JOURNAL OF GEOPHYSICAL RESEARCH: EARTH SURFACE, VOL. 118, 241-256, doi:10.1002/jgrf.20028, 2013

Controls on the spacing and geometry of rill networks on hillslopes:
Rain splash detachment, initial hillslope roughness, and
the competition between fluvial and colluvial transport
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[11 Rill networks have been a focus of study for many decades, but we still lack a
complete understanding of the variables that control the spacing of rills and the geometry of
rill networks (e.g., parallel or dendritic) on hillslopes. In this paper, we investigate the
controls on the spacing and geometry of rill networks using numerical modeling and
comparison of the model results to terrestrial-laser-scanner-derived topographic data from
rill networks formed in physical experiments. The landscape evolution model accounts for
the transport of sediment due to rain splash and fluvial entrainment as well as the
deposition of sediment being advected by the overland flow. In order to develop realistic
rill networks in the model, we find that it is necessary to incorporate the effects of raindrop
impact within the fluvial sediment transport process. Model results are only consistent with
those of experiments when raindrop-aided fluvial sediment transport is accounted for.
Dendritic networks are often predicted by the model in cases of high initial topographic
roughness and high rates of advective (fluvial) sediment transport relative to diffusive
(colluvial) transport. Parallel networks form within numerical experiments in low-
roughness cases under a wide range of relative advective and diffusive transport rates as
well as in high roughness cases in which diffusive sediment transport is high relative to
advective transport. The transition from dendritic to parallel rill networks is shown to occur
gradually rather than being associated with a particular threshold. Finally, based on a
balance between diffusive and advective sediment transport processes, we predict that the
mean spacing between parallel rills scales with the square root of the ratio of diffusivity to

channel erodibility.
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1. Introduction

[2] Feedback mechanisms between overland flow and
sediment transport can lead to the development of drainage
patterns with remarkably uniform patterns [Perron et al.,
2008]. At the hillslope scale, the study of rills has attracted
considerable attention due to their pattern-forming nature
[Favis-Mortlock et al., 2000] and their ability to enhance sed-
iment transport rates relative to un-dissected hillslopes. Rills
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are small, erosional incisions (0.01-0.1 m) within the soil,
commonly found on steep hillslopes with little or no vegeta-
tion. The large number of possible sediment transport
mechanisms on hillslopes and their tendency to vary signifi-
cantly in relative magnitude with environmental factors have
made it difficult to determine the controlling factors of rill
network geometry. A better understanding of the controls on
rill network geometry would improve our ability to more accu-
rately model and predict erosion at the hillslope scale. In
particular, relationships between surface roughness, mean
slope, and rill development can serve to improve parameteri-
zations of rilling within larger-scale landscape evolution
models that are not capable of resolving features at such scales
(ie., 0.01-1 m).

[3] Previous studies [e.g., Smith and Bretherton, 1972,
Loewenherz, 1991; Simpson and Schlunegger, 2003; Simpson
and Castelltort, 2006; Smith, 2010] have developed mathe-
matical models that account for the interaction between
overland flow and sediment transport that lead to channel
networks. Simpson and Schlunegger [2003], for example,
demonstrated that the geometries of channel networks formed
on initially un-dissected landscapes are influenced by the
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relative importance of fluvial sediment transport and colluvial
transport. The feedbacks between topography and overland
flow can lead to the development of valley networks, while
colluvial sediment transport, which has a diffusive effect on
the land surface, can act to smooth the landscape. Significant
work has also been done using physical models to study the
evolution of rill networks on different initial surfaces [e.g.,
Gomez et al., 2003; Rieke-Zapp and Nearing, 2005] and to
establish the conditions for rill initiation [e.g., Gilley et al.,
1993; Yao et al., 2008]. Despite our ability to produce, model,
and observe the processes of rill initiation and development, it
remains difficult to adequately identify and quantitatively
describe the controls on different rill network geometries.

[4] Because of the coupling among topography, water flow,
and erosion/deposition, it is likely that any channel system will
depend on the initial surface roughness because roughness sets
the initial overland flow pathways. Micro-topographic rough-
ness contributes to the concentration of overland flow, which
in turn leads to the initial success of some incipient channels
over others. The subsequent development of the network also
depends on the relative importance of different sediment trans-
port mechanisms. Studies of large-scale channel systems (i.e.,
incised-valley drainage networks rather than rill networks)
often focus on either sediment transport mechanisms or initial
topographic roughness as the dominant controls on drainage
network development. Perron et al. [2008], for example, dem-
onstrated the importance of a landscape Peclet number, which
quantifies the relative importance of advective and diffusive
sediment transport processes, in their study of the controls on
the periodic spacing of first-order valleys. Relationships have
also been suggested between the structure of river networks
and regional slope [Castelltort et al., 2009; Jung et al., 2011].
Such studies suggest a threshold value for the regional slope
above which parallel networks tend to occur more often than
dendritic networks. On smaller scales, there is strong evidence
that micro-topography influences rill network geometry by pref-
erentially routing runoff and localizing erosion in a positive
feedback [Favis-Mortlock, 1998; Favis-Mortlock et al., 2000].
Simpson and Schlunegger [2003] used a numerical model to
show that parallel networks tend to develop in cases where
the relative magnitude of initial roughness is small and that
increases in roughness can lead to more dendritic patterns.
These authors also considered the relative importance of two
different sediment transport mechanisms, namely, fluvial and
colluvial transport, on channel formation and described a pro-
cess in which the final channel network geometry is dependent
upon the timescale at which diffusive smoothing removes
roughness elements from the initial surface. They suggested that
rill-like features commonly form on smaller spatial scales due to
the fact that mean slope tends to dominate surface roughness on
the hillslope scale, whereas this is not as often the case on the
scale at which river networks form [Simpson and Schlunegger,
2003]. We build upon previous studies by (1) demonstrating the
importance of raindrop-aided sediment transport in hillslope-
scale erosion problems, (2) demonstrating the existence of a
smooth transition from parallel to dendritic rill networks, and
(3) developing a scaling relationship to predict mean rill spacing
within parallel networks.

