalent to the amount of work required to raise
that volume of water to the given elevation above base
level. The total potential energy is related to the
hypsometric integral as shown below.

Drainage basin area is related to elevation by
the hypsometric curve, f(x). If A is total basin
area and H is total basin height, then a/A and
h/H define relative area and relative height. The
hypsometric (area-altitude) curve is expressed as a

function.

The hypsometric integral is then expressed as

I - / [f(x)dx] = / [h/H d(a/A)] = Jjj- / [hda]

H -° a/A*° a=°(1.14)
as the relative area below the hypsometric curve.

The potential energy, dU, of a differential

volume of specific weight, y, at an elevation, h,

above base level is

dU = yhdv = yhzda (1.15)

where dv is differential volume, equal to zda; z
is depth of differential element, and da is differ

ential area (projected area).

The total potential energy of a sheet of water of
uniform depth over the projected watershed area is

then

U = / dU = /
A

(1.16)

where h is a function of position in the basin.

Relation of Potential Energy to Hypsometric
IntegraT—ff Eq. 1.14 is multiplied by A and H,

basin area and relief, we have

AH I

1

= AH / f(x) dx
1

AH / h/H d(a/A)

If Eq. 1.17 is multiplied by yi then

AHI. yz = / yzhda = U,
h A

/ hda (1.17)

a=0

(1.18)

which demonstrates that the total potential energy of
a uniform input of depth, z, to a basin of area A is

U = AHyzI. (1.19)

as stated above.

Topographic Roughness, Bf. One measure of

topographic roughness (as opposed to hydraulic rough
ness) is derived from fitting a plane to coordinate
data from the watershed surface. Define Bf as the

standard deviation of the watershed surface from the
plane and consider its distribution. A very small
variance would indicate a relatively good fit by the
plane while a large variance would indicate the op
posite. Deviations from the plane produce an objec
tive criterion in fitting planes to subareas of the
watershed in modeling its components.

Hydraulic Roughness. Roughness coefficients are

such iTc in the Chezy formula or n in the Manning
formula. These coefficients relate flow velocity and
friction losses in overland and open channel flow.
Thus, the potential energy is dissipated by flow over

the watershed surface.



Chapter II

BASIC MODELS

2.1 Watershed Geometry: Cascade of Planes and

Channels

In the simplest terms a watershed is modeled as a

channel network and the interchannel areas of overland

flow. The elements (planes and channels) are arranged

in a cascade with a logical plane to plane, plane to

channel, and channel to channel system of flow.

Each interchannel (including upland) area is

modeled as a plane or as a cascade of planes. Each

plane is characterized by an area, length and width,

a slope, and a roughness. If any of these factors

vary excessively within an area, the area is modeled

as a cascade of planes containing a sufficient number

of elements to distribute the factors to the extent

necessary to preserve their areal variability.

One way of estimating the slope of each plane is

by deriving a least squares estimate of the slope by

fitting a plane to coordinate data from topographic

maps, llobson (1967) has taken such an approach in

trying to describe surface shape in a topographic

sense. The reasoning is that the deviations from the

plane can be analyzed to characterize the goodness-of-

fit of the least squares plane. Hobson's procedure

has been modified to provide estimates of the slope of

eacli element and to provide a measure of how well the

plane or cascade of planes fits the original coordi

nate data. Thus, there seems to be an objective means

of estimating overland flow-plane slope, as well as an

objective means of determining the number of planes

necessary to model an area.

A topographic map defines a watershed perimeter

and channel network. Moreover each point on and

within the perimeter is defined by its coordinates (x,

y, z). Similar to Hobson's (1967) notation, e. is an

elevation point corresponding to (u., v.) as the cor

responding x and y coordinates. The coefficients

of the least squares fitted plane are b.. In matrix

form l

with this notation a computed elevation value is

B = [UV]"1 E (2.1)

i = bl + (b2 Ui V-

A deviation from the observed elevation is then e. -
l

where the hat denotes an estimated
'i

or z. - z. ;
l l

value. A goodness-of-fit statistic based upon these

deviations is derived in Chapter IV.

The general procedure for fitting a cascade of

planes and channels to watershed data from topographic

maps is to select coordinate data over the watershed

area with each point representing nearly the same area

within the perimeter. A single plane fit to the coor

dinate data is the simplest cascade. The next cascade

would be one channel and two lateral planes--the

Wooding model. The procedure is then to include suc

cessively more planes and channels in the cascade to

form more complex models. Throughout the procedure

certain watershed properties are preserved. Each of

the successively more complex models has the same

total drainage area. If the length of the main chan

nel, Lc> is also preserved, then the area and length

specify the width for a single plane. For the Wooding

model, the main channel is located and thus this

length specifies the width of the lateral planes. As

the complexity of the kinematic cascade increases, the

freedom in choosing the arrangement and size of the

elements also increases. This procedure is discussed

in more detail in Chapter IV.

Gray (1961) defined slope of the main stream, S ,

as the slope of a line drawn along the measured pro

file which has the same area under it as is under the

observed profile. This slope is the slope of the hy

potenuse of a right triangle with the same area, A,

and length, L , as the observed profile. These slopes

where

are illustrated in Fig. 2.1.

angle, the area is

A = 1/2 L h

and the slope is

With respect to the tri-

(2.6)

B =

is the coefficient vector,

(2.2)

E = Tu. e.
'•11

7v. e.
i i

(2.3)

is called the "elevation vector," and

N 5"u. Jv.
'• 1 *• 1

[UV| = £u. YuT hx. v.
L i *• i L i i

Jv. Yu. v. Jv.
*• 1 ' 1 1 L 1

(2.4)

If Eq. 2.6 is solved for

in Eq. 2.7, then

sc -

(2.7)

h and this is substituted

(2.8)

as the equivalent channel slope. With respect to the
observed stream profile

A = j (Lc-x) dy

y=0

where if the slope is S(x), then

dy = S(x) dx

in Eq. 2.9.

(2.9)

(2.10)



Eliwtion

Distonce

Fig. 2.1. Definition sketch of main channel slope

determination. Solid line represents the

measured stream profile and dashed line the

right triangle.

With this value of dy, Eq. 2.9 is

A = (Lc-x) S(x) dx. (2.11)

x=0

and then Eq. 2.8 becomes

S = 2

x=0

-x)

S(x) dx, (2.12)

where (L -x)/L can be considered a weighting factor

(Lane, 1974). For example, this factor is zero at

x = L and a maximum at x = 0. Therefore, Gray's

method produces a channel slope which is weighted by
distance from the headwaters of the main stream. The
highest weight is given to the slope at the outlet.

If H is the total relief of the stream and h

is the altitude of the above right triangle, then

their ratio, h/H , can be used as an index of concav

ity so that a value less than one (the usual case)

corresponds to an overall concave profile while a

value greater than one indicates an overall convex

profile. This index is used as a measure of how well

the channel slope is represented by a straight line.

Assuming that a given watershed with drainage

density, D,, is modeled as a simplified cascade of

planes and channels with drainage density, d^, then

the ratio d,/D, is a measure of how well the channel
d d

network is modeled with respect to total length. This

ratio and the index of concavity provide measures of

the goodness-of-fit of the model's channels with re

spect to the linear dimensions of the channels in the
watershed. Subsequent analyses investigate the hy

draulic import of these indices.

2.2 Rainfall Excess-Surface Runoff: Kinematic

Cascade

Recall the kinematic wave theory wherein the

continuity equation is

= q(X,t) (2.13)

.11

ah (2.14)

where: h = depth of flow, u = velocity, t = time, x =

distance in direction of flow, q = lateral inflow, Q =

discharge rate, a = coefficient, and n = exponent.

The kinematic cascade model is the above equations for

the cascade of planes and channels. Kibler and

Woolhiser (1970) presented a finite-difference method

of solution known as the single-step Lax-Wendroff

method. This method, from Houghton and Kasahara

(1968), was compared with two other finite-difference

schemes given by Kibler and Woolhiser (1970). Their

results are summarized in their Table 3 on p. 14.

Briefly, the Lax-Wendroff scheme is second order and

produced less numerical distortion in peak discharge

rates than the other finite-difference schemes. The

basic tool in this study is a general program for the

kinematic cascade using the Lax-Wendroff method. As

programmed by Woolhiser, channel flow is turbulent and

the Chezy relationship is assumed. Flow over the

planes begins as laminar flow with a transition to

turbulent flow if a transitional Reynolds number is

reached.

2.3 Summary of Modeling Procedure

The modeling procedure can be summarized by

showing how watershed geometry is combined with kine

matic wave theory in the kinematic cascade model. The

basic tool used here is the finite difference program

for the kinematic cascade. Input to this program con

sists of the geometry from topographic analysis and

rainfall-runoff data from hydrologic analysis.

The modeling procedure is summarized in the form

of a block diagram in Fig. 2.2. The left portion of

Topoqrophic

Anolysis

n

Hydrologic

Anolysis

Observed

Topographic

Data

Coordinate

Data

Geometry

of

Channels

Geometry

of

Planes

Geometric

Goodness -

of-Fit

Statistic

Index

of

Concavity

Observed

Hydrologic

Data

Calculate

Infiltration

a
Rainfall
Excess

Drainage

Oensily

Ratio

Input Dola:

Observed

Runoff

a
Estimated

Rainfall
Excess

Kinematic

Cascade

Geometry

Initial

Roughness

Coefficients

Finite

Difference
Program

for the

Kinematic

Cascade

Simulated

Runoff

Hydrograph

Goodness-

of-Fil

Statistics

with the stage-discharge equation as Fig. 2.2. Summary of modeling procedure.



this figure deals with topographic analysis and the

right portion shows the sequence of hydrologic analy

sis. Topographic maps are used to provide coordinate

data defining the watershed perimeter, channel net

work, and interior points on the watershed surface,

These data are used to determine the geometry of

planes and a geometric goodness-of-fit statistic as a

measure of how well the cascade of planes fits the

original coordinate data. Here the term goodness-of-

fit statistic is used to describe how well a watershed

component is represented in a mathematical model.

Thus, the term has a slightly different connotation

than its classical statistical one.

The original coordinate data arc also used to

determine the channel network. The index of concavity

is a goodness-of-fit statistic for an individual chan

nel and the drainage density ratio is a goodness-of-

fit statistic for the entire channel network.

The channel geometry and geometry of the planes

define the kinematic cascade geometry. Topographic

input to the finite difference program consists of the

cascade geometry and initial estimates of the rough

ness coefficients. The goodness-of-fit statistics are

described in Chapter IV, and the roughness coeffi

cients arc described in Chapter V.

Observed hydrologic data consist of rainfall and

runoff data. The latter are used to estimate rainfall

excess from rainfall data and to define the runoff

objective function for optimization. Rainfall excess

and runoff data are input to the finite difference

program which produces simulated runoff hydrographs

and thus hydrograph goodness-of-fit statistics. The

hydrograph goodness-of-fit statistic is a measure of

how well the simulated runoff corresponds to observed

runoff. The above description is brief, but addi

tional material is presented in later chapters after

overland flow analysis presented in the next chapter.



Chapter III

ANALYSIS OF OVERLAND FLOW OVER UNIFORM AND COMPLEX SLOPES

3.1 Equations for Description of Overland Flow

Surfaces

Before proceeding to an analysis of complex

watersheds consisting of interchannel areas (areas of

overland flow) and the channel network, overland flow

must be examined as a first step in watershed simula

tion. In addition to the effects of slope, length,

and roughness, the influence of slope shape upon over

land flow must be examined.

Kibler and Woolhiser (1970) developed a procedure

to approximate a two-plane cascade as a single plane.

In a step closer to actual slope shapes, slopes can be

modeled with a cubic equation with parabolic and plane

shapes as simplifications or special cases.

Let y(x) be the elevation of the overland flow

surface. Assume a function of the following form:

s(x) = y1 (x) = a, + 2a x ♦ 3a x (3.9)

y(x) = (3.1)

where: y = elevation of the surface, x = distance,

and a. = coefficients to be determined.

A third degree equation can be fit to four points

(x., y.)(i = 1. 2, 3, 4), using the Lagrange form

(Conte, 1965) as

y(x) = I L (x) y.,

where

k=0

3 /3
l. (x) = n (x-x )/ n
k j=o J/ j=o

/

(3.2)

(3.3)

L (x) are third degree polynomials whose parameters

depend only on the chosen values of x.. If x is

scaled by dividing it by the length of flow, LQ, then

= x/Lo (3.4)

and four convenient points for x, on [0, 1] are 0.0,

0.25, 0.50, and 1.0. With these values the corre

sponding polynomials are

LQ(x)

L^x)

L2(x)

L3(x)

= l-7x +

= 10.66X

= -4x +

= 0.333X

14x2-

-32x2

20X2-

-2x2

8x3,

♦ 21

16x3.

.33x3,

and

♦ 2.667x3,

(3.

(3.

(3.

(3.

5)

6)

7)

8)

where the subscript has been dropped. The equation of
the surface is then found by choosing the yk values

and substituting them and equations 3.5 to 3.8 into
Eq. 3.2. Constraints relevant to the problem are that

v must be chosen so that there are no extrema on the
'k
interval [0, 1]. That is, the slope function

must not have roots on [0, 1], or. it must be that

(3.10)P =

-2a., ±/4a2 - 12a,a
13

6a,

so that pi [0, 1 ].

As derived in Chapter I, the hypsometric integral

is a measure of the potential energy of a uniform in

put to a surface. In anticipation of testing the sig

nificance of potential energy in overland flow, the

hypsometric integral is derived for surfaces described

by Eq. 3.1. For a unit width of an arbitrary surface,

then the product of elevation (with respect to Y )

and differential area (in projection on a horizontal

plane) becomes the product of elevation and differen

tial distance per unit width, i.e.

(Yo-y)dA = (YQ-y)dx (3.11)

Integrating over x(scaled) the result is the integral

of the area-altitude curve or the hypsometric curve.

If y is scaled by Y , y, = y/Y , but used without

the subscript, the hypsometric integral becomes

1

(l-y(x)) dx (3.12)

x=0

put of depth

U =

which becomes

U =

h
0

yaiii

Y L

is

h o

Y I, h
> oho

The area per unit width is L and the total relief

is Y , so that the potential energy of a uniform in-

(3.13)

(3.14)

where U is potential energy and y is the specific

weight of water.

3.2 Determination of Characteristic Time for a Plane

Before examining overland flow on arbitrary

surfaces, overland flow on a plane must be considered.

Characteristic time (time to equilibrium, time of

concentration) is defined in terms of length and

velocity at steady state.

For a discussion of characteristic times for

more complex configurations see Golany and Larson

(1971). For a nomograph for time of concentration

in turbulent flow, see Ragan and Duru (1972). In

contrast, the study described here considers laminar

flow and situations where the overland flow is

laminar and turbulent at the same time at different

positions on the plane. Moreover, the equations

presented incorporate the transition Reynolds number

into the equations for calculating characteristic

time.



In considering flow over a plane the following

parameters are necessary to determine the' characteris

tic time; length, slope and roughness of the plane, as

well as the Reynolds number for transition from lami

nar to turbulent flow. In addition, a pulse input of

magnitude P is assumed uniform over the plane.

Finally, kinematic flow is assumed.

Let Q be the equilibrium discharge per foot of

width at the downstream boundary corresponding to the

uniform rainfall excess rate, P. Let V be the nor

mal velocity at the downstream boundary corresponding

to the equilibrium discharge. The length of the plane

is L, and the characteristic time is T. The Darcy-

Weisbach friction factor is f, where

f = K/Re

for laminar flow, and

f = 8g/C2

(3.IS)

(3.16)

for turbulent flow; where: f = Darcy-Weisbach

friction factor, K = roughness coefficient, R =

Reynolds number, g = gravity constant, and C =

Chezy C. Furthermore, R is the Reynolds number

above which flow is turbulent so that

C = /8g/f (3.17)

and then to match friction factor at R = R
e c

C = /8gR /K . (3.18)

Thus, the roughness is described by the parameter K
and a transition Reynolds number.

Recall the kinematic stage-discharge equation

Q = ah" (3.19)

where n = 3.0 for laminar flow and n = 1.5 (Chezy

form) for turbulent flow. The coefficient a for
laminar flow is

(3.20)
Kv

where S is the slope and v is the kinematic

viscosity. For turbulent flow.

(3.21)

where C is determined by Eq. 3.18.

From Eq. 3.19 the steady state depth H is

H = (Q/a)1/n (3.22)

so that the steady state velocity

v = all""1 (3.23)

becomes

n-1

Since

V = aCQ/a) " .

1 - 2li = i/n then

(3.24)

i / n-1

V = a1/n Q -n~ (3.2S)

To convert P (in in./hr) to Q (in cfs/ft) to use in
Eq. 3.25,

Q = P(L/43200). (3.26)

Substituting Eq. 3.26 into 3.25, the result is

1 n-1 n-1

v - " p n r L i n
V " ° P (43200)

as the velocity (in ft/sec). Since

T = L/V

the characteristic time in sec is

T = (43200)

► (Sit) . i . (Sit) t
n ' n l n ' n

(3.27)

(3.28)

(3.29)

Equation 3.29 is valid if the flow is all laminar.

However if there is a transition to turbulent flow
then

T = TL + TT (3.30)

where TL is the time corresponding to laminar flow

and TT is the time corresponding to turbulent flow.

To evaluate Eq. 3.30 whether there is a transition to

turbulent flow must be determined, and if so, the two
lengths of flow of each type. At any point on the

plane (in the direction of flow and with respect to
discharge per unit width) the Reynolds number is

Re = Q/v

which by Eq. 3.26 is

PL

(3.31)

R =
Ke " 43200v " (3"

Now if Eq. 3.32 is solved for L at the transition

L = (43200v) R /P
i» c

(3.33)

is the length of laminar flow before the transition.
Two cases arise: (1) the length of the plane is less
than L , so that Eq. 3.30 becomes

T = T. (3.34)

where T? = 0; and (2) the length of the plane is

greater than L so that

LT= L - \- (3.35)

In this case T^. is evaluated by Eq. 3.29 and then

corrected for the nonzero upstream boundary condition.
That is, the turbulent portion of the plane is equiv
alent to a plane of length, l^, with an upstream

boundary condition corresponding to the point of tran
sition from laminar to turbulent flow. Moreover, by
Eq. 3.29 TT varies as the 2/3 power of L. There

fore, the combined characteristic time for the entire
plane is



(3.36)

The Reynolds number, as defined by Eq. 3.32, is

for various values of L and P shown in Fig. 3.1A.
The length of laminar flow, L, , from Eq. 3.33 is shown

in Fig. 3.IB. For example, for an input rate of P =
1.0 in./hr and a transition number of Rc = 500, the

length of laminar flow from Fig. 3.IB is approximately

270 ft.

400

IOOO

200 400 600
Length of Plane ,U,lt

BOO 1000

1.00 2.00 3.00 4.00

Intensity of Pulu Input, P , lin/hr)

Fig. 3.1. Reynolds number and length of laminar flow
as functions of input rate and length of

the plane. (A) Reynolds number Re> at

equilibrium discharge. (B) Maximum length

of plane for laminar flow.

Using the length of laminar flow, L^, Fig. 3.2

can be used to give an approximate solution to Eq.

3.29 for T. (in sec). Now, if LL < L then the

length of turbulent flow, Lj., is greater than zero.

With the positive value of U,., Fig. 3.3 can be used

to estimate the characteristic time for turbulent
flow, T . Finally, the values of LL> Up, T(, and T?

are entered in Eq. 3.36 to estimate the composite

characteristic time.