[5s] Given that parameterizations of rates of sediment trans-
port and erosion/deposition are highly empirical and often the
most poorly constrained aspect of this and similar landscape
evolution models, it is essential to test the predictions of

hillslope-scale landscape evolution models against data from
physical experiments whenever possible. Gomez et al.
[2003] performed a series of physical experiments where rill
networks were formed over a 5 h period of generated rainfall
on a 2m by 4m flume inclined at either a 20% or 5% slope.
Experiments were carried out on three different types of sur-
faces characterized by varying degrees of surface roughness:
low, medium, and high. Gomez et al. [2003] performed two
replications for each slope and surface treatment. Terrestrial-
laser-scanner-derived digital elevation models (DEM) were
created for the initial surface as well as the surface after each
hour of simulated rainfall. Experimental data corresponding
to the two replications performed on the 20% slope with low
surface roughness are chosen for comparison with the numer-
ical model, as they give rise to the most well developed and
clearly defined rill networks.

2. Conceptual Model

[6] The landscape evolution equation we employ is
designed to represent three processes: the direct transport
of material due to rain splash, the fluvial detachment and
transport of bed material disturbed by raindrop impact, and
the deposition of sediment being advected within overland
flow. The impact of raindrops is directly responsible for
transporting bed material through rain splash. Rain splash
is generally represented as a transport-limited process in
which the sediment flux is proportional to the land-surface
gradient [Dunne et al., 2010]. Raindrop impact can also in-
directly influence rates of fluvial transport by detaching
and disaggregating soil particles and making them more
transportable by overland flow [Nord and Esteves, 2005].
Experiments have documented order of magnitude differ-
ences in sediment concentrations when overland flow within
small plots of cohesive soil is induced by rainfall as opposed
to flow from a ground level perforated pipe, suggesting that
overland flow may be ineffective at detaching sediment
without raindrop impact [Gabet and Dunne, 2003].

[7] Previous studies have introduced models that account
for differences between unaltered, in situ soil, and an overly-
ing sediment layer that can develop through a combination
of rain splash detachment and re-deposition [e.g., Hairsine
and Rose, 1991, 1992a, 1992b; Heng et al., 2011]. Hairsine
and Rose [1992a] presented an erosion model that explicitly
accounts for the entrainment and re-entrainment of sediment
into the overland flow column due to raindrop impact, entrain-
ment and re-entrainment due to overland flow, deposition of
sediment, and the difference in erodibility between a re-
deposited layer of sediment and the original (usually more cohe-
sive) bed material. Nord and Esteves [2005] modeled erosion as
occurring in multiple phases. During the first phase, the flow
has not yet overcome critical thresholds necessary to transport
material, and the breakdown of aggregates, raindrop impact,
rain splash, and the resulting deposition contribute to the
formation of a layer of loose sediment. The land-surface eleva-
tion does not change during this initial phase. This sediment is
then available for fluvial transport once an entrainment threshold
is reached. Once the layer of loose sediment is removed, the flow
is capable of detaching unaltered bed material if a second,
more stringent threshold is achieved. The transport of unaltered
soil, which is less erodible, is considered to be negligible in
this study.
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[8] The model presented in this study accounts for many
of the same sediment transport mechanisms as the model
suggested by Hairsine and Rose [1991, 1992a, 1992b]. Both
models allow for the development of a layer of sediment
overlying the in situ soil, although here it is possible for this
overlying layer to form without the deposition of previously
entrained sediment. Here raindrop impact converts the soil
into a more easily detachable (damaged) layer of material
at a rate dependent on overland flow depth. The rate depends
on overland flow depth because overland flows that are suf-
ficiently deep absorb momentum from the raindrops and
protect the underlying soil from impact [Dunne et al.,
2010]. The deposition of previously entrained material is
thought to add directly to the damaged layer of sediment.
Sediment within the damaged layer is capable of being de-
tached and transported by the flow at any time, given that
such material exists and any critical entrainment thresholds
are exceeded. In this way, raindrop impact acts as a limiting
factor for the rate of fluvial detachment of sediment. The di-
rect transport of sediment through rain splash is accounted
for independently from fluvial transport. The interaction
between shallow overland flow, raindrop impact, and soil

Table 1. Notation

Symbol Unit Definition

z m Topographic elevation

h m Water depth

uh m’s”! Unit fluid discharge (x direction)
vh m’s”! Unit fluid discharge (y direction)
u ms! Fluid velocity (x direction)

v ms ! Fluid velocity (y direction)

g ms 2 Gravitational acceleration

c - Sediment concentration

ya - Darcy-Weisbach friction factor

¢ m’ s Coefficient of turbulent viscosity
he m Critical overland flow depth

¢ ms ' Maximum soil damage rate

v m Depth of damaged sediment layer
d m Particle diameter

Vg ecms”! Particle settling velocity

R ms ! Rainfall rate in excess of infiltration
K m~! Stream power erodibility coefficient
K m’s kg ™! Shear stress erodibility coefficient
B m?s! Diffusivity

T Pa Shear stress

T Pa Critical shear stress

Q m’s! Unit stream power

Q. m?s! Critical unit stream power

E ms ' Sediment entrainment rate

D ms' Sediment deposition rate

ra mm Raindrop diameter

v, ms ' Particle takeoff velocity

% deg. Particle takeoff angle

O deg. Bed slope

¢ - Bed sediment porosity

Pw kg m~> Density of water

Ds kg m Density of sediment

p kg m~> Density of sediment-water mixture
0o kgm~? Density of saturated bed

n m Variance of initial surface roughness
1) m Spacing of roughness elements
Lo m Characteristic slope length (along-slope direction)
Ry ms ! Characteristic rainfall rate

K 57! Inverse of advection timescale (=kRg)
s s ! Inverse of diffusion timescale (=f/L2)
7 - Landscape Peclet number (=f'/x")

A m Length scale of parallel rill spacing
Number of rill junctions/number of rills

is a complex process dependent upon both raindrop size
and velocity as well as overland flow depth [Kinnell,
1991]. The model introduced here is a simple way to account
for the fact that fluvial sediment transport may still take
place, but in a manner limited by the ability of raindrop im-
pact to affect the soil, even when overland flow itself is in-
sufficient to entrain and transport unaltered bed material.
This is a reasonable assumption for the hillslope scale, but
on a larger scale, it is likely that valley-like features will be-
gin to form once the typical stream power (or shear stress)
becomes sufficiently large to exceed the critical value neces-
sary to entrain unaltered soil.

3. Methods

3.1.

[0] A rainfall rate, R, in excess of infiltration results in
overland flow with depth %, an x component of velocity u,
and a y component of velocity v. The model equations used
to govern quasi-steady flow are given by [Simpson and
Castelltort, 2006]

Governing Equations

Y (R R
% (huv) +(% <hv2 + %gh2> =7, )
8(gi”) + a(g;v) —E-D 4)

[10] Equations (1)—(3) represent conservation of water,
conservation of momentum in the x direction, and conserva-
tion of momentum in the y direction, respectively. The
fourth equation enforces the conservation of sediment with
¢ denoting sediment concentration. Bed sediment porosity
and gravitational acceleration are denoted by ¢ and g,
respectively (see Table 1 for notation). The forcing terms
in the momentum equations are defined as

0z fuvu? +1? Phu  0*hu
h—— +c +
Xt O?

Ty = —8 a
X 8 (5)
~(py = pu)eh* dc (po — p)(E —D)u
2p  Ox p(1—¢)
and
2 2 2h 2/1
yy:_gh%_fvivuﬂﬁ 9 2v+3_;
dy 8 Ox oy ©6)
_(ps=p,)gh? 9 (py—p)(E—-D)v
2p Oy p(1—¢)

[11] Here f'denotes the Darcy-Weisbach friction factor and
e~ 10" is the coefficient of turbulent viscosity. From left to
right, the forcing terms account for the effects of topography,
friction, turbulent dissipation, a spatially variable sediment
concentration, and momentum transfer associated with
sediment exchange between the flow and the bed. The density
of the sediment and water are defined as p,=2600kg m > and
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pw=1000kg m >, respectively, while po=p,¢ +py(1 — @) is
the density of the saturated bed and p=p, (1 — c)+ psc is the
density of the sediment-water mixture. An additional term of
the form Reu(p, — p,,)/p is sometimes included within y, (and
a similar term within y,) [Li and Duffy, 2011] but is neglected
here. Within rill flow, one can estimate ¢~ 0.01, u~0.1,
and R~107°, which implies Rcu(ps— p,)/p~ 10~ with
smaller values being expected in inter-rill locations. The
smallest term included within the momentum equation is the
term associated with turbulent viscosity, which scales with
cuh~ 107 when assuming a length scale on the order of
unity, u~0.1, and /#~0.01.

[12] The friction factor, £, is sometimes defined as a function
of the Reynolds number within the laminar flow regime
[Fiedler and Ramirez, 2000]. However, experiments have lead
to questions about the applicability of traditional, linear relation-
ships between the Reynolds number and f, finding instead that /'
may be a non-monotonic function of the Reynolds number
[Abrahams et al., 1986; Abrahams and Parsons, 1991]. It has
been suggested that the interaction of form roughness, which
refers to macroscale bed roughness elements such as gravel or
soil clumps, with shallow overland flow may be responsible
for the non-monotonic relationships between fand the Reynolds
number that have been observed in experiments [4brahams
et al., 1986; Abrahams and Parsons, 1991; Lawrence, 1997].
Additionally, raindrop impact may induce turbulent flow even
when the Reynolds number is less than 1000 [Dunne and
Dietrich, 1980; Gabet and Dunne, 2003]. Given these
complications and the difficulties associated with adequately
constraining the additional parameters of a more complex
frictional resistance model, fis approximated here as a constant
and is determined through comparisons between model predic-
tions and experimental data.