To test the above procedure, 10 simulation runs

were made using the finite-difference program and
assuming that equilibrium discharge was equal to 95

percent of the input rate. Properties of the 10
planes as well as the times are given in Table 3.1.
Test cases no. 2, 6, 7 and 8 are examples of transi
tions to turbulent flow, while for the others flow was
entirely laminar. The extent to which calculated and
simulated characteristic times correspond is shown m

Fig. 3.4.

Fig. 3.2. Characteristic time for laminar flow, T^,
over a plane: (A) As a function of

length, L, and roughness coefficient, K;

(B) As a function of slope, S, and (C) As a

function of intensity of pulse input, P.

IOOO 500 top 24

600

1200

boo-

400

Fig. 3.3. Characteristic time for turbulent flow, TT>

over a plane: (A) As a function of length,

L, and roughness coefficient, K; (B) As a

function of slope, S; (C) As a function of
transition Reynolds number, Rc> and (D) As

a function of intensity of pulse input, P.
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Table 3.1. Simulation Results for Equilibrium Times on Selected Planes.

Test

Case

No.

1

2

3

4

S

6

7

8

9

10

*Laminar

Length

Plane

L

(ft)

25.

250.

100.

100.

250.

250.

250.

250.

250.

25.

Roughness

Coefficient

K

24.

24.

500.

500.

500.

500.

500.

500.

500.

500.

and Turbulent Flow.

Slope

S

.05

.05

.10

.15

.10

.10

.10

.10

.10

.05

Transition

Reynolds

Number

500.

500.

500.

500.

500.

250.

500.

750.

1000.

500.

Intensity

of Pulse

Input

P

(in./hr)

2.0

2.0

1.0

1.0

1.0

1.0

2.0

2.0

2.0

2.0

Calculated

Characteristic
Time

T

(sec)

67.

177.

365.

318.

492.

607.

385.

322.

310.

185.

Simulated

Time to

Equilibrium

T
'e

(sec)

63.

170.*

356.

308.

488.

595.*

377.*

326.*

302.

173.

IOOO

750

S 500
o

3

55

250

o Laminar Only, T ■ TL

Q Laminar and Turbulent, T ■ TL +1 ~

250 500 750

Calculated T (sec)

1000

Fig 3.4. Comparison of simulated times to equilibrium

and calculated values for 10 test cases.

3.3 Storage at Equilibrium

In addition to the characteristic time derived
above, the storage on the surface at equilibrium is
proposed as a characteristic numb'er. The reasoning is
that this storage represents the overall system per
formance at equilibrium. The storage per unit width
on a plane surface at equilibrium is

HL (3.37)

where H is the average equilibrium or steady state
depth, and L is the length of the plane. Consid
ering the depth at an arbitrary distance, x, from the
upstream boundary, steady state discharge is

q(x) = a h(x)' (3.38)

where a and n have values corresponding to the
flow type at the point x. Solving Eq. 3.38 for the
steady state depth with q(x) determined as in Eq.

3.26 for an arbitrary x instead of L, the result is

(3.39)

for 0 < x i I. The average depth is then

H = M h(x)dx| / L. (3.40)

where a possible transition from laminar to turbulent
flow is accounted for by adopting the proper values of
a and n in Eq. 3.39. The resulting equation is

h(x)dx h(x)dx (3.41)

where the length of laminar flow, L , is determined by

Eq. 3.33. If LL is greater than or equal to the

length of the plane, L, then the second integral in
Eq. 3.41 is zero.

To illustrate the application of the average
storage concept to specific planes, again consider the

10 test cases given in Table 3.1. The average depth
at equilibrium discharge is calculated using Eq. 3.41
for each of the 10 cases. These results are summa
rized in Table 3.2.

The relation between average depth and depth at
the downstream boundary is shown in Fig. 3.5. From

Eqs. 3.39 and 3.40, the depths should be related by
the factor n/(n+l), the coefficient due to integra
tion, equal to 0.7S for laminar and 0.60 for turbulent
flow. The cases with mixed laminar and turbulent flow
fall between these extremes. The equilibrium storage

11



Table 3.2. Summary of Storage at Equilibrium for Uniform Input to Planes with Kinematic Flow,

for 10 Test Cases from Table 3.1.

Test

Case

No.

1

2

3

4

5

6

7

8

9

10

Intensity

of Pulse

Input,

p

(in./hr)

2.0

2.0

1.0

1.0

1.0

1.0

2.0

2.0

2.0

2.0

Length

of Plane

L

(ft)

25.

250.

100.

100.

250.

250.

250.

250.

250.

25.

Length

Laminar

L,

(ft)

25.

130.

100.

100.

250.

130.

130.

194.

250.

25.

of Flow

Turbulent

LT

(ft)

-

120.

-

-

-

120.

120.

56.

-

-

Coefficient

a

(Laminar)

44700.

44700.

4293.

6440.

4293.

4293.

4293.

4293.

4293.

2147.

a

(Turbulent)

-

16.38

-

-

-

3.59

5.08

6.22

-

-

Average

Depth

H

(ft)

.0022

.0052

.0061

.0053

.0083

.0089

.0113

.0106

.0104

.0061

Depth at

Downstream

Boundary

h(L) (ft)

.0030

.0079

.0081

.0071

.0110

.0138

.0173

.0151

.0139

.0081

Storage

Se

(ft3/ft)

.056

1.290

.611

.533

2.072

2.233

2.818

2.643

2.610

.152

O.OI5

O.OIO

0.005

o Laminar Flow Only

a Laminar and Turbulent Flow

(I ) Relation for Laminar Flow

(2) Relation for Turbulent Flow

0.005 0.010 0.015 0.020

Equilibrium Oepth at Downstream Boundory,

ML) ,(ft)

Fig. 3.5. Relation between downstream boundary and
average depths at equilibrium, uniform,

constant input on planes.

can be estimated from the equilibrium depth at the
downstream boundary as well as from the average equi

librium depth as derived above.

In Section 3.2 characteristic time for a plane

is derived and in this section equilibrium storage or

characteristic depth which determines storage is de
rived. Both factors reflect the hydraulic performance

of a plane in response to a pulse input (uniform and

constant) of magnitude P.

3.4 Kinematic Impulse Response

As in the previous two sections, the intent here

is to examine overland flow on arbitrary surfaces and

to see how the characteristics of the surfaces are re

flected in the flow characteristics. However, in the

previous sections the analyses were restricted to

equilibrium or steady state conditions. Is there a

similar theory for dynamic conditions? The extreme

contrast is the impulse response. A pulse input is an

input of finite magnitude beginning at time zero and

continuing at a constant rate. An impulse input is an

input of finite depth occurring instantaneously. A

pulse input is also known as a "step function" while

an impulse input is also known as a "delta function."

In contrast with the linear impulse response, or in

stantaneous unit hydrograph, the kinematic impulse

response is nonlinear; i.e., the response varies with

the magnitude of the impulse input. In spite of this,

the nonlinear impulse response is proposed as an effi

cient means of representing the combined effects of

several factors in a functional form. The reasoning

is that the nonlinear impulse response is a function

characterizing a particular dynamic response of a com

plex nonlinear system. By using the impulse input,

the space and time variabilities of the input are

eliminated. Thus the influence of the surface config

uration is emphasized.

The kinematic impulse response was used as a

kernel function by Eagleson (1967) to allow superposi

tion in a study of the influence of spatial variabil

ity of the rainfall. Harley, et al., (1970) obtained

impulse responses for a single plane and derived a

minimum sampling interval for the input in terms of
the time of concentration. The following sections

examine the kinematic impulse response for planes (see

above references) and for surfaces described by second

order (parabolic) equations.

Recall the kinematic wave equations:

3h

3t

3(uh

3x
= q(x,t) (3.42)
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and

u = ah
n-1

(3.43)

where the variables are as defined previously. If

Eq. 3.43 is substituted into Eq. 3.42 the result is:

= q - a'(x)h" (3.44)

where

a1 (x) = 3o(x)/3x.

An impulse input is equivalent to an initial condition

of

Ho) = hQ (3.45)

for the partial differential equation, Eq. 3.44.

3.4.1 Plane Surface

For a plane surface, the equation for the slope,

Eq. 3.9 is S(x) = S , a constant. Evaluation of the
o

coefficient a(x) reduces to the case of a as a con

stant, so that o'(x) = 0 and Eq. 3.44 reduces to

ah ,n-l 3h

3F + nah 37 (3.46)

To obtain a solution to Eq. 3.46, consider the

equation of the characteristic defined by dx/dt. So

we must first solve for h as a function of x.

Take the total derivative of h with respect to

time, which produces

dh

dt

which is the

dT

Therefore,

dh

dt

so that from

dh

dt

and from Eqs.

dh

dx

_ 3h dx 3h

3x dt 3t

same as the left side of Eq.

= nah-1.

3h .n-1 3h

■ 3? + nah 37 = 1

Eq. 3.49

3.48 and 3.50

dh/dt q

dx/dt ' ,n-l

(3.47)

3.46, if

(3.48)

(3.49)

(3.50)

(5.51)

which must be solved to obtain h as a function of
x. Rearranging Eq. 3.51,

dh qdx
t— =

h nah"

which produces

lnh = f _JL_
I nan"

with h(x) as its solution.

dx + In C,

(3.52)

(3.S3)

The solution to Eq. 3.53, h(x), can be

substituted into Eq. 3.48 to give

jjf

with its solution t(x) as a function of x.

(3.54)

Before obtaining the impulse response, it is

desirable to consider some of its features qualita
tively. As discussed previously, the usual sequence

of events for a pulse response is for overland flow
to begin as laminar flow with transition to turbulent

flow, if the flow depth reaches the transition depth

for the given conditions. With an impulse input the

situation is reversed. Flow begins with an initial
depth which may or may not exceed the transition

depth. If it does, flow begins as turbulent and will

revert to laminar flow somewhere on the recession. If

the initial depth is less than the transition depth,

the flow will begin and remain laminar. This transi

tion depth is

hT (Rcv/a)
1/3

(3.55)

which is compared with h to determine the initial
flow type. °

Por an impulse input, q in Eq. 3.42 is zero, so
that Eq. 3.53 becomes

In h = In c

and

h(x) = c
1'

(3.56)

(3.57)

For t < t , the time of concentration or

characteristic time defined earlier, it must be that

Cj = ho, the uniform impulse input. With this solu

tion, Eq. 3.54 becomes

and

dt
dx

nah
n-1

with solution

t(x)

nah

(3.58)

(3.59)

(3.60)

which defines characteristics in the x-t plane as
straight lines.

To show how the above method is used in

calculating the impulse response, assume that only

laminar flow exists. Furthermore, assume a plane as
described in Tables 3.1 and 3.2 as Test Case No. 5.
Therefore, L = 250 ft; K = 500; S = 0.10, and from
Eq. 3.55 the transition depth is h = 0.0112 ft.

Thus, assume an impulse input of h = 0.01 ft which

insures laminar flow, then Eq. 3.60 takes the form

t(x)

3ah

(3.61)
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where a is computed by Eq. 3.20 and then, as in

Table 3.2, a = 4293. Therefore,

t(x) = 0.776x, (3.62)

which is 194 sec at the downstream boundary, or the
time of concentration is tc = 194 sec. Characteris

tics for this example are shown in Fig. 3.6. The

300

100 150

Distance » (ft)

Fig. 3-6. Characteristics in x-t plane, (1) hQ=0.01 ft,

x =0.0, (2) h =0.01, x =100. ft, (3) h =
o o o u

0.009 ft, x =0.0.
o

curve (1) is for xo = 0 and hQ = 0.01 ft. All

characteristics below this are straight and parallel
for the same hQ but for different xo values (see

curve (2)). Curve (3) above, is for xo = 0, but at a

smaller depth (0.009 ft). If x = L, downstream

boundary, then for ho = 0.01 each xq, so that 0 s

x < L, determines a point on the impulse response,

between t = 0 and t = tc> as follows:

and

t(hQ,x) = 0.0000776(x-xo)/hQ

Q = 4293 h

(3.63)

(3.64)

For t > t , each h less than hQ produces a point

on the recession of the impulse response as follows

t(h,x) = 0.0000776 x/h2, 0 5 h < .01

and

Thus, Eqs. 3.63 to 3.66 determine each point (t,Q) on

the impulse response. If the flow were entirely tur

bulent, a similar procedure, with appropriate values

of a and n, could be used to compute the impulse

response. Values of Q in Eqs. 3.64 and 3.66 are in

ft3/sec-ft. To convert to inches per hour, it is nec
essary to multiply by 43200/L. Rather than assuming
various values of x in Eq. 3.63 and various values

of h < h in Eq. 3.65 it is possible to express the
o

impulse response in terms of the time of concentra

tion, t , from Eq. 3.60 with x = L, and the impulse

h (see Harley, et a!., 1970). If discharge is ex

pressed in cubic feet per second per foot of width,

and

4293 h

(3.65)

(3.66)

na h
n-1

(3.67)

then the impulse response for flow of a single type is

o < t < tc

(3.68)

In inches per hour, the equation is

'(43200./L)ahn, o < t < tc>

(3.69)

J43200./L) t > t

A relevant question is how to account for a
transition from turbulent to laminar flow in the re
cession when the flow is initially turbulent. An

abrupt transition (negative shock, see Woolhiser,

et al., 1971) is shown in Fig. 3.7A. The continuity
equation for a region as shown over an interval, dt, is

(Q_ - QL)dt = Jih dx (3.70)

per unit width. Dividing by dt and with Ah as

h_ - h,, the result is

«r " V " 3f <hT " V (3-71)

so that the shock velocity as shown in Fig. 3.7B is

(3.72)

where T and L represent turbulent and laminar

flow. In addition, if Eq. 3.72 must agree with simi
lar calculations for laminar and turbulent flow, then

dx

dt

1.5 . 3

"aLhL (3.73)

which is also equal to £■ (dx/dt) as calculated by

Eq. 3.48 for turbulent and laminar flow. Thus, by
equating these values

/ ^ hl ^ hT
(3.74)
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Depth

h(x,M

(A)

1
1
K—Ql

1

dx —

Time

Hx)

Distance x

(B)

Laminar

Flow

Turbulent

Flow

x-0
Distance x

x«L

Fig. 3.7. Schematic description of abrupt transition

from turbulent flow to laminar flow in the

impulse response recession. (A) Schematic

of abrupt transition from laminar to tur

bulent flow; and (B) Schematic for charac

teristic of the transition depth.

If such a recessional transition to laminar flow

is assumed, then after a sufficiently large time, the

flow will be laminar.

In anticipation of relating nonlinear and linear

impulse responses, consider calculating moments of the

nonlinear impulse response using Eq. 3.68 for laminar

flow. To calculate the first moment tQ(t) must be

integrated for a laminar recession. Consider the time

from beginning of laminar flow, and the integral

tQ(t)dt (3.75)

which becomes

J nat (3.76)

for t > t , the time of concentration.

Therefore, Eq. 3.76 is of the form

f1/2 dt

which is

(3.77)

(3.78)

and thus the moments do not exist. If the flow were

entirely turbulent, then the first moment would exist

but higher ones would not. Finally, moments could be

calculated by approximating Eq. 3.75 by a summation

with numerical values for t and Q(t).

Figure 3.8 shows an impulse response beginning as

turbulent flow with a transition to laminar flow for

Test Case No. 5 (Table 3.1) with an impulsive input of

magnitude 0.25 in., and the solution as given by Eq.

3.69. Several properties of the nonlinear impulse

response of a plane are illustrated in this figure.

3.0

20

5 1.0

Test Case No. 5

Impulse Input of ho=0.25in.

100 200 300

Time (sec)

400 500

Fig. 3.8. Example of nonlinear impulse response

starting as turbulent flow with a transi

tion to laminar flow in the recession for

a plane as described as Test Case No. 5 in

Table 3.1.

The initial rate is constant up until the time of

concentration; then there is a portion of turbulent

recession, followed by a transition to laminar flow.

In contrast with the linear impulse response, physical

features of the system are reflected in the nonlinear

impulse response. In the next sections the kinematic

impulse response is used to examine the influence of
slope shape upon overland flow.

3.4.2 Parabolic Surface

A parabolic surface is next examined. In this

case the elevation of the surface is y(x) as given by
Eq. 3.1 with a, = 0, so that

s(x) = y'(x)

Eq. 3.44 becomes

n-l 3h

37=c'-al (x)hr

(3.79)

(3.80)
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where

a(x) = f* S(x)

for laminar flow and

In h = - - In a(x) ♦ In c.

+ 2a2x) (3.81)
and thus,

h(x)

«(x) = (—
1/2

a(x)

(3.94)

(3.95)

(3.82)

where c. must be evaluated. Require that h(xo) at

time zero equal hQ the impulsive input. Therefore,

for turbulent flow. Let c$ = 8g/K« and c2 =

(8gR /K)1/2 so that
(3.96)

2a2x)

for laminar flow, and

a(x) = c (a
,1/2

(3.83)

(3.84)

Substitute h(x) into Eq. 3.88 to produce:

4*- = no(x) h(x)"'1
dt

which simplifies to;

for turbulent flow. The derivative of o is now no

longer zero; in fact:
dt

dx

a'(x) = 2Cj a2

for laminar flow, and

for turbulent flow.

Recall that the total derivative

dh_ _ 3h_ dx. + 3h_

dt " 3x dt 3t

is equal to the left side of Eq. 3.81, if

f =na(x) I."'1

and then

as before. From Eq. 3.89

§-,-.' t*)h»

and then from Eq. 3.88

dh dh/dt „ q - g'(x)h"
dx ■ dx/dt " na(x)h"-l

which reduces to

dh dx .

For an impulsive input q = 0, and

dx.

dh „ _ I altxi dx
h n o(x)

which has its solution,

(3.8S)

(3.86)

na(x) h(x)

which has the solution

n-1

t(x)
dx

nct(x) h(x)

(3.97)

(3.98)

(3.99)

where c must be evaluated. Substituting for h(x),
4

as given by Eq. 3.95, the result is

dx
t(x) =

(3.87)

(3.88)

(3.89)

(3.90)

(3.91)

a(x)

I+C4
n

(3.100)

where c. is given by Eq. 3.96. Now, solving for

t(x):

t(x) = 2/3

4a2ClC3

for laminar flow, and

1
t(x)

2a2C2C3

(3.101)

(3.102)

for turbulent flow. Let cfi = c4 + c5> and require

that t(xQ) = 0 so that

-a(xo)
2/3

(3.103)

(3.92) for laminar flow and

«Cx)
4/3

(3.104)

(3.93)

for turbulent flow.



Since a(x) is proportional to x for laminar

flow and x for turbulent flow, t (x) is propor-
2/3

tional to x in Eqs. 3.101 and 3.102. Prom Eq.

3.95, h(x) is proportional to x

types.

-1/3
for both flow

Before considering a specific example, impulse

responses from parabolic surfaces must be examined

qualitatively. Consider an impulse input so that the

plane response is entirely laminar, and assume a simi

lar but concave surface and the possibility that there

might be a transition to turbulent flow. If attention
is limited to flow at the downstream boundary, then

the transition will occur if q/v exceeds R , the

transition Reynolds number. The procedure would be to

start with an x slightly less than L, the length

of the surface, and apply Eqs. 3.95 and 3.99 for de

creasing x until the transition discharge is

reached. At this point the equations for turbulent

flow would apply until the recessional transition.