[13] The temporal change in the land surface is defined by

0z ., D-E
E—ﬁVz-i-l_d)

(7

[14] The first term on the right-hand side of (7) takes into
account the diffusive effect of rain splash with a constant dif-
fusivity, . The second term represents the fluvial erosion and
deposition of sediment. Note that a corresponding diffusive
term is not included as a source of sediment within equations
(1) and (4). The sediment transported directly through rain
splash is never considered to be entrained within overland
flow and therefore does not contribute to changes in flow
depth or sediment concentration. The fluvial erosion rate, E,
is formulated in terms of either stream power, 2, or shear
stress, 7. The stream power erosion law is given by

E=x(Q-Q), (®)
and the shear stress erosion law by
E =i(t — 1.). )

[15] A critical entrainment threshold, denoted Q. for the
stream power model and . for the shear stress model, must
be exceeded before fluvial erosion occurs. Therefore, £=0
when Q< Q. or 1t < 7. Additionally, £ may be limited by
the availability of entrainable sediment, which is described
shortly. Here x and i, denote erodibility coefficients for the
damaged soil layer and 2= g||S] is the unit stream power with

gl = \/ (uh)* + (vh)* (10)

1S = \/(92/0x)” + 9/ m)’. (11)

[16] Shear stress is given by ©=#h sinf,, where §, denotes
the bed slope. Deposition is computed as D = cv,, where vy
is the particle settling velocity. The depth of the damaged
soil layer, v, is initially zero and evolves according to

v D—-E

oi = A )+ 1
where ¢ represents the maximum rate at which the bed is dam-
aged by raindrop impact, 4. is a critical depth of overland flow
over which the influence of raindrop impact is assumed to
decay, and the function A(#, 4.) modifies the rate at which rain-
drops damage the original bed material. We assume that the rate
at which raindrop impact damages the bed decays exponentially
with the ratio of flow depth to the critical depth, %, as A(h,h.)=
exp(—h/h.). The critical depth, 4., is likely to scale with charac-
teristic properties of the raindrops such as mean diameter and
velocity. In cases where v > A, it is assumed that the underlying
soil is sufficiently shielded so that A(k, 4.)=0.

[17] Through particular choices of the parameters ¢, 4., and
v,, several different types of erosional environments can be
explored. By modeling multiple layers of soil (an erodible and
a non-erodible layer), one can study the effects of supply-
limited entrainment, where sufficient stream power does not
exist to transport the original bed material. We use the term
“supply-limited” to distinguish this erosional environment from
the traditional detachment-limited model, in which there is no
dependance between overland flow depth and the erodibility
of the substrate. Also, equation (7) reduces to the usual detach-
ment-limited formulation of sediment transport when v;=0 and
¢ and A, are sufficiently large so as to not limit sediment entrain-
ment. The addition of an independent deposition rate is useful
for simulating erosional environments that exist between the
detachment-limited and transport-limited end-member models.
A better representation of the total sediment load could be
obtained by considering multiple particle size classes, but for
this study, a representative particle size is chosen for each
simulation. For a given particle size, d, the settling velocity is
calculated using the formulation given by Dietrich [1982] for
spherical particles.

(12)

3.2. Parameter Estimation

[18] Soil bulk densities measured in the Gomez et al. [2003]
experiments vary slightly with the surface treatment, but a sed-
iment porosity, ¢ =0.55, is chosen to be consistent with the
bulk density of the soil, approximately 1200kg m—>, used
within the low-roughness experiments [Gomez et al., 2003].
A value of h.=3 mm, consistent with the diameter of a me-
dium-to-large raindrop, is assumed throughout all numerical
simulations. The chosen value of /. is motivated by experi-
mental results suggesting that the mass of sediment splashed
by a raindrop decays exponentially with the ratio of flow depth
to raindrop diameter [Dunne et al., 2010]. In the absence of
overland flow, the analysis of Dunne et al. [2010] allows for
an estimate of f~10 °m” s~ ' when considering an un-
vegetated surface with a characteristic raindrop diameter of
3mm, a rainfall rate of 4 cm h_l, and soil bulk density of
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approximately 1200 kg m . The coefficient of turbulent vis-
cosity is estimated according to € = ah\/ghS, where a0~ 0.2
[lzumi and Parker, 1995]. Assuming values consistent with
typical rill flow within this study, 2#=0.01 and $=0.1, the co-
efficient of turbulent viscosity takes a value of e~10" %,
which is fixed for the remainder of this analysis.

[19] The rainfall rate and friction factor used within model
simulations are chosen to approximately match the discharge
and velocity data given by Gomez et al. [2003, Figure 13].
Using the Digital Elevation Model (DEM) generated after the
second hour of rainfall for both the first and second replications,
values of fand R are chosen such that model-predicted dis-
charge rates at the lower boundarg of the computational domain
are generally on the order of 102 15~ with velocities between
0.1ms'and 0.3 ms ' within most areas of concentrated flow.
This does not uniquely constrain f'and R, but the chosen values
are consistent with experimental data (Figure 1). When compar-
ing model predictions to experimental data, f3 is varied within a
small range about the estimated value of =~ 10~ given above
and the soil erodibility coefficient, x, maximum rate of soil
damage, &, particle settling velocity, v, and critical entrainment
threshold are treated as free parameters.

3.3. Numerical Solution

[20] The numerical solution of the governing equations is
simplified slightly by the fact that the landscape evolution
equations can be decoupled from the rest of the system. This
simplification is justified since erosion occurs on a timescale
that is significantly longer than changes in flow depth.
Therefore, the general solution strategy is to determine an
approximate steady state solution to the overland flow equa-
tions and then compute the change in the land surface using
the conditions of the steady state flow. This enables more ef-
ficient solution of the system over longer total simulation
times. The specifics of the numerical method used to solve
the overland flow equations are given in detail by Simpson
and Castelltort [2006] and are only briefly outlined below.

[21] Given an initial topography, a solution to equations
(1)—(4) is computed by determining an approximate steady
state solution to the time-dependent version of the respective

0.35

equations. The criteria used to determine an approximate
steady state is the requirement that on average, the percent-
age change in fluid depth at each node over a 5s interval is
less than 1%. During this phase of each time step, there is
no change to the land surface. Once an approximate steady
state solution for overland flow is computed, equations (7)
and (12) are solved based on the properties of the solution
for overland flow and the bed topography is modified. A
new steady state flow condition is then found using the mod-
ified topography as input, and the process is repeated.

[22] The principal numerical challenge in the model is the
integration of the shallow water equations. Average depths
of overland flow are generally small and can be less than or
on the same order of magnitude as the small perturbations on
the land surface. Shock-capturing schemes deal more naturally
with the dry/wet interface conditions that can be present in dis-
continuous shallow overland flow. For this reason, we solve
the shallow water equations using a Godunov-type finite vol-
ume scheme. Equations (1)—(4) are solved using the HLLC
(Harten-Lax-Van Leer-Contact) approximate Riemann solver
as described by Simpson and Castelltort [2006], with explicit
treatment of source terms. The topographic evolution equation
(i.e., equation (7)) is then solved using a first-order forward
difference in time and a second-order, centered-in-space, dis-
cretization of the Laplacian. Equation (12) is also solved with
a first-order forward difference in time.

[23] All numerical results are computed on a square grid
with a spacing of Ax. Let O], denote the value of Q at the
nth computational time step at a node with x and y positions
of iAx and jAx, respectively. Defining At as the computa-
tional time step for the landscape evolution equations, values
for z and v at time step n+ 1 are given by

D! —E.
vZ;rl = v?.j —Q—At(éA <h:-i/~, hc> + ﬁ) (13)
2 =2t 4 At [;Z?“J t i Aty +Z?«/*1)
ij T “iyj Ax2
(14)

Dt — E"
JiVy i —k
- (1—¢

0.3

0.25 -

0.2

0.1

Mean flow velocity (m/s)

0.05 ¢}

0 L

107 1078

1072 107" 10°

Flow discharge (I/s)

Figure 1.

Model-predicted flow discharge versus flow velocity at rill locations corresponding to hour 2

of the Gomez et al. [2003] experiments. A DEM corresponding to the experimental surface at t=2h is
used as the input topography to the numerical model. Mean discharge and flow velocity are computed
from the model-predicted steady state flow. Values of /=0.4 and R=4cmh ™' are found to be consistent
with measurements taken during the experiments [Gomez et al., 2003, Figure 13].
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with £ D and A ( A} i hc) being determined from the steady

state values of &, uh, vh, and c. However, while approximating
a steady state solution to the overland flow equations, the
entrainment rate £ is restricted so as to not result in a value
of v < 0 following the subsequent land-surface update. More
specifically, £ is restricted so that £,<¢(1 — ¢)4 gh’? hc) +

ij?
D+ vy /At. This measure enforces the fact that only material
within the damaged layer is capable of being entrained.

[24] Both transmissive and solid boundary conditions are
used while computing the solution to equations (1)—(4). If
overland flow at a boundary grid point is described by
[h wh vh ¢]"= [« uh« vh« c«]", then the unknown flow values

on the other side of the boundary are specified as

[h uh vh c}g = [h. uh, vh, c*}T to simulate a transmis-
sive boundary. A solid boundary is simulated by setting
[h uh vh c}g = [h. — uh, vh, c*]T.

[25] High rates of entrainment and shallow flow on rough
topography can occasionally result in isolated pixels with a
high sediment concentration. Since this occurs infrequently
and the motion of high sediment concentration flows are
not adequately modeled by the chosen governing equations,
all sediment within the water column in a pixel with ¢ > 0.2
is removed from the water column and deposited on the bed.