As examples, consider two parabolic surfaces with

other properties as in Test Case No. 5 (Table 3.1,

Fig. 3.8). Slope profiles for these examples and the

plane are shown in Fig. 3.9. For the concave surface

0 50

£ to

I 20

30

Distance X

100

I*"*-

(ft)

150 200
1

250

Fig. 3.9. Slope profiles for uniform and parabolic
surfaces.

ao = 0> al = °-15> and
is

y(x) = O.lSx - 0.0002x

= -0.0002, so that Eq. 3.79

2
(3.105)

and for the convex surface a = 0, a. = 0.05, and

0.0002 so that

y(x) = 0.05x + 0.0002x (3.106)

The impulse responses for the plane, concave, and

convex surfaces are shown in Figs. 3.10 and 3.11.

Figure 3.10 shows the three hydrographs for initially
turbulent flow, and Figure 3.11 is for initially lami

nar flow. The concave and convex surfaces are symmet

rical (but opposite) in their deviations from the uni
form slope plane (Fig. 3.9). For parabolic surfaces,
such as shown in Fig. 3.9, a measure of the degree of
departure from a uniform slope (plane) is the differ
ence in elevations. If L is the length of the sur

face (in projection on a horizontal plane) and S is

the average slope, then °

4.0

Test Cose No. 5

Impulse Input of h,, =0.25 in.

Flow Initially Turbulent

100 200 300

Time (sec)

400 500

Fig. 3.10. Impulse responses for uniform and

parabolic slopes, flow initially turbulent.

1.00

0.7 5

0.50

0.25

0

■

\
7

Test Case No.

Impulse Input

Flow Entirely

A

5

of h0 =0.

Laminar

10 in.

^-
250 500 750

Time (sec)

1000 1250

Fig. 3.11. Impulse responses for uniform and

parabolic slopes, flow initially laminar.

d(x) = Sqx - (3.107)

is the departure as a function of distance.

Now, in anticipation of using a similar statistic
in modeling complex watersheds, consider the integral

of [d(x)] divided by the integral of (S x)2. That is,

[d(x)]2 dx

(3.108)

17



is the proposed statistic. The next step is to relate
this statistic to characteristics of the impulse re

sponse.

From Eq. 3.68 the peak discharge of the impulse

response for a plane is

, n
ah

o

(3.109)

(3.110)

and for a concave parabola,

q_ = a(o) h"
^) O

(from Eqs. 3.95 and 3.96, for XQ = 0, and at

t = t(L) as in Eqs. 3.101 and 3.102). For the convex

parabola the peak is at t = 0 so that

t =

a(L) h. (3.111)

where h is the magnitude of the impulse input and
o

a(x) is a function of x. Recall that a(x) is a
function of slope (assuming constant roughness) as

given by Eqs. 3.83 and 3.84

a(x) = c S(x)
n/3 (3.112)

where the coefficient c and exponent n depend upon

the flow type. Now, the ratio of the peak of the

impulse response from the concave surface to the peak

of the impulse response from the plane is

q (concave)

qp(plane)

a(o) h

.11

a h

n/3

(3.113)

where S is the slope of the plane or the average
o

slope and S(0) is the initial (maximum) slope of the
concave surface. The corresponding ratio for the con

vex parabolic surface is

q (convex)

qp(plane)

a(L) n/3

(3.114)

where S(L) is the slope of the convex surface at the
downstream boundary (the maximum slope). Therefore,
the ratios then become (S /S ) for laminar flow and

fS /S ) for turbulent flow.
v max o'

The relation between these peak ratios and the

corresponding values of r is shown in Fig. 3.12.

The circle points correspond to entirely laminar flow
and the square points are for initially turbulent

flow. Since n = 3.0 for laminar flow and n = 1.5

for turbulent flow in Eqs. 3.113 and 3.114, the
effects of slope shape upon the peak rate of runoff
is more pronounced for laminar flow.

In subsequent analysis, a cascade of planes will

be used to model complex slope shapes. The statistic

of deviations, r2, of the planes from the complex
slope will be used as a measure of how well the slope
is being modeled with respect to peak discharge of the

impulse response.

□ Flow Initially Turbulent

o Flow Initially Laminar

1.00

Fig. 3.12. Relation between the statistic of

deviations, r , and ratio of peak dis

charge of the impulse response from con

cave parabolic and plane surfaces.

3.4.3 Complex Surfaces

To examine the influence of complex slope shape

upon overland flow, assume that geometrically simpler

surfaces than those found on natural hi 11 slopes could
reproduce some essential properties. For example,

parabolic surfaces were used to investigate concave

and convex slope shapes. As discussed earlier, a
cubic equation is a simple representation of a complex

surface with both convex and concave portions. For
cubic surfaces, the slope function is now quadratic.

Equation 3.80 could be solved as in the previous sec

tion. However, because of the trade-off between
analytic and numerical methods when the former becomes
more involved and because of the necessity of exam
ining a cascade of planes approximation to complex
slopes, numerical methods are used in this section.

The procedure is to use a cascade of planes and the
finite difference program for a kinematic cascade.

Cascade of Planes Approximation. For example,

consider Test Case No. 5 (Table 3.1) with a concave

parabolic surface as the lower curve in Fig. 3.9. The
procedure is to model the concave surface as a plane,

a cascade of two planes, three planes, and so on.
2 2

Then, the goodness-of-fit statistic (r or 1-r ) is

compared with the corresponding impulse responses.

Again, r2 is defined by Eq. 3.108, where d(x) is the
difference between the cascade of planes and the con

cave parabolic surface.

Table 3.3 presents the results of simulation,

using the finite difference program. The first four
rows of the table are for laminar flow and the last
four rows are for turbulent flow. Moreover, the
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Table 3.3. Surface Characteristics of the Cascade of Planes Approximations to Parabolic Surfaces Versus Peak

Discharge of the Impulse Responses. Test Case No. 5 as Given in Table 3.1.

Number of

Planes in

Cascade

Laminar

2

3

4

Turbulent

2

3

4

to*

♦Infinite

Figs. 3.

Goodness

of Fit

Statistic

2

.9906

.9966

.9982

1.00

.9906

.9966

.9982

1.00

number of planes

10 and 3.11.

Transformed

Statistic

, 5/12

d-r )

.1429

.09358

.07150

0.0

.1429

.09358

.07150

0.0

corresponds

Peak Discharge

of Impulse

Response (in./hr)

Concave Convex

.7124 .6440

.6640 .6440

.6445 .6440

.6440 .6440

3.379 3.230

3.268 3.230

3.232 3.230

3.230 3.230

Ratio of

of Impulse

Peak from

Plane

Yl
Concave

1.659

1.547

1.501

1.500

1.281

1.239

1.226

1.22S

Peak Discharge

Responses to:

Peak from Par

abolic Surface

Y2
Concave

1.106

1.031

1.001

1.000

1.046

1.012

1.001

1.000

Logarithmic

Transformed

Ratios of Peaks

In Y

Concave

.5062

.4363

.4061

.4055

.2476

.2143

.2038

.2029

to the parabolic surfaces, see curves labeled "concave/convex"

In Y2

Concave

.1007

.0305

.0010

0.0

.0450

.0119

.0010

0.0

in

impulsive inputs are identical to those used in

producing hydrographs (Figs. 3.10 and 3.11). The

columns labeled Y. shows the ratio of the cascade

of planes peak discharge to the parabolic surface peak

discharge. For the convex surface two planes are suf

ficient to duplicate the peak discharge from the para

bolic surface because the discharge for an impulse

response peaks at time zero and is thus a function of

h and a at the downstream boundary. However, the
o

hydrograph shape is not well reproduced. For the con

cave surface, the peak discharge comes closer to the

theoretical value as the number of planes in the cas

cade increases. For example, a cascade of three

planes has a peak discharge differing only by 3 per

cent from the theoretical value for laminar flow and

only about 1 percent for turbulent flow. There seems

300

2OO

s

I ioo<

to be a linear relation between

for the concave cascades.

In Y? and (1-r )

tc for Concave

Parabolic Surface^

VV2

As an index of how time properties are preserved

in the cascade approximation to the concave surface,

the time to peak discharge (equal to the time of con

centration for the concave parabolic surface) is

plotted in Fig. 3.13. Since time to peak, T , is un

defined for the impulse response, it is represented as

0, t /2, and t ; where t is the time of concentra-
c c c

tion for a plane. These three points are shown in the

vertical axis in Fig. 3.13. The horizontal line in

Fig. 3.13 represents the time of concentration or the

characteristic time for the parabolic surface. The

percent errors in characteristic time for the two,

three and four plane cascades are -22, -14, and -11,

respectively. For example of the overall correspon

dence of the impulse response from a similar parabolic

surface, hydrographs for a three-plane cascade and for

the parabolic surface are shown in Fig. 3.14. The

peak values, time to peak, and later recession values

are in excellent agreement.

While it is perhaps premature to discuss some

implications of the above analyses due to the lack of

extension of the above results to complex watersheds

12 3 4 5

Number of Planes in Cascade

Fig. 3.13. Relation between number of planes in

cascade and time to peak of impulse re

sponse as an approximate characteristic

time. Test Case No. S as described in

Tables 3.1 and 3.3.

and for complex inputs, let us proceed to do so.

First, it is established that overland flow is af

fected by slope shape and that the effects on peak

discharge and time characteristics of the impulse re

sponse can be related to statistics of the surface as

related to uniform slopes. Moreover, the impulse re

sponse of complex slopes can be simulated by a cascade

of planes. The goodness-of-fit of the geometric ap

proximation via a cascade of planes can in turn be re

lated to goodness-of-fit measures of the impulse re

sponses. These basic relationships provide hints as

to methods of analyzing complex watersheds, i.e., they

provide clues as to possible relationships between

geometric and hydrologic goodness-of-fit statistics

for complex watersheds. Before this development, how

ever, responses to inputs other than impulse inputs

must be examined.
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Test Case No. 5
Impulse Input of h,-0.25 in.

Flow Initially Turbulent

100 200 300

Time (sec)

400 500

Fig. 3.14.
Impulse responses for a concave parabolic
surface and for a three-plane cascade

approximation to that surface.

3.S Pulse Response

In the previous section it was noted that as the
analytic solution became more complex numerical
methods became more attractive. The situation is

similar when the input pattern becomes more complex.
This section presents an analytic solution for con
stant, uniform input (pulse input) to a plane. Numer
ical methods are used for more complex input to planes
and for pulse (uniform and constant) input on concave

slopes.

3.5.1 Plane Surface

As with the impulse response, the pulse response

of a plane is well-known. For example, see Henderson

and Wooding (1964) for analysis and plots of pulse
responses; for a general discussion, see Chapter 15
of Eagleson (1970), for discussion in terms of non
linear systems, see Dooge (1967) and Singh (1974) for
plane and converging surfaces.

The basic equation (Eq. 3.44) is solved in two

parts; the rising and recession limbs. For a pulse
input of duration equal to the time to equilibrium, T,

the rising hydrograph is given as

Q = Qe(t/TT

where T is given as

T = a

(3.115)

(3.116)

3r since Q = P(L/43200.), T is also given by Eq.

3.29. Thus? from Eq. 3. US the discharge on the
rising hydrograph is related to t3 for laminar flow
and t1'5 for turbulent flow. The recession from

equilibrium is given as

!*• - l\ (3.117)

where Q is discharge; Qe is the equilibrium

discharge, and t is elapsed time after cessation of
input If the pulse input ends before time T, then

the response is called a "partial equilibrium re
sponse." The rising hydrograph is given by Eq. 3.115
until, D, the duration of input, then constant at the
rate Q(D) for a period of time given by

1

f = T n • (Q(D)/Qe)" (Qe/Q(D)-U (3.118)

until recession begins as described by Eq. 3.117
starting from equilibrium at time D.

3.5.2 Parabolic Surface

As described in Section 3.4.3, parabolic surfaces

are modeled as cascades of planes for analysis using
the finite difference program. As before, the good-

ness-of-fit statistic, r2, is used to judge the number
of planes necessary. The procedure is to derive a
relation as shown in Table 3.3 and Fig. 3.13 and then
use the runoff from the resulting cascade of planes as
an approximation to the pulse response of the para
bolic surface. Rather than examine pulse responses

separately, the responses of a plane and a concave

cascade of three planes are considered.

3.5.3 Comparison of Partial Equilibrium Hydrographs

The 10 test cases as described in Tables 3.1 and
3.2 were used for comparison. Each plane was com

pared with a concave cascade of three planes with
similar characteristics, except the slope of the
uppermost plane in the cascade had 1.5 times the aver
age slope, the second plane had the average slope
(same as the uniform plane described in Table 3.1),
and the lowest plane had 0.5 the average slope. Char
acteristic times, T, were derived by simulation for
each case. The results of this simulation are shown
in Fig 3.IS where corresponding times are shown for

1000

y * -3.8 +0.97 x

R8» 0.996

7= 301 Sy=l5l

X» 316 S»=I56

Std. Error of Est.=9.lsac

250 500 750

Uniform Slope T (seel

Fig. 3.IS.
Relation between equilibrium times, T, on

uniform slope and corresponding concave

cascade. Equilibrium discharge as

95 percent of input rate.
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the uniform slope and concave slope surfaces,

differences are small, about 5 percent.

The

Oimensionless rising hydrographs for a plane are

shown in Fig. 3.16 as the solid lines. The upper

00

0.75 Flow Entirely Laminar

o Concave Cascade

—Plane

m

O
0.50

0.25

0.25 0.50 0.75

D/T for Plane

1.00

1.00

Flow Mixed

Laminar SiTurbulent

o Concave Cascade

— Plane

0.25 0.50 0.75

D/T for Plane
1.00

Fig. 3.16. Comparison of partial equilibrium

hydrographs from uniform (plane) slopes

and from concave cascades of three planes.

Test Cases Nos. 1 to 10, as in Tables 3.1

and 3.2.

graph is for entirely laminar flow and the solid curve

in the lower graph is for entirely turbulent flow.

The circled points in the upper portion of Fig. 3.16

are simulation results for the concave cascade with T

as calculated from the uniform slope. The ratio of

0 /Q for the cascade to 0 /Q for the uniform

slope is nearly 1.5 as predicted by Eq. 3.113, for the

points at 0.25, 0.50, and 0.75 on the D/T axis. The

least squares fit to these points has an exponent of

2.77 as compared with the 3.0 value for laminar flow

on a plane. The circled points in the lower portion

of Fig. 3.16 are for those cases where there was both

laminar and turbulent flow on the plane for D = T.

For D/T values less than 0.5, flow was almost en

tirely laminar; hence, the points fall below the line

for turbulent flow. This suggests that under condi

tions where flow becomes turbulent on the uniform

slope but remains laminar on the cascade that peak

discharge from the plane would exceed the peak dis

charge on the concave surface.

As in the case of impulse inputs, pulse responses

for inputs of duration less than equilibrium are sig

nificantly influenced by characteristics of the over

land flow surface. For laminar sheet flow, the re

sults are straightforward—concavity increases peak

discharge. For mixed-flow type, if there is a dif

ference in the flow types, peak discharge from the

concave surface can be less than or greater than the

corresponding peak discharge from a plane.

3.6 Response to Complex Input

As used here, complex input means rainfall excess

that can vary in time and space. If the input varies

in time but not in space it is uniform, varying. If

it varies in space but not time, it is nonunifonn,

constant. Finally, if the rainfall excess varies in

time and space, it is varying, nonuniform.

If the above concepts of complex input are

considered in light of laminar and turbulent flow, as

well as uniform slope and complex slope surfaces, the

problem becomes complex. This section will consider

a specific example to accomplish two objectives.

First, to demonstrate cognizance of the problems in

assuming uniform constant input to a plane surface, as

representative of all overland flow situations.

Second, to illustrate the power of simulation and to

suggest a procedure for simulation studies to sort out

the influence of the various factors.

This discussion is limited to two input patterns,

as shown in Fig._3.17. In the upperIportion^of the

? 15 P~ |h P i th

g_

graph, P, = 0.5 P and 2

average rainfall excess rate.

Fig. 3.17, P = 1.5 P, and P.

ppIp^

1.5 P~, |where P is the

In the lower portion of

= 0.5 P\ For example,P = 1.5 P, and P.

consider Test Case No. 5 as described in Table 3.1.

The average rainfall excess 7, is 1.0 in./hr for a

duration equal to the time to equilibrium.

Overland flow hydrographs corresponding to the

input patterns shown in Fig. 3.17 are shown in

Fig. 3.18. For these hydrographs the average input

rates are equal as are the durations. There is a

difference in the rising portions of the hydrographs

and in the peak discharge which in a qualitative

sense, are large due to the large variations in the

input-variations in rate and to the large time inter

val, D/2, as compared with the duration.

Every hydrologist seriously considering surface

runoff on natural watersheds is aware of space-time

variability of rainfall and rainfall excess. In spite

of this, spatial variability of rainfall excess and

the resulting runoff are described as "partial area

response" or some other term which suggests a new con

cept. The concept is not new nor does it require spe

cial attention. Models which admit distributed param

eters and distributed input implicitly and explicitly

account for this concept. For example, just as a cas

cade of planes can adequately represent a complex

slope, the number of planes can be increased—each

with a different rainfall excess--to account for

spatial variability of rainfall excess.
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Fig. 3.17. Rainfall excess input patterns for
uniform, time varying input.

Overland flow hydrographs for input

patterns shown in Fig. 3.17. Example of

uniform time varying input. Test Case

No. S.
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Chapter IV

RUNOFF FROM COMPLEX WATERSHEDS

4.1 Geometric Simplification

The term "complex watershed" as used here denotes
situations where a one-to-one correspondence between
geometrical elements in the model and in the real sys

tem cannot be maintained. Thus, the term connotes

overland flow over natural surfaces and open channel

flow in natural channels as opposed to hypothetical
flow situations.

Before more involved discussions of

simplification techniques, the reasons for geometric

simplification are discussed. Geometric simplifica
tion is the substitution of a rather simple geometry

for a more complex one; i.e., a complex watershed is
modeled as a simple cascade of planes and channels.

To model surface runoff from a complex watershed

(i.e., to formulate and solve the equations describing
the process) one must assume a simplified geometry.

Moreover, there is a tradeoff between network complex

ity and accuracy, on the one hand, and computational

ease and data requirements on the other. Finally, to

sort out the influence of specific components within

the system, these components must be isolated and

computationally separate enough to allow sensitivity

analysis. Assuming the need to adopt simplified

geometric representations of complex watersheds, now
it is possible to examine techniques for and conse

quences of such simplifications.

4.1.1 Characteristics Which Are Preserved

In adopting the kinematic cascade model for

surface runoff, several watershed characteristics

should be preserved. A watershed characteristic is

preserved if its value remains unchanged in the sim

plified geometry. As discussed in the Introduction,
watershed area is the single most important geomorphic

parameter. To preserve mass continuity, watershed

area must be preserved. Also, nearly all geomorphic

characteristics are related to area. The length and

equivalent (Gray's) slope of the main channel is pre

served. By fitting planes by least squares, the

average watershed slope (as calculated from coordinate

data) is also preserved. The total relief, average

elevation and hypsometric integral may be nearly pre

served or slightly distorted. Finally, by preserving

the above characteristics, the potential energy is
nearly preserved.

Suppose that some of the above geomorphic

parameters (see column 1 of Table 4.1) were not pre

served in the surface runoff model. Many peak dis

charge equations have been developed, and most of them

contain area. For example, Jarvis (1926) plotted

A versus peak discharge for a large number of

drainage basins. The rational formula is used for
estimating peak discharge as

Q = CIA (4.1)

where C is a coefficient, I is rainfall intensity,

and A is drainage area. Thus, a misrepresentation
of the area is likely to result in errors in runoff
estimates. As shown by Gray (1961) and confirmed by

Murphey et al., (1974) the length and slope of the

main channel are correlated with hydrograph time char

acteristics. As shown by Hickok et al., (1959) aver

age watershed slope (along with other geomorphic pa

rameters) is important in estimating lag time.