3.4. Non-Dimensionalization

[26] The landscape evolution equation (i.e., equation (7))
can be simplified in particular circumstances and written in
non-dimensional form to elucidate several relevant timescales.
In situations where the effects of supply-limited entrainment,
deposition of material in suspension, and critical entrainment
thresholds can be neglected, the topographic evolution equa-
tion can be written in non-dimensional form as

oz Sy '

W - %V z — ’V z ’,
where a prime denotes a dimensionless variable. Here 2’ =z/z,
tI:t/to, V’=L0 V, ﬁ = ﬁ/Lz, K/:KR(), LO is the horizontal
distance in the along-slope direction, z is the elevation of the
hillslope above a base level, R is a characteristic rainfall rate,
RoLy is a characteristic discharge, and #,=1/k’. One can then
see that a timescale associated with rill incision is 7.= 1/kR,
and, more generally, the timescale for the diffusion of a general
feature of size A is 7,=2%/p. In this instance, a dimensionless
variable, = f'/ic’, similar to a landscape Peclet number can also
be defined. Note that € is the ratio of an advection timescale to a
diffusion timescale and can be used as a measure of the relative
importance of advective and diffusive sediment transport
mechanisms within the system.

[27] Inan effort to determine a length scale on which rilling is
likely to occur, consider an inclined plane superimposed with
low-magnitude roughness elements. Such a surface often devel-
ops a parallel drainage network [Simpson and Schlunegger,
2003]. On surfaces with low relative roughness, flow paths
are less likely to be diverted from the path of steepest descent
and the initial drainage pattern can be expected to consist of
parallel flow pathways. Only a portion of the flow pathways
suggested by the initial drainage, however, persists long enough
to generate rills. Diffusive sediment transport is the mechanism
responsible for smoothing incipient rills. Diffusive smoothing

(15)

operates more effectively on higher-frequency features, such
as those suggested by the initial drainage pattern, but its
effectiveness decreases as some micro-rills fail and the lateral
frequency of the remaining micro-rills decreases. Eventually,
rill incision occurs at a faster timescale than the timescale asso-
ciated with the diffusion of the developing rills. At this point,
developing rills are likely to persist. Although rills may develop
at a faster rate at a different lateral frequency, this conceptual
model predicts them to develop at the highest frequency at
which they are able to form. Namely, in cases where parallel
rills form, they are expected to form when #,~¢.. Solving for
A yields a length scale for rill spacing,

1/2
A~ (i) .
KR()

Comparisons With Experimental Data

(16)

4. Results

4.1.

[28] In this section, the utility of various subfamilies of the
proposed erosion model is tested by comparison with the exper-
imental results of Gomez et al. [2003]. The number of rills per
cross-slope transect and the mean rill depth were chosen as a
means of comparison. In addition to being capable of producing
a network with reasonably accurate rill spacing (mean number
of rills per transect) and mean rill depth, the success of a partic-
ular subfamily of the model was also determined by its ability to
predict significant rilling within different portions of the slope at
a timescale similar to that observed during the experiments.
Rills are identified in the output of the numerical model by
scanning along cross-slope transects and tagging pixels with
positive curvature above a critical value. Negative values of
curvature must then be found within 6 cm of either side of iden-
tified points. The average difference between the elevations of
the two points of negative curvature and the point of positive
curvature must be at least 5 mm in order for the location to be
identified as a rill. This identification algorithm leads to a natu-
ral means of assigning a depth to each rill location, with the
depth being taken as the maximum of the difference between
the points of positive and negative curvature. The values of
these identification thresholds are likely to vary with the magni-
tude and frequency of surface roughness elements, but we find
that the chosen thresholds correctly identify rill locations for the
types of surfaces within this study.

[29] To quantify the ability of the model to accurately pre-
dict rill development within different portions of the slope, a
technique is used where the slope is partitioned into four
different zones. The zones are identified by their fractional
distance downslope, ranging from 25 to 100. The portion
of the experimental plot consisting of the uppermost 25%
of the slope is denoted as fractional distance zone 25, while
the lowest 25% of the plot is assigned a fractional distance
zone of 100. Rill depth and the number of rills per transect
can be averaged within each of the zones to quantify typical
values of these variables at different locations on the slope.

[30] For reasons outlined in Gomez et al. [2003], the DEMs
corresponding to the experimental data do not cover the 0.1 m
on either of the lateral sides of the flume or the final 0.4 m of
the flume. The computational domain within numerical
experiments covers the same region as the DEMs and has a
downslope length of approximately 3.6m and cross-slope
length of approximately 1.8 m. A solid boundary is enforced
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at the top of the slope, while transmissive boundaries are
imposed at both lateral sides and the lower boundary. It is nec-
essary to subsample the pre-rainfall DEM from a resolution of
1.5mm to 15 mm for computational reasons before it is input
into the numerical model. A grid spacing of 1.5 mm severely
restricts the time step needed for numerical stability.

[31] In cases where ¢ > > 1, h.> > 1, and v,=0, the model
approximates a detachment-limited erosional environment. It
is typical for order of magnitude differences in discharge (and
stream power) values to exist between the top and bottom of
the slope. Shear stress may similarly vary by several orders of
magnitude between areas near the top of the slope, where there
is very little flow concentration, and areas at the bottom of the
slope. Large spatial variations in stream power and shear stress
between the upper and lower portions of the plot are accentu-
ated once channelization begins and encourage scenarios where
rills develop and deepen rapidly near the lower boundary and at
the same time are unable to form on upper portions of the slope
(Figure 2). Numerical results indicate that incision rates within
rills significantly increase with time, particularly in the lower
portions of the slope (Figure 2), whereas experimental data
suggest that rills deepen, on average, at an approximately lin-
ear rate after their initial formation (Figures 3a, 3d, and 4b).
The shear stress model predicts less rapid growth of rills near
the base in comparison to the stream power model but still fails
to qualitatively agree with experimental results (Figure 2). A
purely detachment-limited erosional environment appears to
be insufficient to reasonably describe the development of the
experimentally produced rill networks.

[32] Another possibility is to specify & > > 1, h.>> 1, and
v, > 0 to account for an erosional environment intermediate to
both the detachment-limited and transport-limited extremes.
In this manner, the rapid growth of rills at the lower boundary
may be impeded by the deposition of sediment as sediment
concentrations tend to be highest within the lower portions
of the developing rill network. The inclusion of the deposition
term reduces overall rill depth, but it appears to be insufficient
to significantly alter the large discrepancy between rill growth
rates within the upper and lower portions of the plot (Figure 2).

[33] Supply-limited entrainment can be modeled by choosing
values of ¢ and /.. that are small enough to have a nontrivial
effect. Higher water depths shield the underlying bed and de-
crease the rate at which material becomes available for fluvial
detachment and transport. Consequently, entrainment within
rapidly developing rills near the boundary tends to be supply
limited, while erosion rates in the upper reaches of the network
are limited by available stream power (or shear stress). Numer-
ical results obtained in such cases can contain rill networks that
evolve, both temporally and spatially, in a manner that is consis-
tent with the results of the Gomez et al. [2003] experiments
(Figures 3 and 4). Experimental results show rill networks that
extend farther up the slope than those suggested by numerical
results with the stream power model (Figures 5 and 6). The
shear stress model appears to better predicting rill development
near the upper boundary of the plot, especially for replication 2
(Figures 5 and 7).

[34] The model, on average, predicts less inter-rill erosion
than that observed in experiments. The average amount of total
erosion within inter-rill areas in replication 1 of the Gomez et al.
[2003] experiments is approximately 2 cm, but model-predicted
erosion in inter-rill areas is on the order of 0.01 cm and 0.1 cm
when using the stream power and shear stress erosion laws,

respectively. Model-predicted overland flow velocities and flow
depths tend to be low in these areas, and raindrop impact may
exert more control on erosion in such portions of the domain.
There is a possible offset zero in the elevation data for replica-
tion 2, and therefore, only data from replication 1 are presented.
Although this would not influence other computed statistics,
such as rill depth or number of rills per cross-slope transect,
an offset zero would influence the computed total erosion.

[35] Itis found that a spatially and temporally variable erod-
ibility coefficient results in model-predicted rill networks that
contain more realistic small-scale sinuosity. In reported results,
a mean value of k is chosen for the entire domain but the value
of x at a particular pixel is drawn from a uniform distribution
supported between values that are 30% lower and higher than
the mean. The same procedure is applied to k; when using the
shear stress model, but the distribution of values only varies
within a range of 10% around the mean. Temporal changes in
substrate erodibility are included by updating x at a pixel after
every 5 mm of incision. Larger variability within the erodibility
coefficients results in the development of isolated ‘“holes”
within the topography that are not consistent with experiments
while significantly less variability in x or k results in no notice-
able change in the rill network.

4.2. Network Geometry

[36] In order to explore controls on rill network geometry
and rill spacing, we performed numerical experiments with
an initially planar surface superimposed with a given mi-
cro-topographic roughness and subjected to steady rainfall.
The initial topography is generated by taking the sum of a
planar surface with slope S and a random surface, defined
by drawing numbers from a normal distribution with zero
mean and variance 7). The distance between the randomly cho-
sen elevations in both the x and y directions is denoted by J. In
the results discussed below, we use the stream power erosion
law and fix the following parameter values: 2.=0, v;=0,
=04, £=1/90000, and h.=0.01. The values for v,, ¢,
and h. are chosen to approximate a detachment-limited
environment, in which the scaling relationships developed
earlier are valid.

[37] There are many methods available for characterizing the
geometry (e.g., parallel, sub-parallel, dendritic, and sub-
dendritic) of large-scale drainage networks. A rill network,
consisting of many individual drainages with separate outlets,
presents additional difficulties. For instance, a network may
contain three rills that reach the end of the slope as first-order
channels as well as three rills that are fourth-order channels at
the lower hillslope boundary. In such cases, it becomes difficult
to assign a single geometry (dendritic or parallel) to the network
as a whole. Here, the ratio of rill junctions within the network to
the total number of rills, J,. is taken as a measure of the
networks’ geometry. Although simple, this method clearly
identifies when a rill network consists entirely of parallel chan-
nels. The dendritic nature of the network is assumed to increase
with J,. A junction is defined as any pixel that has two distinct
rills that drain into it. The mean number of junctions per rill is
calculated by first using a steepest descent flow routing
algorithm to identify rills as any pixel containing an upstream
contributing area greater than a threshold value. However, rills
may be more than one pixel in width (cross-slope direction).
A thinning algorithm, based on the Rosenfeld-Kak algorithm
[Krishnapuram and Chen, 1993], is applied to create a rill
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Figure 2. Mean rill depth computed from model-predicted rill networks corresponding to replication 1
of the low-roughness Gomez et al. [2003] experiments. (a) Results from using the stream power model
with ¢=100, h.=100, v;=0.002 cms™~' (d~0.006 mm), k=0.0175, and f=5 x 10~°. (b) Results from
using the stream power model with £=100, 2.=100, v;=0, k=0.0175, and f=5 x 107°. (c¢) The stream
power model (r=3.2 h) with £ =100 and /.= 100 predicts little rill development in comparison to that seen
during the experiments (=3 h). (d) Results from using the shear stress model with £=100, /.=100, v,=
0.002 cm/s, k,=3.5 x 107>, and f=5 x 10~°. (¢) Results from using the shear stress model with &= 100,
h.=100,v,=0, k,=3.1 x 1073, and p=5x 107 (f) The shear stress model (#=5 h) with £=100 and 4.=
100 predicts little rill development in the middle and upper portions of the slope in comparison to that