Finally, if the total relief, average elevation, and

hypsometric integral are not preserved then neither is
the potential energy of a uniform input to the
watershed.

4.1.2 Some Characteristics Which Are Distorted in the

Simplified Geometry

The third column of Table 4.1 is a list of some
geomorphic parameters which are distorted in the sim

plified geometry. Stream order and drainage density

are not preserved in modeling complex watersheds.

However, it may be possible to preserve stream order,

but by modeling only a portion of all streams, the

drainage density may not be preserved. The effects of

a modified drainage density will be discussed In de

tail later. Topographic roughness will always be dis

torted in fitting planes to irregular coordinate data.
If complex slopes are poorly modeled by a plane, then

the measure of topographic roughness will be large.

If an irregular area containing many channels is mod

eled as a plane, then the topographic roughness will

not be preserved nor will the drainage density be pre
served. In the kinematic cascade model used here,

channel cross sections are assumed trapezoidal or tri

angular. However, in the absence of detailed data,

assumptions can be made based upon relationships be

tween hydraulic factors and channel geometry. A pri

mary source in this area for ephemeral streams is the

paper by Leopold and Miller (1956) who present exten

sive data—photographs, tables, and graphs. An ex

cellent review of the state-of-the-art and a good

bibliography are presented by Chitale (1973).

Given observed rainfall-runoff data and an

assumed model, it is possible to derive optimal rough
ness coefficients. Any errors in the data as well as

geometric distortions will be reflected in these esti

mated roughness coefficients. Therefore, it is rea

sonable to expect distortions in estimated (optimized)
roughness parameters when there are distortions in

other watershed characteristics. A detailed analysis
is postponed until after the effects of distortions in
channel characteristics and in drainage density are
examined.

Before considering the effects of the above

distortions, why distortions are needed must be dis
cussed. From Eq. 1.12, the number of first order

streams seems to increase with the bifurcation ratio

to a power of u-1, where u is the basin order. For

higher order basins, the number of streams becomes so
large that the trade-off (previously discussed) favors
distorting the total number of channels and thus the
drainage density. That is, there is a point where the
return from including more channels in the model is

overcome by the added cost and effort of doing so.

How this point is quantified is a major portion of

this study and is discussed and analyzed subsequently.

4.1.3 Effects of Distortions

Effects of distortions considered here are

limited to those which are reflected in the surface

runoff. For example, in Chapter III the influence of
overland flow-surface shape upon peak discharge was

examined in detail. Slope shape affects the magnitude
and time of occurrence of peak discharge of the over
land flow hydrograph. Since slope shape was analyzed
in Chapter III and drainage density is a measure of
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Table 4.1. Some Watershed Characteristics Affected by Geometric Simplifications

Adopted in Model Formulation in This Study.

Characteristics

Essentially

Preserved

Characteristics

Slightly

Changed

Characteristics

Distorted

A, Area

L , Main Channel Length

S , Main Channel Slope
c

S , Mean Watershed Slope

F(x), Hypsometric curve

H, Total relief

n~. Mean watershed elevation

I , Hypsometric integral

U, Potential energy

u,

V

V

C. K,

Stream order

Drainage density

Topographic rough

ness

Hydraulic rough

ness coeffi

cients

Channel character

istics such as

cross sections,

concavity, etc.

Watershed shape

stream order and topographic roughness, the following
discussions will be limited to the effects of distor

tions in channel characteristics, drainage density,

and hydraulic roughness coefficients.

Effects of Distortions in Main Channel

Characteristics. If the channel cross section is
adequately represented, then the depth area relation
for the stream is preserved. If the cross section is
not preserved, then the distortions will be reflected
in the depth-area and depth-discharge relations. In

situations where such data are available, the cross
sections are modeled as accurately as possible; when

data are not available it is necessary to assume a

cross-sectional configuration.

A common conception (e.g. Eagleson, 1970) is that
in the absence of lateral inflow, kinematic flood
routing results in a steepening of the hydrograph
rise, a lengthening of the recession, but no attenua

tion of peak discharge. The routed hydrograph does

change shape as described above and there is a de
crease in peak discharge. As an example, consider a
rectangular channel with the impulse response of a
plane 2S0 ft long by 100 ft wide as the input hydro-
graph at the upstream boundary. This input hydrograph

is described in Table 3.1 as Test Case No. S and is
shown in Fig. 3.8. The method of characteristics as

described in Chapter III is used to route this hydro-
graph in a channel. The original calculations were
with dimensionless variables, but for this example

assume a 1500 ft long channel with a 25 ft wide rect
angular cross section. The assumed channel has an
average slope of 0.02 and a Chezy C of 40.

At the upstream boundary there is an abrupt rise
to rate of Q at time zero. The discharge is then

constant from t = 0 to t = tc> the time concentra

tion of the plane. The characteristic for this con

stant depth is

<!*_ =
dtc

n h
n-1 (4.2)

where the subscript c denotes characteristic.

The corresponding equation for the shock is

dx

ar
..n-1 C4.3)

where the subscript s denotes shock. Consider the

characteristic originating at x = 0 and t = tc,

that is at the upstream boundary at the end of the
period of constant discharge. Since this characteris

tic is n-times faster than the shock, the two will
i ( ) The situation is as

tic is n

intercept at a point (ts xg).

shock,

The situation is as

follows: (1) for (t, x) less than (t, xg) there is

no reduction in peak discharge but the duration of
constant discharge is decreasing, (2) for (t, x) be
yond (t , x ) there will be a reduction in peak dis

charge. This reduction in peak discharge is denoted

decay by shock.

Simultaneous solution of Eqs. 4.2 and 4.3 for x

yields:

(4.4)

where h is the initial depth of the upstream bound

as three timesary. The solution also yields t

t , if n = 1.5. Therefore,

is the solution for For points

(4.5)

beyond

(t , x ) the cumulative inflow can be equated to the

total volume of storage (following a suggestion by

D. A. Woolhiser):

l 1
/ Q(s)ds = b / h(s) ds
0 0

(4.6)

where Q(s) is the inflow hydrograph at the upstrean

boundary; h(s) is the depth in the channel, and b
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is the width of channel. The solution to Eq. 4.6

gives x. as a function of t > t ; h(x) is then a

function of x,, and t,, and finally the peak dis

charge is 0 as a function of h(x). The procedure

is to select a value of t., then solve for x,, h(x)

and 0 . This procedure is followed for the example

discussed above. The results are shown as the solid

line in Fig. 4.1. The channel properties for this

—— Analytic Solution, Configuration No. I

--- Numerical Solution, Configuration No. I

o Numerical Solution, Configuration No. 2

D Numerical Solution, Configuration No. 3

a Numerical Solution, Configuration No.4

I.SO

2

I
o 1.00

a

2.

0.50

D
o

500 1000

Distance (ft)

1500 2000

Fig. 4.1. Routed peak discharge as a function of

distance for various channel configurations

(as described in Table 4.2).

example are summarized as the first row of Table 4.2.

Numerical solution for the same example (Channel Con

figuration No. 1) is shown as the dashed line in

Fig. 4.1. At x = x = 8S3 ft, the numerical solution

seems to be about 9 percent in error. For distances

less than x , the errors are somewhat less, but for

x > x the errors can be about 10 percent. There

fore, for all values of x, numerical errors are pres

ent. However, the numerical results agree with ana

lytic results in predicting the magnitude of the decay

by shock.

The effects of concavity in channel slopes are

examined by simulation. The simulation results are

for three channel segments in cascade as described in

Table 4.2. These results are also shown in Fig. 4.1.

Rows 2, 3, and 4 of Table 4.2 describe the channel

configurations with time to peak and peak discharge at

the downstream boundary shown in the last two columns.

Time to peak increases and peak discharge decreases

as concavity increases. These peak discharge values

are shown as the circled points in Fig. 4.2. The

last three rows of Table 4.2 correspond with uniform

slope channels with equivalent slope by Gray's method.

Peak discharge values at the downstream boundary for

these equivalent slope channels are shown as the

square points in Fig. 4.2.

If the downstream channel profile is concave (as

described by a parabola with the same relief and thus

the same average slope) and other factors are similar,

then the distance to the beginning of decay by shock

is less than in the uniform slope channel. For exam

ple, for a parabolic slope with the initial slope l.S

times the uniform slope and the final slope 0.5 times

the uniform slope, the distance x is 690 ft or

about 80 percent of the value for a uniform slope

channel. This value is consistent with the numerical

results.

Assessing the effects of distortions in

downstream channel concavity is possible when using

Table 4.2. Channel Characteristics and Corresponding Peak Discharge Values

for the Routed Impulse Response* in the Assumed Channels.

Channel

Configuration

Number

Total

Length of

Channel

(ft)

Equivalent

Channel

Slope

Slopes for

Channel Segments

h S2 V

Index of Routed Impulse Response at

Concavity Downstream Boundary

for Entire Time to Peak
Channel Peak Discharge

I (min) (cfs)

1

2

3

4

2A

3A

4A

1500.

1500.

1500.

1500.

1500.

1500.

1500.

.020

.0178

.0156

.0133

.0178

.0156

.0133

.020

.025

.030

.035

.0178

.0156

.0133

.020

.020

.020

.020

.0178

.0156

.0133

.020

.015

.010

.005

.0178

.0156

.0133

1.000

.889

.778

.667

1.000

1.000

1.000

24.

25.

26.

30.

26.

27.

29.

.91

.84

.74

.59

.88

.85

.81

Input to upstream end of channel reach is the impulse response of a plane, Test Case No. 5 as described in

Table 3.1 and Fig. 3.8, with no lateral inflow.

*

S, is the slope of the channel at the downstream boundary.
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Fig. 4.S. Peak discharge values versus drainage

density for the test configurations, iden
tical inputs.

considering its implications can aid in determining

the likely effects of distortions in drainage density.

If the relative porportion of overland flow to
open channel flow influences the characteristics of

surface runoff, then it should be apparent in the im

pulse responses of systems with different proportions.
Moreover, drainage density is an index of this propor

tion. As seen in the above example, likely there is a

strong relation between hydrograph characteristics

(peak discharge, time to peak, etc.) and drainage den

sity. The configuration with the highest drainage
density had the shortest time characteristics and the
highest peak discharge. Since open channel flow is

relatively faster than overland flow, the results are

as expected. As shown in the next section, other

effects of changes in drainage density suggested by

the existence of laminar and turbulent overland flow

are in fact supported by data from natural watersheds.

Analysis of Observed Data. The effects of

varying drainage density from watershed to watershed
are studied using observed data from natural water

sheds in conjunction with unit hydrograph theory.
Nash (1957) published a paper proposing a functional
form for the instantaneous unit hydrograph (IUH) as

h(t) (4.7)

where h(t) is an ordinate of the IUH at time t, K
is a linear reservoir constant, and N is a param
eter. Nash also proposed a conceptual model as a cas

cade of N linear reservoirs of time constant K.
What is special about Nash's paper and the resulting
model (Eq. 4.7), (hereafter called the "Nash model")

is that it presented an equation and a conceptual mod
el. Although the analogy has undoubtedly been over

worked, e.g. to require that N be an integer, the
model remains one of the foremost in unit hydrograph
applications. The lag time or first moment of the
IUH is

and the time to peak of the IUH is

Tp = (N-l)K

where N and K are as described above.

(4.9)

NIC (4.8)

Importance of the lag time in unit hydrograph
theory was explained by Dooge (1973, p. 202): "One

of the most important factors in surface water hydrol
ogy is the delay imposed on the precipitation excess
by the action of the catchment. If the parameter rep
resenting this delay is to be useful for correlation

studies, it should, if possible, be independent of the
intensity and duration of rainfall. In the case of a

linear system--and unit hydrograph theory assumes that

the system under study is linear--the time parameters
are independent of the intensity of precipitation ex
cess, but only the lag time (t ) has the property of

being independent of both the intensity and duration.

Accordingly, with the hindsight given by the systems

approach, we can say that only the lag time should be

used as a duration parameter in unit hydrograph
studies." In extending the above concepts, these

writers and R. S. Parker used the lag time, particular

ly its variation with rainfall-excess intensity, as a

measure of nonlinearity. This study in nonlinearity

was a concurrent and complimentary study (see Parker,

1975) to the work reported here. The experimental

data were taken before this study so that the studies

were concurrent only in the last phase of the analysis

as described here.

Numerous investigators have examined the

influence of drainage density upon surface runoff.

For example, Hickok et al., (1959) related lag time

(defined as the time from the center of mass of the
rainfall to the hydrograph peak) to area, slope, and

drainage density. The lag time and drainage density

were found to be related with lag time proportional to

drainage density to the approximately -0.3 power (see
their Eqs. 1 and 2, p. 610). Therefore, a variation

in lag time with varying drainage density suggests a

direct effect of distorting drainage density in mod
eling surface runoff. However, there have also been
numerous studies (e.g. Minshall, 1960, and discussions

of his paper) indicating a variation in lag time with
variations in intensity because hydrologic systems are
in fact nonlinear. Thus, variations in lag time with
drainage density and intensity of rainfall excess must
be examined.

The principal source for data used in the

following analyses is the Drainage Evolution Research
Facility (DERF) at Colorado State University. This
unique facility is described in detail by Parker

(1975) so that only a brief description is given here.
The DERF is essentially a laboratory facility (30 ft

by SO ft by 6 ft) filled with a soil which can be

sprinkled at four intensities from 0.5 and 2.5 in./hr.
The area of this experimental watershed is approxi

mately 1240 ft or 0.0285 acre. During 1971 rainfall,

runoff, and geomorphic or network data were taken. As

explained in detail by Parker (1975), the facility was

open and exposed to wind during that year and the data

taken contained errors. In 1972 the facility was en
closed in a building which eliminated the effects of

wind and thus many of the errors in estimating the
rainfall input. For this reason the 1972 data form

the basis of the analyses but 1971 data are also used

with the understanding that errors are likely. There
fore, except where noted, the following discussion

refers to the 1972 data.
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The basic data of interest here are

rainfall-runoff data from the DERF along with the cor

responding geomorphic parameters. The procedure was

to sprinkle the facility for long periods until a par

ticular drainage density was obtained and then to re

cord a series of hydrographs. Rainfall was applied in

a series of 1-min pulses for each of four intensities.

Geomorphic data were then taken and the surface was

again sprinkled for several hours to change the chan

nel network before a new series of hydrographs were

recorded. The 1972 data are from four networks with

increasing, then decreasing, drainage density. A

fifth network was the fourth network which was covered

with a plastic sheet. The primary purpose was for

calibration, but the plastic covered surface provided

data from a different surface with the same overall

configuration but drastically reduced drainage densi

ty. Throughout the 1972 experiments drainage density

changed but total relief remained constant. In con

trast, the 1971 OERF data were taken on networks with

changing relief and drainage density.

As discussed above, all hydrographs from the

DERF were the result of 1-min duration rainfall puls

es. The changes in lag time with changes in rainfall

(input) intensity provide a way of analyzing the de

gree of nonlinearity of the system. Systematic de

partures from independence of the lag time with chang

ing intensity reflect the nonlinearity.

As lag time is a characteristic time, it can be

related to input intensity in the following form

ai
-b

(4.10)

where Tt is the lag time; a is a coefficient, b is
L

an exponent, and i is intensity of the rainfall ex

cess. If the system were linear then b would be

zero producing a constant lag time. Since in laminar

flow the depth and local mean velocity are related

with an exponent of 2.0 and in turbulent (Chezy) flow

the exponent is 0.5, similar values might be expected

in Eq. 4.10. Therefore, if the rainfall excess-

surface runoff process is nonlinear, b should be

greater than zero. Moreover, its magnitude is a mea

sure of the degree of nonlinearity in the process.

Values of i in Eq. 4.10 were estimated once using

the «-index (an average) for infiltration and once

again using the Philip (1957) infiltration equation.

Values of a and b for the DERF data are

shown in Table 4.3 and Fig. 4.6. The other data

shown will be discussed later. The first three col

umns of Table 4.3 identify the data and describe the

watershed. The next four columns give values of a

and b from Eq. 4.10 for both methods of estimating

rainfall excess. Lag time versus intensity is plot

ted in the lower portion of Fig. 4.6 for the 1972

data.

The coefficient, a, tends to increase as drainage

density decreases. For the 1972 DERF data the regres

sion equation relating the coefficient, a, and drain

age density for the "average" rainfall excess is:

a = 3.97 - S.83 D. (4.11)

with a coefficient of determination R =0.98, while
for all of the DERF data (1971 and 1972 combined) the

corresponding equation is

IB) Mitofel

Wfl

SW-17 OOOG£,W-I
sw-ir

l00.OI(O.Z54) 0IIJ.54) 10125.41
Rotalolt Eicm Ron ta./k>, (mm/Ml

Fig. 4.6. Lag time, T., of Nash model as a function
L

of intensity of rainfall excess.

a = 3.01 - 3.38 D, (4.12

with R = 0.65.

For the 1972 data, the exponent b seems

constant, except for the DERF-5, the plastic-covered

surface which has a higher exponent. The high value

of b = 0.66 for the plastic surface may indicate a

change in the relative proportion of laminar-overland

flow with respect to turbulent flow. The values of

and b are uniformly smaller for the cases where

"average" rather than "maximum" rainfall excess data

are used (Table 4.3). This suggests that using an

average rainfall excess rate may result in under

estimating the degree of nonlinearity.

Two natural watersheds were chosen to test the

results indicated by analysis of the DERF experimenta

data. The two watersheds are similar with respect to

drainage area and relief (see rows labeled SW-17 and

2-H in Table 4.3) but no well-defined channel system

exists on the Riesel, Texas watershed (SW-17) while

there is a definite channel system on the Hastings,

Nebraska watershed (2-H) (see U.S.D.A., 1963,

pp. 42.28-5 and 44.6-3). Values of a and b in

Eq. 4.10 are also shown in Table 4.3 for these two

watersheds. The solid lines in the upper portion of

Fig. 4.6 are for these watersheds and rainfall excess

estimated using Philip's equation. The corresponding

dashed lines are for rainfall excess estimated using

the $-index. As in the data from the experimental

facility, lag time decreases as rainfall excess-

intensity increases, and the exponent and coefficient

in the equation relating intensity and lag time are

smaller when the <f>-index is used.

Finally, some previous results are examined with

the intention of seeking empirical support or refuta

tion. A well-known example of nonlinearity in runoff

from small agricultural watersheds was presented by
Minshall (1960). In his Table 2 on page 29, he pre

sented data used to derive unit hydrographs for W-l,

Edwardsville, Illinois. Time to peak and peak dis

charge of the derived unit hydrographs were shown in

Fig. 5 of his paper, and of these data he plotted fiv

selected unit hydrographs in his Fig. 6. These five
storms were chosen to represent a wide range of inten
slty. The intensity values presented were for total
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Data

1972
1 t

t 1

t t

1 t

1971

11

11

SW-17

2-H

W-1

W-1

W-1

lit2

Set

DERF-1

" -2

" -3

" -4

" -5

DERF-1

" -2

" -3

" -4

= 0.0929

2ft/ft2 = 3.21

Table

Drainage

Area

(ft2)1

1.24X103
11

11

11

11

1.24xlO3
I 1

t 1

1 1

1.302x10S

1.481xlOS
1.185xlO6

1.185xlO6

1.185x10

m .

51 m/m .

4.3. Summary of Relation Between Rainfall

Drainage

Density

(ft/ft2)2

.48

.50

.46

.37

.099

.35

.54

.63

.75

4

.0022

.0014

.0014

.0014

Rainfall Excess

Maximum Rate

(in./hr)

(from Philip Eq.)

Coefficient 1

a

1.32

1.17

1.62

1.81

3

1.19

1.06

1.12

1.20

71.7

17.6

29.3S

28.9S

58.3S

Excess

as the:

Rate and Lag

Average Rate

(in./hr)

(from *-index)

exponent Coefficient Exponent

b a b

.37

.41

.42

.42

.22

.21

.36

.35

.47

.21

.25

.55

.60

1.19

1.03

1.44

1.60

3.44

1.13

.99

1.03

1.13

30.9

13.1

23.2

19.2

37.2

.29

.33

.34

.36

.66

.19

.17

.32

.34

.29

.12

.10

.45

.49

Time.

Source of Data

Parker, (1975)
11

11

11

■ i

Parker, (1975)
11

11

USDA, (1963)

11

Minshall, (1960)

Table 2

Minshall, (1960)

Fig. 6

Amorocho, (1961)

Eq. 14

Dooge, (1967)

Eq. 38

Maximum and average rates are the same for plastic surface.
A

No well-defined channels.

Values are for rainfall, not rainfall excess. The equation gives time to peak, not lag time, except for
Dooge (1967), who uses lag time.

rainfall, not rainfall excess as he stated on p. 31.
Minshall's conclusion that using rainfall excess did

not improve the correlation for his data was confirmed

by using rainfall excess estimated by means of the

data he presented and the ♦-index. Values of a and

b as in Eq. 4.10 but with time to peak are given in

Table 4.3 in the last three rows labeled W-1. For

total rainfall b = 0.25 while for average rainfall

excess rate b = 0.10 using all 28 storms presented

by Minshall.

Amorocho (1961) discussed Minshall's paper and

by selecting the five storms (shown in Minshall's

Fig. 6) demonstrated nonlinearity. The value of b

in his equation relating time to peak and intensity

was 0.547. If he had used average rainfall excess,

the exponent would have been 0.45, while if he had

used all of Minshall's data, instead of the five

selected storms, the exponent would have been 0.25 for

total rainfall and 0.10 for rainfall excess. These

results are given in Table 4.3 in the rows labeled

W-1.

Minshall and Amorocho were discussing time to

peak and not lag time. A later analysis by Dooge

(1967) examined lag time, but again he used rainfall

rather than rainfall excess. Dooge used the same

five storms as Amorocho and derived lag times for each

unit hydrograph. His equation relating lag time

(Eq. 38, p. 33) to intensity had an exponent of 0.605.

If rainfall excess had been used, the exponent would

have been 0.49. The line labeled "Dooge, W-1"

(Fig. 4.6) is a plot of this relation.

Using all of the data, except for SW-17, resulted

in an equation

a = 18.8 - 33.3 (4.13)

relating the coefficient a and drainage density.

The value of R for this equation is 0.59, but is

consistent with Eq. 4.11.

The results of the analysis reported above and

the reinterpretation of Minshall's data are summarized

in Table 4.3. Misinterpretations of Minshall's data

resulted in an overestimation of the degree of non-

linearity in the rainfall excess-surface runoff rela

tion. The degree of nonlinearity in this relation is

seen as a function of rainfall estimation procedure as

well as the basin characteristics. Increasing drain

age density tends to lower the lag time, while a dras

tic change in drainage density affected the rate of

change of lag with changing intensity.
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Returning to the question of the effects of

distorting the observed drainage density in modeling
a watershed, evidently a gross underestimation in
drainage density could result in overestimating the
lag time and the degree of nonlinearity. Suppose that
lag time is fitted in an optimization procedure but
that drainage density is underestimated. A likely re
sult is underestimation of hydraulic roughness or a
similar compensating error in another factor.

The effects of distorting main channel
characteristics and drainage density upon surface run
off are seen as significant raodificiations in the sur
face runoff hydrograph. Quantifying the hydrologic
effects of each distortion resulting from simplifica
tions assumed in the mathematical modeling is diffi
cult due to the complexity of the problem. However,
several goodness-of-fit statistics have been proposed
and illustrated by simulation results.

4-2 Goodness-of-Fit Statistics for the Simplified
Geometry

Several goodness-of-fit statistics are proposed
in this study for modeling complex natural watersheds
and their components by simplified geometrical repre
sentations. The obvious question resulting from such
modeling is how well does the simplified model repre
sent the complex natural system. This question can be
considered in two parts: First is the goodness-of-
fit of the simplified geometrical representation to
its complex prototype, its topographic features, and
second is the goodness-of-fit of the hydrologic res
ponse of the simplified geometry to the hydrologic
response of the complex prototype hydrographs. The
first part is the subject of this section and the sec
ond is covered in the next section.

Three dimensional coordinate data (x., y., z.)

for i » 1, 2, .... N are taken from a topographic

andmap. The normal procedure is to take x , y

equal to zero at the watershed outlet so that all ele
vation values are positive. A function measuring de
partures of fitted elevation values, e., from given or

observed elevation values, z., is G such that

- e,)' (4.14)

where N is the number of selected data points. If
a plane is fit to N data points by least squares,
the result is a minimum G as defined by Eq. 4.14.
The mean or average elevation is

N

(4.15)

so that the sample variance of the observed elevation
data about their mean is

(4.16)

The sample variance of the observed data about the
best fit plane is

2 N

S2 = I (Zj - e^ = G/(N-1) (4.17)

since the mean deviation is zero,

goodness-of-fit statistic is
The proposed

as a measure of the residual variance. If the av

elevation were the best fit plane, then R2 = 0,

if the least squares plane had a perfect fit to t

observed coordinates then R2 = 1. Therefore, R2

is the percent of the total variance explained by

least squares fit plane. The statistic, R2, is c

the "geometric goodness-of-fit statistic." It cai
used for a single plane fit to hillslope data or
an entire cascade of planes fit to watershed coor<

nate data. For a cascade of planes, S2 and S2

calculated for all planes as is R2.
P

In a manner similar to that described above,
coordinate data are taken for points along the mai
channel. Distances along the main channel are ca]
lated by

for all points along the channel reach.

The length of the main channel is then

N-l

! (4

where N is the number of data points. Also the
total relief of the main channel is

H - z. (4

where are the observed elevation data. If th

area under the stream profile formed by (d., z.) i

calculated and a right triangle with base length :

and the same area as under the profile is construe-
then for h as the altitude of this triangle the
slope of the hypotenuse is

h/L (4.

as Gray's slope or the equivalent channel slope. 1
index of concavity described earlier is

I = h/H (a
c c *

with values less than one for a concave profile and
values greater than one for convex profiles.

"Drainage density" is defined as the ratio of
total length of all streams to the drainage area.

drainage density for the watershed is D,, and drai
a

age density of the simplified geometry is d., then

VDd (4.
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is the proposed statistic measuring the

goodness-of-fit with respect to the drainage density.

I. will vary between zero and one, since d. will

always be less than 0..

The above three goodness-of-fit statistics—I* ,

the geometric goodness-of-fit statistic; I , the index

of concavity; and I,, the drainage density ratio--

form the set of goodness-of-fit statistics used here.

In the most simplified terms, R is a measure of the

goodness-of-fit for the overland flow portion of the

model; I is a measure of the goodness-of-fit of the

main channel slope, and I, is an overall goodness-

of-fit measure. That is, there is a watershed-slope

statistic, a channel-slope statistic, and an overall

statistic. These statistics are summarized in

Table 4.4. The first two columns describe the element

watershed. The final column gives the source of data

for each watershed which are presented to show the

range of the proposed statistics and for reference in

subsequent analyses. Some of the watersheds do not
have well-defined channel systems and since only a

single plane was fit to data from each watershed, the

ratio of drainage densities was not calculated.

Of the 27 watersheds represented in Table 4.S,

four of the Riesel watersheds were selected for addi

tional analysis—W-C, W-D, SW-12, and SW-17(Fig. 4.7).

Values of R , for increasing numbers of planes in

cascade, were calculated for these four watersheds.

These values of R versus the number of planes in

the simplified geometry are shown in Fig. 4.8. Water

sheds C and D require two or more planes to produce a

high value of R while one plane produces a high

value for watersheds SW-12 and SW-17. Moreover, the

Table 4.4. Summary of Proposed Goodness-of-Fit Statistics for the Simplified

Geometrical Representation.

Element or Component

of System

Watershed

Hillslope

or

Watershed

Main

Channel

Watershed

Model

Cascade

of

Planes

Cascade

of

Channels

Cascade

of

Planes

and

Channels

Goodness-of-fit

Statistic for the

Simplified Geometry

R2
P

I

h

Comments

Ratio of residual variance about fitted planes

to original variance of elevation coordinate data.

Also used for entire watershed.

Index of concavity, ratio of height of equal area,

equivalent slope triangle to total relief of main

channel.

Ratio of drainage density in model to observed

drainage density in the watershed.

modeled. The first column labeled "watershed" refers

to the quantity being modeled as a component of the

natural system, and the column labeled "model" refers

to the corresponding component in the simplified geo

metrical representation. The third column lists the

symbols used with explanatory comments listed in the

last column.

Watershed characteristics and some

goodness-of-fit statistics are shown in Table 4.5.

The first column gives the watershed identification

(see U.S.D.A., 1963 and earlier publications).

"Riesel" refers to selected watersheds at Riesel,

Texas; "Hastings" refers to the watershed at Hastings,

Nebraska; 'Tombstone" refers to watersheds on Walnut

Gulch Experimental Watershed near Tombstone, Arizona;

and "Pawnee" refers to watersheds at the Pawnee Site,

Grasslands BIOME in Colorado. The second column of

Table 4.5 lists the watershed area. The next column

gives N, the number of coordinate data points read

from topographic maps and used in least squares fit

ting. The fourth column gives the slope of the plane

fit to the N points, and column 5 gives the geomet

ric goodness-of-fit statistic R for each watershed.
p

The next three columns give the length, slope, and

index of concavity for the main channel on each

necessity of interpolating for boundary points, as the

number of planes increases, can slightly reduce R

by adding additional errors without improving the fit.

This is what happened for SW-12.

4.3 Goodness-of-Fit Statistics for Hydrograph Fitting

Of the four auxiliary objectives listed in the

Introduction, the two dealing with watershed charac

teristics were discussed in the previous sections.

This section examines hydrograph characteristics and

their associated goodness-of-fit statistics. Before

the analysis, some basic notions need to be defined.

There is often a great deal of confusion

concerning the terms "fitted" and "predicted." For

this reason the two terms are given rather restricted

meanings here. A "fitted hydrograph" is one produced

with a knowledge of and by using the observed hydro-

graph; i.e., a hydrograph is fitted or calibrated to

a known hydrograph and then the goodness-of-fit is

judged with respect to the given observed hydrograph.

For the predicted hydrograph, the observed hydrograph

can be used to judge the goodness-of-fit, but it is

not used in making the prediction. The emphasis in

this chapter is upon fitting rather than predicting.
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Table 4.5. Summary of Some Goodness-of-Fit Statistics for Selected Experimental Watersheds.

Watershed

ID.

Drainage

Area

(acres)

Single Plane Fit

to Coordinate Data

Number Slope of Goodness-

of Data Best Fit of-Fit

Points Plane Statistic

N S D2

Main Channel

Length

(ftxlO3)

Equivalent

Slope

Index of

Concavity

I

Source of Data

RIESEL

w-c

W-D

W-G

W-l

W-2

W-6

W-10

W-Y

W-Y2

W-Y4

W-Y6

W-Y7

W-Y8

W-Y10

SW-12

SW-17

579.

1110.

4380.

176.

130.

42.3

19.7

309.

132.5

79.9

16.3

37.9

20.8

18.1

2.97

2.99

47

75

185

81

75

30

22

125

62

42

22

28

22

21

120

56

.005

.004

.003

.009

.015

.017

.022

.010

.012

.011

.020

.012

.021

.009

.030

.020

HASTINGS

2-H

TOMBSTONE

LH-S

LH-6

3.40

.56

1.07

74

21

30

.035

.067

.078

.38

.41

.38

.66

.56

.76

.72

.64

.53

.39

.87

.62

.95

.17

.87

.92

7

10

22

4

2

1

3

2

2

1

.05

.74

.77

.65

.68

.38

.58

.86

.78

.18

.00

.93

.94

.66
*

*

.0056

.0041

.0034

.0101

.0161

.0139

.0299

.0099

.0113

.0121

.0285

.0195

.0284

.0177

.72

.46

.89

.28

.29

.21

.0388

.0S43

.0542

1

1

79

72

78

07

1.03

.96

.92

.81

.82

.82

18

.87

1.03

.78

.82

.98

.77

USDA Misc.

Publication

SW Watershed

Research Center

Tucson, Arizona

PAWNEE

p-1

P-2

P-3

P-4

P-5

P-6

P-7

P-8

1.24

1.24

1.23

1.23

1.24

1.23

1.23

1.24

87

62

81

137

160

126

92

97

.031

.018

.025

.050

.053

.042

.030

.036

.95

.98

.97

.98

.98

.97

.98

.94

Smith 5 Strifler

(1969)

*No well-defined channels on these watersheds.

The concept of an observed hydrograph and the

associated fitted hydrograph is illustrated in

Fig. 4.9. The solid line represents the observed or
measured hydrograph and the dashed line represents

the fitted hydrograph. The regular symbols represent

variables associated with the measured hydrograph,
while those with hats correspond to the fitted hydro-
graph. Therefore, funtions involving the differences

between observed and fitted variables can be used as

goodness-of-fit measures.

Unit hydrograph procedure, especially the Nash
model, is used in analyses of goodness-of-fit statis
tics for hydrograph fitting. Observed data for the
analyses are from the sixteen ARS watersheds at
Riesel, Texas, (see Table 4.5, watersheds at Riesel).

4.3.1 Sum of Squared Errors

Each of a set of n hydrographs has

m. (i = 1, 2, .... n) ordinates or discharge values s

corresponding times. For example, see the point

labeled (tj, q^ in Fig. 4.9.

An objective function, G,, is defined as

n m.

u, - I f (q< -
1 i=i j=i 3

(4.2

th
where m, is the number of ordinates for the i

event, n is the number of events, q is observed
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Fig. 4.7. Topographic map of watershed Stf-17 at

Riesel, Texas (from USDA Misc. Pub.).
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Fig. 4.8. Relation between geometric goodness-of-fit
2

statistic, R , and the number of planes, p,

in the geometry for selected Riesel, Texas

watersheds.

discharge, and q is the fitted discharge.

Parameters of the Nash IUH, Eq. 4.7, are estimated

minimizing G, subject to
1

N > 0, and K > 0.

— Observed Hydrograph

Fitted Hydrogroph

Time

Fig. 4.9. Definition sketch for(observed and fitted
hydrographs and associated variables.

Values of N and K satisfying Eqs. 4.25 and 4.26

are called the "optimal values" of the parameters and

G, is called the "sums-of-squares" objective func

tion. The optimization procedure used is Rosenbrock's

(Rosenbrock, 1960 and Palmer, 1969) as programmed by

Singh (1974). In summary, each hydrograph is fitted

and produces a sum of squared errors, and then these

sums are in turn summed over a set of n hydrographs.

Predicted values of q\ result from convolution of

rainfall excess (via the Philip equation) and the IUH

(Eq. 4.7).

4.3.2 Deviation of Peaks

For each of the n hydrographs there is a

maximum or peak value, 0 in Fig. 4.9, at a time t

An objective function G_ is defined as (Singh,

1974): z

«pi " (4.27)

(4.26)

where n is the number of hydrographs; 0 is ob

served peak discharge and 0 is fitted peak dis

charge. Optimal parameters of the Nash model are ob

tained as before by minimizing G, subject to

Eq. 4.26. The function G_ is called the "optimiza

tion on peaks objective function." In summary, each

hydrograph is fitted and produces an error in peak

discharge and then these errors are squared and summed

over a set of n hydrographs.

4.3.3 Comparison of Characteristics of the Fitted

Hydrographs

There are many characteristics or associated

variables (Fig. 4.9) of the hydrographs which can be

compared to aid in the choice of objective functions.

In general, and as is confirmed by plotting observed

and fitted hydrographs, the peaks objective function

should result in better reproduction of peak discharge

but perhaps not hydrograph shape when compared with

the total sums-of-squares optimization method.

Fitted peak discharge can be compared with the

corresponding observed peak discharge by a linear

regression equation
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a + b (4.28)

where Q is observed peak discharge and 0 is fit

ted peak discharge.

A perfect fit would result in a zero value for
the intercept, a, and a 1.0 value for the slope, b, in

Eq. 4.28. The coefficient of determination, R2, for
this regression equation is the proportion of the

variance of fitted peak discharge about the mean which
is explained by the equation. The standard error of
estimate, Se, is the standard deviation of the residu

als or the errors about the regression line. The term

R can be considered a goodness-of-fit statistic for

the fitted peak discharge. Results of fitting hydro-
graphs for the 16 Riesel, Texas watersheds are sum
marized in Table 4.6. The intercept, a, is near zero

objective function used. However, the choice of

objective function remains a subjective decision.
Evaluation of the above results using criteria empha
sizing peak discharge would result in choosing the
optimization on peaks objective function. Conversel
evaluation of the results using criteria emphasizing
overall hydrograph shape and relative variability of
estimated lag time would result in choosing the tota
sums-of-squares objective function.

Finally, it is possible to construct

goodness-of-fit statistics based upon the objective
function. As before, the intent is to derive a mea
sure of the degree of improvement over using the meai
discharge. Define the "mean discharge" as

(4.2!

Table 4.6. Summary of Fitted Peak Discharge and Optimal Nash IUH Parameters
for the Two Optimization Methods.

Objective Function Regression Equation Relating

Observed and Fitted Peak Discharge*

6_ = a + bO Coefficient Standard

Intercept Slope n ?f . Error of
a br Determination Estimate

R2 Se
(in./hr)

Optimal IUH Parameters for

Nash Model

Lag Time TT

Mean**

N

Mean

K

(min)

Mean Standard Deviation

(min) (min)

Optimization on

sums-of-squares

Optimization

on peaks

-0.006 0.70

0.016 0.92

Data base is for 122 hydrographs from

Means and standard deviations computed

0,

0.

.76

81

16 watersheds at

from 16 optimal

0.31

0.35

Riesel,

values.

3.42

2.84

Texas.

24

20

.4

.3

7S

54

.1

.8

61.

66.

8

5

for both optimization methods, but the slope term for

the optimization on total sums-of-squares is signifi
cantly different from 1.0 at the 10 percent level.

However, the coefficients of determination and stan
dard errors are comparable for both methods.

Values of N and K are shown in Table 4.6 for
both procedures. The last two columns of Table 4.6

give means and standard deviations for lag time on the

Texas watersheds. As discussed earlier, the lag time

is an important time characteristic in unit hydrograph
theory and is an overall measure of watershed perfor
mance. Mean lag times are statistically different at
approximately the 10 percent level, i.e., apparently

the sums-of-squares optimization method produces lar
ger values of lag time than does the optimization on

peaks method. The standard deviations of lag time
are nearly the same so that the coefficients of varia

tion are 0.82 for the sums-of-squares method and 1.21
for the peaks method. Thus, the sums-of-squares opti
mization procedure may produce a relatively lower
variability in lag time estimates.

Results of the analyses indicate significant
differences in parameter estimates depending upon the

for the observed data,

mean is then

m.

r
3=1

The sum-of-squares about the

(4.30:

where q. are the observed hydrograph ordinates. Thi

proposed goodness-of-fit statistic is

2=1
■ f

i

I1 (V q)2
j=i i

which is equal to

(4.32)
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as the degree of improvement over using the mean

discharge. Thus, there is a hydrograph goodness-of-

fit statistic for each hydrograph.

4.4 Relating Statistics of the Simplified Geometry

to Statistics of the Fitted Hydrographs

Recall the objective as given in the

Introduction: "To relate statistics of the simplified

geometry to watershed characteristics and to hydro-

graph characteristics in order to define the simplest

geometry which when used in simulation will preserve

the selected hydrograph characteristics to a given de

gree of accuracy." This section deals with relating

statistics of the simplified geometry to statistics of

the fitted hydrographs. If this objective is met for

watersheds with topographic, rainfall, and runoff data

given, the means will be available to objectively

choose adequate geometric representations as simpli

fied models of these watersheds.

The procedure adopted here is graphically

represented in Fig. 4.10. A given natural watershed

produces an observed hydrograph as illustrated in the

left portion of this figure. A single plane is fit to

topographic data (x, y, z coordinates) producing R.

as a geometric goodness-of-fit statistic. The equa

tions of overland flow are solved for the given rain

fall input producing the fitted hydrograph as the

dashed line in the central portion of Fig. 4.10. From

the fitted and observed hydrographs, a goodness-of-fit

statistic, Ro> is computed using Eq. 4.32. The pro

cedure is repeated for two planes and one channel

Hypothetical relationships between and
,2

Q

(Rf) t r!)

Fig. 4.10. Schematic representation of a watershed,

simplified models, and associated

goodness-of-fit statistics.

(Nooding model) as shown in the right portion of

Fig. 4.10. The procedure could then be repeated to

any degree of complexity.

for various geometries are shown in Fig. 4.11. The

upper curve (A) might result from a small watershed

where one or two planes provide a relatively good fit

geometrically and hydrologically. The lower curve (B)

might result from a larger watershed with a more

developed channel system. Here a more complex con

figuration might be necessary. The goodness-of-fit

statistics can be related for real watersheds using

plots such as in Fig. 4.11.

1.00

O.5O 1.00

Fig. 4.11. Hypothetical relation between geometric

and hydrograph goodness-of-fit statistics.

Curve A represents small watersheds and

Curve B represents larger watersheds with

a more developed channel system.

To represent a range of watershed

characteristics, watersheds W-C and SW-17 at Riesel,

Texas are chosen. Geometric goodness-of-fit statis

tics for these two watersheds are shown in Table 4.5

and Fig. 4.8. The curves in Fig. 4.8 are quite dif

ferent from W-C and SW-17.

The finite difference program for a kinematic

cascade of planes and channels was modified to deter

mine optimal roughness values for the planes and

channels separately. The procedure is to find optimal

roughness values for K on planes given a Chezy C in

the channels. The procedure is repeated over a range

of channel parameters to find the best of a set of

optimal roughness coefficients for the planes. Values

of the objective function, G,, are shown in Fig. 4.12.

The event is for the storm of 6/10/41 on watershed W-C

at Riesel, Texas. The upper portion of Fig. 4.12

shows the objective function G. and associated opti

mal values of K for each of four values of C in

the channel. Optimal values of C = 42 and K = 1870

are indicated for the point at the minimum of the ob

jective function. The lower graph of Fig. 4.12 shows

a plot of channel C versus plane K for this exam

ple.

Observed and fitted hydrographs for the event of

6/10/41 on watershed W-C at Riesel, Texas are shown

in Fig. 4.13. The hydrograph labeled (0) is the ob

served surface runoff resulting from the rainfall
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Fig. 4.12. Illustration of procedure for selection of

optimal Chezy C in the Wooding model, W-C,

Riesel, Texas. Event of 6/10/41.

100 ISO

Timo (mini
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1.00

3.60

3 60

0.40

020

250

Fig. 4.13. Observed and fitted hydrographs (for a

kinematic cascade model) for watershed

W-C, Riesel, Texas. Event of 6/10/41.

pattern shown. That labeled (1) is the best fit

hydrograph for a single plane with RQ = 0.78. The

curve labeled (2) is the best fit hydrograph for the

Wooding model—two planes and one channel with

R = 0.95. The above example illustrates the

procedure followed in examining data from the two

watersheds as discussed below.

4.4.1 Single Plane--The Simplest Geometry

Watershed SW-17 when modeled as a single plane

has a mean 0.020 slope, a 392 ft length, and a 332 ft

width. As discussed earlier, the geometric goodness-

of-fit statistic is R, = 0.92. Corresponding values

for watershed W-C at Riesel, Texas are S = O.OOS an

R = 0.38. For watershed 2-H at Hastings, Nebraska
1

R, = 0.72. Values of

R
1

the values are S = 0.035 and

observed peak discharge and time to peak (from begin

ning of rainfall) are shown in Table 4.7 along with

the corresponding values for the fitted hydrographs.

The last column in Table 4.7 shows the hydrograph

goodness-of-fit statistic and its mean value for each

watershed.

Originally, the intent was to examine the two

Texas watersheds in detail but the third watershed at

Hastings, Nebraska is included to extend the analysis

beyond Texas and to include a watershed of nearly the

same size as SW-17, but with a well-defined channel

system.

For SW-17 the peak discharge was, as expected,

underestimated using a single plane as was the time t

peak. The most serious error is for the largest

event. In Table 4.7 the range of R^ is 0.44 to 0.9

with a mean value of 0.69, i.e., approximately 70

percent of the variance about the mean discharge is

explained (on the average) by the best-fit hydrograph

derived from modeling the watershed as a single plane

This is a surprisingly good fit. Except for the

large event discussed above, unlikely more complex

geometries will result in much improvement in the

hydrograph goodness-of-fit statistic RQ. However,

likely peak discharge and time to peak will be better

represented by a more complex geometry.

For watershed W-C, the peak discharge values wei

also underestimated and as on SW-17, the most serious

error was associated with the largest event. The

range in R« is 0.22 to 0.78 with a mean value of

0.S3; i.e., on the average, approximately SO percent

of the variance in discharge about the mean discharge

is explained by fitting a single plane to data fron

watershed W-C. As expected, this value is lower thar

for watershed SW-17 (Fig. 4.11). In contrast to SW-]

likely a better geometric fit would produce a better

hydrograph goodness-of-fit statistic for watershed

W-C. Better reproductions of peak discharge and timt

to peak values are also expected.

Data for watershed 2-H at Hastings, Nebraska art

shown in the bottom of Table 4.7. In general, peak

discharge is underestimated, but unlike before, the

largest peak discharge is well fitted. Values of

R^ vary from .0 to 0.92 with a mean value of 0.44.

These results are more comparable with those for W-C
than for SW-17. Recall that SW-17 has a drainage an

of 2.99 acres, W-C has 579 acres, while 2-H has 3.40

acres (Table 4.5). Therefore, the reasons for the
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Table 4.7. Summary of Goodness-of-Fit Statistics for a Single

Plane as the Simplest Geometry.*

Watershed

Observed Data

Peak Discharge

(in./hr)

Time to Peak

(rain)

Fitted

Peak Discharge

(in./hr)

1.10

.20

1.47

2.08

.28

.17

1.93

.60

.58

.33

.31

.088

.17

.75

.033

3.52

.96

.62

.30

.46

.56

.41

.30

.01

Data

Time to Peak

(min)

47.

10.

30.

51.

ISO.

20.

34.

80.

50.

50.

60.

30.

70.

150.

27.

24.

13.

12.

18.

21.

14.

148.

11.

11.

Hydrograph

Goodness-of-Fit

Statistic

i
.66

.56

.94

.96

.63

.44

.63

Mean = 0.69

.78

.73

.53

.37

.22

.37

.68

Mean =0.53

.13

.92

.5S

.86

.14

.42

.53

.S8

.30

.0

SW-17

_2
.92

W-C

R =

2-H

1.61

.44

1.74

2.17

.60

.35

3.79

.88

.87

.57

.62

.15

.31

1.38

.28

3.47

.85

.81

1.48

.99

1.39

.90

1.11

.068

48

17

28

51

159

33

40

77

71

92

148

137

128

183

39

23

16

9

28

27

17

150

16

29

Mean =0.44

Data taken as tabulated, no arbitrary time corrections.

apparent differences in R- for the two 3-acre

watersheds must be examined. The first comparisons

are between the goodness-of-fit statistics for the

simplified geometrical representations as summarized

in Table 4.4.

Watershed characteristics for watersheds SW-17,

W-C, and 2-H are listed in Table 4.S. Some associated

geometric goodness-of-fit statistics are shown in

Table 4.8. The first row in each of the three sec

tions of Table 4.5 is for a single plane fit to the

coordinate data. For example, the drainage density

ratio, I,, is zero whenever a watershed is modeled as
a

a single plane. However, since there are no well-

defined channels on SW-17, the drainage density ratio

and the index of concavity are not defined for this

watershed. The sole statistic for this watershed is

the geometric goodness-of-fit statistic, R . Drainage

density is highest on watershed 2-H. ^

The values of R. seem to decrease as drainage

density increases. To test this hypothesis, data from

two of the artificial watersheds at Colorado State

University DERF-4 and DERF-S (see Table 4.3) were

included in the analysis; i.e., a single plane was

fit to coordinate data and used as a model for the

two watersheds. The resulting mean hydrograph

goodness-of-fit statistics, R , are then related to

drainage density for the four watersheds: W-C, 2-H,

DERF-4, and DERF-S. These data are shown as the

circled points in Fig. 4.14. As hypothesized, the

mean value of R_ decreases as drainage density in

creases. In fact, the least squares line shown in

Fig. 4.14 and labeled single plane is

R a 0.24 Dd (4.33)

where K. is the mean hydrograph goodness-of-fit

statistic and D, is the drainage density,
a

If the relationship shown in Fig. 4.14 and

described by Eq. 4.33 is representative of small

watersheds as considered here, possibly some implica

tions for watershed modeling can be discussed. Also

recall the variation of lag time with.intensity as a

measure of nonlinearity (Fig. 4.6 and Table 4.3).

Simple watersheds with a relatively low drainage den

sity can be modeled with a small number of planes in

a kinematic cascade (Fig. 4.14). However, more com

plex watersheds with high drainage density cannot be

as adequately modeled with such simple geometrical

representations. However, these very complex water

sheds may be the ones which could be modeled as a
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Watershed

SW-17

W-C

W-C

2-H

2-H

Table 4.8. Some Goodness-of-Fit Statistics for Selected Geometrical

Representations of

Drainage Density

Observed Modeled

Dd dd

.00069 0.0

.00069 .00028

.0022 0.0

.0022 .0019

(ft/ft2)

Xd = dd/Dd

0.0

0.40

0.0

0.8S

the Three Watersheds.

Sinn
Number of 1

1

1

2

1

2

Dlified Geometry

Planes Geometric

Goodness-of-Fit

Statistic

R2
P

.92

.38

.76

.72

.91

Comment
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Single pi

Wooding

Model
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1.0

Fig. 4.14. Relation between drainage density and mean hydrograph goodness-of-fit statistic.

linear system (Fig. 4.6). Before elaborating upon

this hypothetical situation, the hydrograph goodness-

of-fit statistics for more complex geometrical repre

sentations must be examined.

4.4.2 More Complex Geometry—Wooding Model

Hydrographs were also fitted for these four

watersheds using the Wooding model--two planes contri

buting to a channel. These data are shown as the

square points in Fig. 4.14 and the line labeled

Wooding. The least squares line is

0.32 D
-0.09

(4.

where R2
RQ

is the mean hydrograph goodness-of-fit

statistic for the Wooding model, and D. is drainaj

density. Thus, the hypothesized relation, based on

results from the previous section, seems to hold foi

the Wooding model; i.e., drainage density can be use

as an index of the relative goodness-of-fit in hydrc

graph fitting.
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The effects of drainage density can be seen if

2 2
R is related to R , the geometric goodness-of-fit

statistic. Values of R. and R are shown in
x P

Fig. 4.IS for each of the four watersheds. Again, the

two points represent a single plane and the Wooding

model, with the left point for the plane and the right

point for the Wooding model. Values of drainage den

sity are given below the watershed identification in
Fig. 4.15. The points in Fig. 4.IS are connected by

lines to associate each point with a watershed, not to

represent values of the variables between or outside
the points.

1.00

0.75-

11*0.50
o

(9

0.25-
DERF-

(.099)

OERF -4

(.37)

0.25 0.50 0.75

Geometric Goodness of Fit Stotistic

1.00

Fig. 4.IS. Relation between geometric and hydrograph

goodness-of-fit statistics for watersheds
with different drainage densities.

Some implications of the results shown in

Fig. 4.15 are relevant in evaluating the geometric

goodness-of-fit statistic. A high R value is not in

itself sufficient to insure a correspondingly high

value of R . Drainage density is shown as an impor

tant index for the watersheds tested; i.e., a rela

tively high value of drainage density may indicate a

correspondingly complex system. Therefore, the geo

metric goodness-of-fit statistic is a valuable measure

of how well the watershed topography is represented in

the model, but it must be interpreted with respect to

drainage density. However, for a single watershed

with a fixed drainage density, R is a good indicator

of how well the watershed is being represented geo
metrically (Fig. 4.15).

Distortions caused by underestimating the

drainage density from Figs. 4.14 and 4.IS, result if

the model drainage density is less than the watershed

drainage density and then the hydrograph goodness-of-

fit statistic will probably be smaller; i.e., the

value of RQ will be less than if the drainage densi

ty had been better represented.

4.S Relation Between Combined Goodness-of-Fit

Statistics and Hydraulic Roughness Parameters

Given rainfall-runoff data and an assumed model,

optimal roughness parameters can be derived. Data

errors as well as geometric distortions will be re

flected in these estimated roughness parameters.
Thus, it is reasonable to expect distortions in opti
mal roughness parameters when there are distortions in
other watershed characteristics. Throughout the fol

lowing discussion, a transition Reynolds number of SOO

is assumed. By matching friction factors at this

transition from laminar to turbulent flow, the problem

reduces to determining a single roughness parameter,
K. The next chapter gives details for a_ priori esti

mates of roughness parameters. For now, assume that

empirically derived roughness coefficients can be ob

tained from graphs like that presented subsequently in

Fig. S.2. The mid or median value of such estimates
is denoted K .

Examination of data in Table 4.7 suggests that

low R values are associated with the events where

the fitted and observed times to peak are very differ

ent. For this reason those events where the times to

peak differed by 50 percent or more were excluded

from the following analysis. Data from watershed W-C

at Riesel, Texas; watershed 2-H at Hastings, Nebraska;

network 4 (DERF-4), and network 5 (DERF-S) at Colorado

State University were used to derive optimal roughness

parameters for a plane and for the Wooding model. The

mean values of the optimal K values are then related
2

to IjR as a combined geometric goodness-of-fit

statistic. Data from a more complex geometry for

watershed W-C at Riesel, Texas and watershed LH-6 at

Tombstone, Arizona are used to check the derived rela

tion between optimal K values and the combined

goodness-of-fit statistic.

The optimal roughness parameters can be

normalized by K , the a priori estimates from

Fig. 5.2. If the ratios of K/K are different from
o

one, then this indicates a distortion in the optimal

roughness coefficient. Moreover, if this ratio is re

lated to goodness-of-fit statistics reflecting the de

gree of geometric distortion, then possibly si priori

estimates of roughness parameters can be adjusted for

use in simplified models. The circled points in

Fig. 4.16 were used to derive the relation shown. The

two plus signs in Fig. 4.16 are for more complex mod

els for watersheds W-C and LH-6. These points agree

with the least squares curve through the circled

points. The two arrows at the right of Fig. 4.16 are

for watersheds SW-17 at Riesel, Texas and P-l and P-7

at the Pawnee site. Ratios of K/K were determined

for these watersheds but there are no I.R
d p

values.

The major difficulty with data, as presented in

Fig. 4.16, is the subjective nature of the a priori

roughness parameters. For this reason and Because K
is determined from a sample, the equation relating

K/K and I R may be unique. However, optimal

roughness parameters will likely increase as the geo

metric distortions in simplified models decrease.
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Chapter V

PARAMETER ESTIMATION AND MODEL TESTING

This chapter describes parameter determination
techniques from previous chapters, presents some new
material on roughness parameter estimation and some

example or test cases chosen so as to test hypotheses

arising from analyses in previous chapters. As sensi
tivity analysis was implicit in previous chapters, the
emphasis here is on empirical support or refutation
via specific examples.

5-1 Selection Criteria for Simplified Geometry

Recall the definition of R as the geometric

goodness-of-fit statistic expressing the degree of
improvement by fitting a set of planes to coordinate
data over using the mean elevation. This statistic
was seen to be associated with the overland flow por

tion of the kinematic cascade model. Moreover, the
coefficient a in the depth-discharge equation for a
plane is a function of the plane slope

a =
8gS

Kv (S.I)

for laminar flow and

a = C /S (S.2)

for turbulent flow. Therefore, since the slope S
assumes a direct role In a and thus in determining
the discharge, it must be estimated which is the re
sult of least squares fitting.

The geometric goodness-of-fit statistic was
related to the peak discharge of the overland flow
impulse response. For more complex watersheds with

overland and open channel flow, R2 was related to

drainage density in an inverse manner. With drainage

density variations allowed, R was also related to

Rq, the hydrograph goodness-of-fit statistic. With

respect to simulation of surface runoff, the degree

of geometric complexity required can be determined

by constructing a graph relating R2 and R2. In
" P

such a procedure, a decision concerning the required

level of Rq is necessary. As with the choice of

objective function, this level will be based upon user

requirements. However, given a required R2 such a

plot will determine if it can be reached, and if so,
the required geometric complexity. Obviously other
criteria might require different degrees of geometric
goodness-of-fit.

The procedure for determining the number of

channel elements in cascade required to represent the
main channel is analogous to the procedure described
above; i.e., the index of concavity is related to the
hydrologic characteristic of interest. The number of
elements is increased until the index of concavity is
sufficiently close to 1.0 to meet the required hydro-
graph criterion.

The above notions are graphically summarized in

Fig. S.I. The upper portion relates R2 and R2
P Q

for fitting planes to coordinate data. Assume that

(B)

100 0.0

Fig. 5.1. Illustration of procedures for selecting
the simplest kinematic cascade of planes

and channels to meet given hydrograph

criteria. (A) Geometric goodness-of-fit,

determination of degree of geometric com
plexity. (B) Main channel concavity,

determination of number of channel elements
in cascade.

rainfall, runoff, and topographic data are available
on a given watershed. A set of rainfall-runoff events
is selected for analysis. Best fit hydrographs are
produced for each of three proposed geometries—la
beled 1, 2, and 3 in the upper portion of Fig. S.I.
Furthermore, assume that on the average, it is re

quired to explain R of the variance in discharge

about the mean discharge. Configuration No. 3 would
be chosen (see dashed lines) as the required model--
the simplest configuration meeting the criterion

2 2

To determine the number of channel elements in
cascade necessary to reproduce the hydrologic charac
ter, with respect to downstream concavity of the main

channel, a graph must be constructed as in the lower
portion of Fig. S.I. Assume that hydrographs are

routed down main channels consisting of one, two, etc.
channel segments in cascade. Each added channel seg
ment increases the concavity and thus increases the

index of concavity. If the error in routed peak dis

charge, E , is chosen as the required hydrograph cri

terion, and Ec is the required level or maximum

error allowed, then it would be necessary to have
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three channel elements in cascade. Thus, it is

possible to construct graphs which then can be used to

specify the simplest geometry (with respect to planes
and channels) which when used in simulation will,

usually, preserve the selected hydrograph characteris
tics to a given degree of accuracy. In the examples
discussed here the selected hydrograph characteristics

are R^, the hydrograph goodness-of-fit statistic and

Eq, the error in routed peak discharge due to under

estimating the degree of concavity in the raain stream.

5-2 Determination of Roughness Parameters

In overland flow there are two roughness

parameters, K as in Eq. 5.1 and C as in Eq. 5 2

(see Chapter III for details). If the Reynolds number
for transition from laminar to turbulent flow is
specified, then given K or C, the parameter not
given is determined. A transition number is assumed
leaving K as the single overland flow-roughness pa
rameter to be determined. Channel flow is assumed to
always be turbulent so that only the Chezy C value
needs to be determined. Two cases arise: (1) When
initial estimates or a priori estimates of roughness
parameters are needed; and (2) When data are available

to derive optimal roughness parameters. Since for
efficient optimization the initial values should be as
close as possible to the optimal values, estimates
(even if only initial values are needed) of roughness
parameters must always be made.

S.2.1 A Priori Estimates of Roughness Parameters

As discussed in Chapter IV, the degree of
complexity in the simplified model is related to the
apparent roughness. A gross misrepresentation in
geometry may result in a compensating error in esti

mated roughness coefficients. Therefore, it is as
sumed that the roughness parameter is for sufficiently
complex geometrical configurations so that the geome
try-roughness interaction is minimal.

For open channel flow any of several handbooks,
(e.g. King and Brater, 1963), can be used to estimate
Chezy coefficients directly or from tabular values of
Manning's n. The equation relating n and C is

LS. Rl/6
(S.3)

where R is hydraulic radius. There is a broad class
of references where estimates of roughness parameters
for open channel flow may be obtained (e.g. Barnes,
1967). For this reason, the emphasis in this section
is on roughness parameters (K, C, n) for overland
flow.

Data presented in a table by Woolhiser (1974) are
summarized in Fig. 5.2. The line in Fig. 5.2 relates
K and C for a transition from laminar to turbulent
flow at a Reynolds number of 500. Ranges of K values
for several surfaces are shown by the arrows in Fig.
5.2. Values of n for the Manning formula are shown
below each surface description. For example, with a
bare sand surface, K varies from 30 to 120, C varies
from 65 to 32, and n varies from 0.01 to 0.016. As
can be seen from the wide ranges of roughness coeffi
cients, there is a great deal of freedom in inter
preting a specific value of a coefficient. In spite
of this, Fig. 5.2 provides the best available basis
for interpreting roughness-surface relations for
natural watersheds.
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Vegetation.
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Lommof Flow Rougitness Coefficient ,K '

Fig. 5.2. Laminar and turbulent roughness

coefficients for overland flow. Manning
values given below surface description.

5-2.2 Optimal Values of Roughness Parameters

Recall the sums-of-squares objective function
given as

Gl " -I Cqj ' V (5

where q is an observed hydrograph ordinate and «

is the fitted value. Optimal roughness parameters
(K and C for a plane) are the values which minim:
Gj. Again, for a specified transition number, the

value of K determines the value of C. The optim:
zation procedure used here is a two-stage method opt
mizing on planes and channels separately. The proce
dure is illustrated in Fig. 4.12. For a given value
of C in the channels an optimal value of K on tf
planes is derived. The process is repeated over a
range of channel C values until G is a minimum.

The resulting channel C and plane K values are t
optimal values for that hydrograph.

5.3 Model Testing

Procedures outlined in the first two sections o
this chapter are tested using data from experimental
watersheds. The intent is to apply techniques pre
sented in earlier chapters to watersheds not used in
their development, thus testing their efficacy. In
effect, the tests will be for the model selected and
for its selection procedure.

5.3.1 Effects of Nonuniform Slopes Upon Overland Fli

To test the effects of slope shape upon overlam

flow hydrographs, two simple experiments were con
ducted on the erosion (DERF) facility at Colorado

State University. The first involved recording runoi

hydrographs for three durations and four intensities
on an impervious plastic surface graded to uniform

slope. The surface was a V-configuration (see

Wooding, 1965, p. 258), symmetric about a channel

24 ft long with a 0.03 slope. The lateral slope of
the two 14-ft planes was 0.04.
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The second experiment was similar, except the two
side slopes were regraded to each form cascades of
three 4.67-ft planes with lateral slopes of 0.07,
0.04, and 0.01, respectively. The lowest (0.01) slope
was at the bottom of the cascade. The second channel

was inadvertently modified to a slightly concave pro
file with an equivalent slope of 0.028, with an index
of concavity of approximately 0.90. Compounding this
error, the channel cross-section was changed from a
triangular section with side slopes of 0.04 to a
triangular section with side slopes of 0.01. Together
these inadvertent modifications in the main channel
significantly changed its character. A second inad
vertent modification was in the length of overland
flow. While drainage density remained the same in
both experiments, the maximum length of overland flow
was approximately 17 ft in the first experiment and
approximately 31 ft in the second experiment.

As a measure of the influence of concavity on
overland flow, peak runoff rates were compared from

the uniform and concave configurations. Experimental
results indicated an approximately 40 percent reduc
tion in peak rate for the concave configuration. To
determine the cause of this difference in peak dis
charge, optimal roughness parameters were obtained
using data from both configurations. Simulation
analyses were then conducted using the previously de
termined parameters. From the simulation results, the
relative effects of several factors can be estimated
which might have influenced the magnitude of 40 per
cent reduction in peak discharge in the second experi
ment. Changes in the channel (as described above)

should result in a decrease of 6 to 10 percent in the
routed hydrograph. In contrast, the concave overland
flow should produce about 7 to 10 percent increase in
peak discharge. Nonuniform input might have resulted
in a decrease due to its greater influence on the
flatter-sloped planes of the concave configuration.
Changes in the length of overland flow may have af
fected peak discharge by increasing the time to equi
librium in the second experiment. However, this is
difficult to simulate due to other distortions in
model geometry required to account for the difference
in length of flow. The main conclusion from these
simulation studies was that the effect being sought
was likely to be completely masked by larger effects
from uncontrolled changes from the first to the second
experiment.

The experiments described above were valuable in
emphasizing the need for complete experimental design
and devotion to detail in experimental work. In terms
of testing the effects of slope shape upon overland
flow, variability in the data due to uncontrolled fac
tors masked the anticipated effects of concavity.

In an additional attempt to test the hypothesized
influaice of slope shape upon overland flow, data from
two of the Pawnee watersheds (see Table 4.5) were
chosen for analysis. Watershed P-l has a mean slope
of 0.031, while watershed P-7 has a mean slope of
0.036. Watershed P-l has a concave shape with an
index of concavity from a midwatershed slope profile
of Ic = 0.76. Watershed P-7 has a convex shape with

an index of concavity for the midwatershed profile of
Ic = 1.09. Four planes were fit to each watershed to

adequately account for the concavity and convexity.
Optimal roughness parameters were then derived for
each (watershed from the rainfall-runoff event of
September 11, 1973. As an example, rainfall excess
observed runoff, and fitted runoff are shown in Fig
S.3 for watershed P-l. Optimal roughness parameters
are K = 1690 for watershed P-l, and K = 1670 for
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20 40 60
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Fig. 5.3. Observed and fitted hydrographs for Pawnee
Watershed P-l, September 11, 1973.

watershed P-7. These values are very close so that
any differences in simulated runoff would not be due
to different values of estimated roughness coeffi
cients. As shown in Fig. 5.3, the rainfall input
pattern for the observed data is quite complex. For
this reason, optimal roughness parameters were used to
simulate responses to a partial equilibrium-pulse in
put on both watersheds. This procedure—calibrate,
simulate to insure similar input, and then compare'
results--is implicit throughout this study. Any dif
ferences in the responses should be due to geometrical
differences—concavity versus convexity. The re
sponses are shown in Fig. S.4 wherein (1) refers to

the hydrograph from watershed P-l (concave) while (7)
refers to the hydrograph from watershed P-7 (convex).
The differences in the hydrographs are as hypothe
sized. The concave watershed produces a more delayed
response when compared with the convex watershed.
Peak discharge values are comparable for the two

1.00--??i

0.75

O.50

0.35
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40 50

Fig. 5.4. Partial equilibrium-pulse responses for
Pawnee Watersheds, complex geometry,
optimal roughness.
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watersheds. However, the differences in the

hydrographs shown in Fig. 5.4 are small, about

20 percent in time to peak and about 5 percent in peak

discharge, leading to the conclusion of no significant

difference in peak discharge. That is, under condi

tions as observed on the Pawnee watersheds, the ef

fects of slope shape upon overland flow nay be signif

icant with respect to time to peak but may not be

significant with respect to peak discharge.

As a final comparison for these watersheds,

impulse responses were computed as shown in Fig. 5.5.

As expected, impulse response analysis is most power

ful in detecting the influence of slope shape. The

impulse response of the concave watershed is delayed

in comparison with the response from the convex water

shed. There are no significant differences in the

recessions of the impulse responses.
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Model drainage density is 0.007 ft/ft so that the

drainage density ratio is

Fig. 5.5.
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Impulse responses for Pawnee Watersheds,

complex geometry, optimal roughness.

Overton (1971) made an independent analysis of

the influence of slope shape upon overland flow.

Unfortunately, Overton considered steady-state condi

tions so that peak discharge was not a part of his

analysis. His conclusions were for a particular defi

nition of lag time (related by a constant factor to

equilibrium time). As shown in Fig. 3.4 herein, mini

mum time differences will be at equilibrium. This is

in agreement with Overton's (1971) conclusion that

slope shape has little effect upon his lag or hydro-

logic response time. Therefore, to the extent that

they are comparable, the results reported here are

consistent with Overton1s.

5.3.2 Complex Watersheds

To test the proposed procedure for modeling

complex watersheds, watershed LH-6 on the Walnut Gulch

Experimental Watershed near Tombstone, Arizona was

selected as an example. As shown in Table 4.5, LH-6

is a 1.07 acre watershed with a concave main channel

profile. A detailed description of Walnut Gulch is

given by Renard (1970). While LH-6 is slightly

smaller than the Pawnee watersheds, the sizes are com

parable. Moreover, LH-6 has a rather high drainage

density of 0.012 ft/ft in contrast with the absence
of channels on the Pawnee watershed.

A complex geometrical representation of watershed

LH-6 consists of nine planes and three channels.

I. = 0.6, which means that

the total length of channels in the kinematic cascade

model is 60 percent of the total length of channels in

the watershed. The geometric goodness-of-fit statis

tic for the complex configuration is R = 0.96.
P

Fitted and observed hydrographs for the event of

August 18, 1971, are shown in Fig. 5.6. The optimal

Observed

Filled

lnfiltrotion

f(t)«O.5O+ .281"

Fig. 5.6.

20 30

Time (mini

Fitted and observed hydrographs for the

event of August 18, 1971, on watershed

LH-6.

K value is 1630, and the hydrograph goodness-of-fit

statistic is R. = 0.89. The most serious errors for

this event are in peak discharge and later recession

values. In this example rainfall excess-volume is

known since runoff volume is known and observed runoff

data are used in determining the optimal roughness

parameter. In the next example (Fig. 5.7) rainfall

excess-volume is known but the roughness parameter is

assumed. Thus the term simulation is used. In the

third example rainfall excess-volume is not known and

the roughness parameter is assumed. This situation

is termed predicting. Infiltration parameters from

the event of August 10, 1971 (Fig. S.7) were assumed

for the event of August 12, 1971, as shown in Fig.

5.8. Also, a roughness parameter of K = 2000, which

roughly corresponds with the optimal value from the

event of August 18, 1971, was assumed for this example.

The simulated hydrograph as shown in Fig. 5.7

represents an example of a good reproduction of hydro-

graph shape and peak rate but a poor time correspon

dence. Parameters determined from optimization on

data such as these would be quite different from those
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goodness-of-fit statistics and the corresponding
geometric goodness-of-fit statistics for these data

are shown in Fig. 5.9. The following observations can
be drawn from this graph. A twofold increase in

1.00

1.00

Fig. 5.9. Relation between goodness-of-fit statistics
for watershed W-C.

R results in an increase of about one-third in R2.

The rate of increase in R2
RQ with increasing R de-

creases in going from the second to the third model.

Expanding upon these observations, the upper portion

of Fig. 5.10 shows the relation between

(A)

V 0.5

and the

12 3 4
No. of Planes

Fig. 5.8. Predicted and observed hydrographs for the
event of August 12, 1971, on watershed
LH-6.

obtained if there had been better timing

correspondence. As expected, the predicted hydrograph
(Fig. S.8) is a poorer reproduction of the observed
hydrograph than in the fitted and simulated cases.
Even so, this example is probably a better-than-
average case, especially with respect to peak dis

charge. There are timing, volume, and hydrograph
shape errors in this test case.

Some watershed characteristics for W-C at Riesel,
Texas are shown in Tables 4.5 and 4.8. A third model
for this watershed consists of two channels in cascade
each with two lateral planes. Thus, the model is com
posed of four planes and two channels as discussed in
Section 4.5. Selected runoff events were used to ob
tain optimal roughness parameters for the watershed
modeled as a single plane, the Wooding model, and the
four plane configuration. Mean hydrograph

o.S

I 2 3 4 5

No. of Planet

Fig. 5.10. Relation between number of planes in kine

matic cascade model and: (A) Hydrograph'

goodness-of-fit statistic, (B) Geometric
goodness-of-fit statistic, for watershed

W-C.
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number of planes in each model. The lower portion of

Fig. 5.10 is a plot of the geometric goodness-of-fit

versus the number of planes in the models. Goodness-

of-fit statistics increase as geometric complexity in

creases but at a decreasing rate.

Therefore, for watersheds, as examined here, it

seems reasonable to assume that there will be dimin

ishing return in hydrograph goodness-of-fit for in

creasing geometric complexity. This is not to suggest

that there will not be additional benefits associated

with the increasing distribution in space of other

watershed characteristics. For the simplest geometry,

the kinematic cascade model is a lumped parameter

model. As the geometric complexity increases, so does

the potential for distributing associated model

parameters in space.

A second cautionary note is with respect to

optimal roughness parameters. An increase in geo

metric complexity yields a diminishing return in

hydrograph goodness-of-fit but not in terms of rough

ness parameter estimation. The data in Fig. 4.16

suggest a nearly linear relation between a combined

goodness-of-fit statistic for watershed geometry and

normalized roughness coefficients. This concept is

illustrated in Fig. 5.11, where relatively small

increases in R_ are associated with larger increases

in the normalized roughness parameter.

1.00

1.00

Fig. 5.11. Relation between distortion in

roughness parameter and hydro-

graph goodness-of-fit statistic

for watershed W-C.

46|



Chapter VI

CONCLUSIONS AND RECOMMENDATIONS

Surface runoff, conceptualized here as overland
and open channel flow, is a complex process which is
invariably simplified in the formulation of mathemati
cal models. This thesis is an endeavor to develop ob
jective procedures for geometric simplification of
complex watersheds modeled as kinematic cascades of
planes and channels. The development of goodness-of-
fit statistics for geometric and hydrograph fitting
represents a theoretical basis for empirical develop

ment of inferential relationships between geometric
and hydrograph goodness-of-fit statistics.

6.1 Conclusions

Throughout this research, the writers were often
led to conclusions concerning the mechanism whereby
rainfall becomes runoff on small watersheds. Many of
these conclusions are of a subtle nature and, as yet,
not succinctly formulated to allow expression. The
conclusions presented do reflect areas where suffi
cient theory, data, and experience were brought to
gether to justify specific conclusions.

Conclusions resulting from this study are:

1. A simple concept of the surface of a

watershed is that it consists of the channel network
and the interchannel areas of overland flow within the
watershed perimeter. This study verifies that this
simple concept is useful in modeling surface runoff.

2. Kinematic impulse response analysis was
demonstrated to emphasize the influence of surface
configuration upon overland flow.

3. Peak discharge of the kinematic impulse
response is greater for parabolic than for uniform
slope overland flow surfaces, and the differences are
greater for laminar flow than for turbulent flow.

4. Analyses of partial equilibrium-overland flow
hydrographs from uniform and parabolic slopes indicate
that concave slopes produce higher peak discharge for
laminar flow and higher or lower peak discharge for
mixed laminar and turbulent flow depending on the
duration of the input pulse.

5. Simulation results for complex watersheds
suggest that underestimating the drainage density

would result in overestimated time characteristics
and underestimated peak discharge, unless there were
compensating errors in other parameters. In the ab

sence of such errors, underestimating drainage density
would probably result in overestimated lag time and
increased nonlinearity in the rainfall excess-surface
runoff relation.

6. The hydrograph goodness-of-fit statistic,

Rq» is related to the geometric goodness-of-fit sta

tistic, R , and to drainage density.

7. The ratio of optimal roughness parameters to
experimentally derived roughness parameters is related
to a combined goodness-of-fit statistic as the product
of the drainage density ratio and the geometric good-
ness-of-fit statistic.

8. Under real conditions, as observed on the
Pawnee watersheds, the effects of slope shape upon

overland flow are significant with respect to time to
peak but may not be significant with respect to equi
librium time or peak discharge.

9. Successive increases in complexity of
kinematic cascade models may yield diminishing returns
in hydrograph goodness-of-fit but not in terms of
roughness parameter estimates.

6.2 Recommendations for Further Research

Four main areas of study, where additional
research may yield answers to questions raised by this
study, are: (1) To obtain better timing relationships
between rainfall, rainfall excess, and runoff; (2) To
obtain more accurate rainfall excess estimates partic
ularly with respect to initial abstractions and tempo
ral variation caused by the action of different pro
cesses varying in space; (3) To develop a nonlinear

identification and linear prediction procedure (as
suggested by the research of Singh (1974) and that

reported here); and (4) To conduct an empirical study
relating geometric with hydrograph goodness-of-fit
statistics.

6.2.1 Timing Relationships

Synchronous measurements of rainfall and runoff
on small watersheds, such as the Pawnee and

Lucky Hills watersheds, are needed. It is suggested
that a simple electrical link between the rain gage
and water stage recorders be established. For
example, two solenoids could make simultaneous marks
upon the rain gage and runoff charts at the beginning
of a rainfall event which would not only reduce the
variability of future data but also aid in interpret
ing existing data. With the mechanical timing errors
eliminated, it would then be possible to investigate
the true nature of the timing relationships.

6.2.2 More Accurate Rainfall Excess Estimates

Although an oversimplification, the assumption of
a simple infiltration function as used here is common.
That a block of rainfall divided into infiltration and

rainfall-excess providing input to a routing model is
an oversimplification is well-known (see e.g. Foster
(1968), Smith (1970), or Smith and Woolhiser (1971)).
One infiltration equation may be necessary during
rainfall when the entire area is active and another
after rainfall when the rills and microrills are still
active but the interrill areas of overland flow are

not. The procedure (as discussed by Foster (1971),
p. 174) may be a logical starting point. If the

timing errors can be eliminated, possibly only the
inclusion of an initial abstraction term may satisfy
observed time lag phenomena. The procedure (described
by Langford and Turner (1971) or the threshold pro
cedure discussed by Lane (1972)) may be logical

starting points. In any event, if the errors due to

distortions in geometric simplification can be quan
tified then it may be fruitful to begin quantifying
the errors due to oversimplification in estimated
rainfall excess. A second step in attacking the prob
lem might be via a calibrated simulation model, as

suggested by the example of the effects of variability

of rainfall excess upon overland flow hydrographs.
Finally, since drainage density is a measure of all

channels in an area, it may prove to be an important
parameter in studying rill infiltration, as suggested
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by Foster and others. This would seem to be another

potential area for additional research.

6.2.3 Toward an Optimal Nonlinear Identification--

Linear Prediction Scheme

As stated earlier, the work of Singh (1974) in

analyzing prediction results with linear and nonlinear

models and this work analyzing effects of watershed

characteristics upon overland flow may provide a

starting point for further research. These studies

provide a reason for asking the questions: Is there

an optimal procedure, with respect to power of identi

fication and accuracy of prediction, for nonlinear

system identification and linear system prediction in

surface runoff and when can one say that with speci

fied degree of accuracy a given hydrologic system can

be assumed linear?

6.2.4 Empirical Development of Inferential

Relationships Between Geometric and Hydrograph

Goodness-of-Fit Statistics

Assuming that timing errors can be overcome and

that rainfall excess-estimates of sufficient accuracy

can be made, then if R_ and R can be related

there is a basis for inference in modeling rainfall

excess-surface runoff on small watersheds. Moreover,

this inferential procedure (geometric to hydrologic

goodness-of-fit) may provide a method for extending

more meaningful rainfall-runoff relationships to

ungaged basins. Therefore, there is need for an

empirical study relating RQ to R and other water

shed characteristics for a variety of small

watersheds.

As discussed earlier, the process of surface

runoff is complex with a large number of variables

involved. An alternative approach to the problem of

analysis of the significance of selected geomorphic

parameters in determining hydrograph goodness-of-fit

statistics may be through multivariate analysis. For

example, Overton (1969) used principal component anal

ysis to investigate the interrelation of geomorphic

parameters. Yevjevich, et al., (1972) showed the pos

sibility of selecting a smaller number of parameters

from an extensive list of geomorphic parameters re

lated to flood characteristics on small watersheds.

Similar analyses might prove fruitful in relating

Rn to R and to other watershed characteristics.
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l
s
,

o
v
e
r
l
a
n
d

f
l
o
w
,

k
i
n
e
m
a
t
i
c

c
a
s
c
a
d
e
s

m
o
d
e
l
,

p
a
r
a
m
e
t
e
r

e
s
t
i
m
a
t
i
o
n
,

m
o
d
e
l

t
e
s
t
i
n
g
:

A
B
S
T
R
A
C
T
:

F
o
r

w
a
t
e
r

f
l
o
w

o
n

t
h
e

s
u
r
f
a
c
e

o
f

a
w
a
t
e
r
s
h
e
d
,

g
e
o
m
e
t
r
i
c

s
i
m
p
l
i
f
i
c
a
t
i
o
n
s

m
u
s
t

b
e

m
a
d
e
.

C
o
n
s
e
q
u
e
n
c
e
s

o
f

s
u
c
h

s
i
m
p
l
i
f
i
c
a
t
i
o
n
s

a
r
e

e
x
a
m
i
n
e
d
.

O
b
j
e
c
t
i
v
e

p
r
o
c
e
d
u
r
e
s

f
o
r

g
e
o
m
e
t
r
i
c

s
i
m
p
l
i
f
i
c
a
t
i
o
n

o
f

c
o
m
p
l
e
x

w
a
t
e
r
s
h
e
d
s

a
r
e

d
e
v
e
l
o
p
e
d
.

W
a
t
e
r
s
h
e
d

g
e
o
m
e
t
r
y

i
s

r
e
p
r
e
s
e
n
t
e
d

b
y

a
s
e
r
i
e
s

o
f

p
l
a
n
e
s

a
n
d

c
h
a
n
n
e
l
s

i
n

c
a
s
c
a
d
e
,

w
i
t
h

t
h
e

r
e
s
u
l
t
i
n
g

"
k
i
n
e
m
a
t
i
c

c
a
s
c
a
d
e

m
o
d
e
l
.
"

P
l
a
n
e
s

a
r
e

f
i
t
t
e
d

t
o

c
o
o
r
d
i
n
a
t
e

d
a
t
a

f
r
o
m

t
o
p
o
g
r
a
p
h
i
c

m
a
p
s

b
y

a
l
e
a
s
t

s
q
u
a
r
e
s

p
r
o
c
e
d
u
r
e
.

C
h
a
n
n
e
l

e
l
e
m
e
n
t
s

a
r
e

d
e
t
e
r
m
i
n
e
d

u
s
i
n
g

G
r
a
y
'
s

m
e
t
h
o
d
.

A
n

o
v
e
r
a
l
l

g
o
o
d
n
e
s
s
-
o
f
-

f
i
t

s
t
a
t
i
s
t
i
c

i
s

t
h
e
d
r
a
i
n
a
g
e

d
e
n
s
i
t
y

r
a
t
i
o
.

T
h
e

k
i
n
e
m
a

t
i
c

i
m
p
u
l
s
e

r
e
s
p
o
n
s
e

i
s

t
h
e

s
o
l
u
t
i
o
n

o
f

t
h
e

k
i
n
e
m
a
t
j
r

K
E
Y

W
O
R
D
S
:

R
u
n
o
f
f

s
i
m
u
l
a
t
i
o
n
,

w
a
t
e
r
s
h
e
d

g
e
o
m
e
t
r
y
,

r
a
i
n

f
a
l
l
-
t
o
-
r
u
n
o
f
f

m
o
d
e
l
s
,

o
v
e
r
l
a
n
d

f
l
o
w
,

k
i
n
e
m
a
t
i
c

c
a
s
c
a
d
e
s

m
o
d
e
l
,

p
a
r
a
m
e
t
e
r

e
s
t
i
m
a
t
i
o
n
,

m
o
d
e
l

t
e
s
t
i
n
g
:

A
B
S
T
R
A
C
T
:

F
o
r

w
a
t
e
r

f
l
o
w

o
n

t
h
e

s
u
r
f
a
c
e

o
f

a
w
a
t
e
r
s
h
e
d
,

g
e
o
m
e
t
r
i
c

s
i
m
p
l
i
f
i
c
a
t
i
o
n
s

m
u
s
t

b
e

m
a
d
e
.

C
o
n
s
e
q
u
e
n
c
e
s

o
f

s
u
c
h

s
i
m
p
l
i
f
i
c
a
t
i
o
n
s

a
r
e

e
x
a
m
i
n
e
d
.

O
b
j
e
c
t
i
v
e

p
r
o
c
e
d
u
r
e
s

f
o
r

g
e
o
m
e
t
r
i
c

s
i
m
p
l
i
f
i
c
a
t
i
o
n

o
f

c
o
m
p
l
e
x

w
a
t
e
r
s
h
e
d
s

a
r
e

d
e
v
e
l
o
p
e
d
.

W
a
t
e
r
s
h
e
d

g
e
o
m
e
t
r
y

i
s

r
e
p
r
e
s
e
n
t
e
d

b
y

a
s
e
r
i
e
s

o
f

p
l
a
n
e
s

a
n
d

c
h
a
n
n
e
l
s

i
n

c
a
s
c
a
d
e
,

w
i
t
h

t
h
e

r
e
s
u
l
t
i
n
g

"
k
i
n
e
m
a
t
i
c

c
a
s
c
a
d
e

m
o
d
e
l
.
"

P
l
a
n
e
s

a
r
e

f
i
t
t
e
d

t
o

c
o
o
r
d
i
n
a
t
e

d
a
t
a

f
r
o
m

t
o
p
o
g
r
a
p
h
i
c

m
a
p
s

b
y

a
l
e
a
s
t

s
q
u
a
r
e
s

p
r
o
c
e
d
u
r
e
.

C
h
a
n
n
e
l

e
l
e
m
e
n
t
s

a
r
e

d
e
t
e
r
m
i
n
e
d

u
s
i
n
g

G
r
a
y
'
s

m
e
t
h
o
d
.

A
n

o
v
e
r
a
l
l

g
o
o
d
n
e
s
s
-
o
f
-

f
i
t

s
t
a
t
i
s
t
i
c

i
s

t
h
e

d
r
a
i
n
a
g
e

d
e
n
s
i
t
y

r
a
t
i
o
.

T
h
e

k
i
n
e
m
a

t
i
c

i
m
p
u
l
s
e

r
e
s
p
o
n
s
e

i
s

t
h
e

s
o
l
u
t
i
o
n

o
f

t
h
e

k
i
n
e
m
a
t
i
c



c
a
s
c
a
d
e

m
o
d
e
l

f
o
r

a
n

i
m
p
u
l
s
e

i
n
p
u
t
.

F
o
r

o
v
e
r
l
a
n
d

f
l
o
w
,

p
e
a
k

d
i
s
c
h
a
r
g
e

o
f

t
h
e

i
m
p
u
l
s
e

r
e
s
p
o
n
s
e

i
s

a
f
f
e
c
t
e
d

b
y

t
h
e

s
u
r
f
a
c
e

s
h
a
p
e
.
F
o
r

o
v
e
r
l
a
n
d

f
l
o
w
,

p
e
a
k

d
i
s
c
h
a
r
g
e

o
f

t
h
e

i
m
p
u
l
s
e

r
e
s
p
o
n
s
e

i
s
g
r
e
a
t
e
r

f
o
r
p
a
r
a
b
o
l
i
c

t
h
a
n

f
o
r

u
n
i
f
o
r
m

s
l
o
p
e

s
u
r
f
a
c
e
s
.

F
o
r

a
c
o
n
c
a
v
e

c
h
a
n
n
e
l
,

t
h
e

i
n
d
e
x

o
f

c
o
n
c
a
v
i
t
y

i
s

r
e

l
a
t
e
d

t
o

t
h
e

e
r
r
o
r

i
n

p
e
a
k

d
i
s
c
h
a
r
g
e
.

U
n
d
e
r
e
s
t
i
m
a
t
i
n
g

t
h
e

d
r
a
i
n
a
g
e

d
e
n
s
i
t
y

r
e
s
u
l
t
s

in
o
v
e
r
e
s
t
i
m
a
t
e
d

t
i
m
e

c
h
a
r
a
c
t
e
r

i
s
t
i
c
s

a
n
d

u
n
d
e
r
e
s
t
i
m
a
t
e
d

p
e
a
k

d
i
s
c
h
a
r
g
e
.

T
h
e

f
i
r
s
t

m
o
m
e
n
t

o
f

a
l
i
n
e
a
r

i
n
s
t
a
n
t
a
n
e
o
u
s

u
n
i
t

h
y
d
r
o
g
r
a
p
h

d
e
c
r
e
a
s
e
s

a
s

d
r
a
i
n
a
g
e

d
e
n
s
i
t
y

i
n
c
r
e
a
s
e
s
.

T
h
e

d
e
g
r
e
e

o
f

a
p
p
a
r
e
n
t

n
o
n
l
i
n
e
a
r
i
t
y

i
s

a
f
f
e
c
t
e
d

b
y

d
r
a
i
n
a
g
e

d
e
n
s
i
t
y
.

R
E
F
E
R
E
N
C
E
:

L
a
n
e
,

L.
J
.
,

W
o
o
l
h
i
s
e
r
,

D.
A
.
,

a
n
d

Y
e
v
j
e
v
i
c
h
,

V
.
,

C
o
l
o
r
a
d
o

S
t
a
t
e
U
n
i
v
e
r
s
i
t
y

P
a
p
e
r

N
o
.

8
1

(
D
e
c
e
m
b
e
r

1
9
7
S
)

"
I
n
f
l
u
e
n
c
e

o
f
S
i
m
p
l
i
f
i
c
a
t
i
o
n
s

i
n
W
a
t
e
r
s
h
e
d

G
e
o
m
e
t
r
y

in
S
i
m
u
l
a
t
i
o
n

o
f
S
u
r
f
a
c
e

R
u
n
o
f
f
.
"

c
a
s
c
a
d
e

m
o
d
e
l

f
o
r

a
n

i
m
p
u
l
s
e

i
n
p
u
t
.

F
o
r
o
v
e
r
l
a
n
d

f
l
o
w
,

p
e
a
k

d
i
s
c
h
a
r
g
e

o
f

t
h
e

i
m
p
u
l
s
e

r
e
s
p
o
n
s
e

i
s

a
f
f
e
c
t
e
d

b
y

t
h
e

s
u
r
f
a
c
e

s
h
a
p
e
.
F
o
r

o
v
e
r
l
a
n
d

f
l
o
w
,

p
e
a
k

d
i
s
c
h
a
r
g
e

o
f

t
h
e

i
m
p
u
l
s
e

r
e
s
p
o
n
s
e

i
s

g
r
e
a
t
e
r

f
o
r

p
a
r
a
b
o
l
i
c

t
h
a
n

f
o
r

u
n
i
f
o
r
m

s
l
o
p
e

s
u
r
f
a
c
e
s
.

F
o
r

a
c
o
n
c
a
v
e

c
h
a
n
n
e
l
,

t
h
e

i
n
d
e
x

o
f

c
o
n
c
a
v
i
t
y

i
s

r
e

l
a
t
e
d

t
o

t
h
e

e
r
r
o
r

i
n
p
e
a
k

d
i
s
c
h
a
r
g
e
.

U
n
d
e
r
e
s
t
i
m
a
t
i
n
g

t
h
e

d
r
a
i
n
a
g
e

d
e
n
s
i
t
y

r
e
s
u
l
t
s

i
n

o
v
e
r
e
s
t
i
m
a
t
e
d

t
i
m
e

c
h
a
r
a
c
t
e
r

i
s
t
i
c
s

a
n
d

u
n
d
e
r
e
s
t
i
m
a
t
e
d

p
e
a
k

d
i
s
c
h
a
r
g
e
.

T
h
e

f
i
r
s
t

m
o
m
e
n
t

o
f

a
l
i
n
e
a
r

i
n
s
t
a
n
t
a
n
e
o
u
s

u
n
i
t

h
y
d
r
o
g
r
a
p
h

d
e
c
r
e
a
s
e
s

a
s

d
r
a
i
n
a
g
e

d
e
n
s
i
t
y

i
n
c
r
e
a
s
e
s
.

T
h
e

d
e
g
r
e
e

o
f

a
p
p
a
r
e
n
t

n
o
n
l
i
n
e
a
r
i
t
y

i
s

a
f
f
e
c
t
e
d
b
y

d
r
a
i
n
a
g
e

d
e
n
s
i
t
y
.

R
E
F
E
R
E
N
C
E
:

L
a
n
e
,

L.
J
.
,

W
o
o
l
h
i
s
e
r
,

D
.

A
.
,

a
n
d

Y
e
v
j
e
v
i
c
h
,

V
.
,

C
o
l
o
r
a
d
o

S
t
a
t
e
U
n
i
v
e
r
s
i
t
y

P
a
p
e
r

N
o
.

8
1

(
D
e
c
e
m
b
e
r

1
9
7
S
)

"
I
n
f
l
u
e
n
c
e
o
f
S
i
m
p
l
i
f
i
c
a
t
i
o
n
s

i
n
W
a
t
e
r
s
h
e
d

G
e
o
m
e
t
r
y

i
n

S
i
m
u
l
a
t
i
o
n
o
f

S
u
r
f
a
c
e

R
u
n
o
f
f
.
"

c
a
s
c
a
d
e

m
o
d
e
l

f
o
r

a
n

i
m
p
u
l
s
e

i
n
p
u
t
.

F
o
r

o
v
e
r
l
a
n
d

f
l
o
w
,

p
e
a
k

d
i
s
c
h
a
r
g
e

o
f

t
h
e

i
m
p
u
l
s
e

r
e
s
p
o
n
s
e

i
s

a
f
f
e
c
t
e
d

b
y

t
h
e

s
u
r
f
a
c
e

s
h
a
p
e
.
F
o
r

o
v
e
r
l
a
n
d

f
l
o
w
,

p
e
a
k

d
i
s
c
h
a
r
g
e

o
f

t
h
e

i
m
p
u
l
s
e

r
e
s
p
o
n
s
e

i
s

g
r
e
a
t
e
r

f
o
r

p
a
r
a
b
o
l
i
c

t
h
a
n

f
o
r

u
n
i
f
o
r
m

s
l
o
p
e

s
u
r
f
a
c
e
s
.

F
o
r

a
c
o
n
c
a
v
e

c
h
a
n
n
e
l
,

t
h
e

i
n
d
e
x

o
f

c
o
n
c
a
v
i
t
y

i
s

r
e

l
a
t
e
d

t
o

t
h
e

e
r
r
o
r

i
n

p
e
a
k

d
i
s
c
h
a
r
g
e
.

U
n
d
e
r
e
s
t
i
m
a
t
i
n
g

t
h
e

d
r
a
i
n
a
g
e

d
e
n
s
i
t
y

r
e
s
u
l
t
s

i
n

o
v
e
r
e
s
t
i
m
a
t
e
d

t
i
m
e

c
h
a
r
a
c
t
e
r

i
s
t
i
c
s

a
n
d
u
n
d
e
r
e
s
t
i
m
a
t
e
d

p
e
a
k

d
i
s
c
h
a
r
g
e
.

T
h
e

f
i
r
s
t

m
o
m
e
n
t

o
f

a
l
i
n
e
a
r

i
n
s
t
a
n
t
a
n
e
o
u
s

u
n
i
t

h
y
d
r
o
g
r
a
p
h

d
e
c
r
e
a
s
e
s

a
s

d
r
a
i
n
a
g
e

d
e
n
s
i
t
y

i
n
c
r
e
a
s
e
s
.

T
h
e

d
e
g
r
e
e

o
f

a
p
p
a
r
e
n
t

n
o
n
l
i
n
e
a
r
i
t
y

i
s

a
f
f
e
c
t
e
d

b
y

d
r
a
i
n
a
g
e

d
e
n
s
i
t
y
.

R
E
F
E
R
E
N
C
E
:

L
a
n
e
,

L.
J
.
,

W
o
o
l
h
i
s
e
r
,

D.
A
.
,

a
n
d

Y
e
v
j
e
v
i
c
h
,

V
.
,

C
o
l
o
r
a
d
o

S
t
a
t
e
U
n
i
v
e
r
s
i
t
y

P
a
p
e
r

N
o
.

8
1

(
D
e
c
e
m
b
e
r

1
9
7
5
)

"
I
n
f
l
u
e
n
c
e

o
f
S
i
m
p
l
i
f
i
c
a
t
i
o
n
s

i
n
W
a
t
e
r
s
h
e
d

G
e
o
m
e
t
r
y

i
n

S
i
m
u
l
a
t
i
o
n
o
f
S
u
r
f
a
c
e

R
u
n
o
f
f
.
"

c
a
s
c
a
d
e

m
o
d
e
l

f
o
r

a
n

i
m
p
u
l
s
e

i
n
p
u
t
.

F
o
r

o
v
e
r
l
a
n
d

f
l
o
w
,

p
e
a
k

d
i
s
c
h
a
r
g
e

o
f

t
h
e

i
m
p
u
l
s
e

r
e
s
p
o
n
s
e

i
s

a
f
f
e
c
t
e
d

b
y

t
h
e

s
u
r
f
a
c
e

s
h
a
p
e
.
F
o
r
o
v
e
r
l
a
n
d

f
l
o
w
,

p
e
a
k

d
i
s
c
h
a
r
g
e

o
f

t
h
e

i
m
p
u
l
s
e

r
e
s
p
o
n
s
e

i
s
g
r
e
a
t
e
r

f
o
r

p
a
r
a
b
o
l
i
c

t
h
a
n

f
o
r

u
n
i
f
o
r
m

s
l
o
p
e

s
u
r
f
a
c
e
s
.

F
o
r

a
c
o
n
c
a
v
e

c
h
a
n
n
e
l
,

t
h
e

i
n
d
e
x

o
f

c
o
n
c
a
v
i
t
y

i
s

r
e

l
a
t
e
d

t
o

t
h
e

e
r
r
o
r

i
n
p
e
a
k

d
i
s
c
h
a
r
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