seen during the experiments (¢=5h).

map where each rill is a single pixel in width. At this point,
junction locations within the network can be determined. This
method is used over the previously described rill identification
algorithm because it generates a more continuous rill network
map, which is necessary for accurate identification of all junc-
tions within the network, rather than one in which a rill may
become discontinuous if its depth at a single pixel falls below
the 5 mm threshold. Although rill networks within this model
are continually evolving in time, we compute final statistics
for the networks once the average number of rills per cross-
slope transect within the lower third of the slope changes by
less than 10% over a time period of 1 h, a timescale compara-
ble to initial rill formation in many cases.

[38] Rills often develop at the lower portions of the slope and
extend upslope, deepening with time. Even in the absence of a
critical entrainment threshold, the lack of sufficient stream
power limits rill formation on the upper portions of the slope
(Figures 8-10). Occasionally, rills develop only in the middle
portion of the slope, leaving both the upper and lower ends
un-dissected. On the lower portion of the slope, the presence
of rills can be limited by the supply of entrainable material. At
points far enough down the slope, where the flow is sufficiently
deep to shield the substrate from raindrop impact, v can be small
and the flow is no longer capable of generating incisions within
the substrate (Figure 9). Rills then form in an area where flow is
sufficiently organized so as to be capable of providing differen-
tial erosion but terminate once the flow is deep enough to limit
the ability of raindrop impact to aid in the fluvial transport pro-
cess. In nature, rills that terminate at a given distance downslope

may indicate that typical overland flow events are incapable of
transporting material in the absence of other forcing mechan-
isms (such as rain splash or bioturbation) that act to break down
the soil into a more readily transportable state.

[39] Numerical results suggest that both regional slope and
surface roughness as well as the ratio of advective to diffu-
sive sediment transport mechanisms are important in deter-
mining network geometry (Figures 8, 11, and 12). The
drainage pattern suggested by the initial flow pathways is
dependent upon the slope and surface roughness, with
lower magnitudes of roughness tending to favor initially
parallel drainage patterns (Figures 13 and 14). Rill
networks developing on such surfaces also tend to be
parallel and can consist entirely of first-order channels.
When the magnitude of the surface roughness is high,
however, initial drainage patterns tend to be more
dendritic. In environments dominated by diffusive sedi-
ment transport, the final networks are often parallel while
they are dendritic, and more similar to the structure of the
initial flow pathways, when advective sediment transport
is dominant (Figures 13 and 14).

[40] Initial conditions with low-magnitude surface rough-
ness often have initial drainage systems that are parallel
(Figure 13). Rill networks that develop and persist on such
slopes are also parallel, but with a characteristic spacing that
is much greater than that suggested by the initial flow path-
ways (Figure 10). Numerical results suggest that within the
regime of parallel rilling, mean rill spacing tends to occur
on a length scale such that the timescale for the diffusion
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Figure 3. Mean rill depth computed for different portions of the slope. Mean rill depth is computed
from DEMs of the Gomez et al. [2003] experiments for (a) replication 1 and (d) replication 2.
Corresponding numerical model predictions with the stream power erosion law are computed with
&=1/144000, h.=0.003, and v,=0.0002 cm s~ for (b) replication 1 and (e) replication 2. Corresponding
numerical model predictions with the shear stress erosion law are computed with (¢) £ =1/130910, 4.=0.003,

and v,=0 for replication 1 and (f) £=1/120000, A,

=0.003, and v,=0 for replication 2. Note that ex-

perimental data for hours 1 and 4 are not included from replications 1 and 2, respectively.

of rill-like features is similar to the timescale associated with
rill incision (Figures 11 and 12).

5. Discussion

[41] Parallel rills appear to develop on a wider range of
initial surfaces than dendritic networks, whose formation
requires that roughness elements be preserved for a long
enough time to continually divert flow into preferred path-
ways with a dendritic structure. Even the case of parallel
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rilling, sufficient noise is needed to ensure that overland flow
concentrates to some degree or the initial surface will erode
uniformly. Parallel rills can form on both low and high
roughness initial surfaces, but for the idealized surface
roughness used in this study, the length scale on which they
develop appears to depend mostly on the erosional environ-
ment in which they are created.

[42] Often, a large number of periodically spaced flow path-
ways are present in the initial drainage, but only some fraction
of these develops into rills. When initial pathways of overland
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Figure 4. Comparison between model-predicted rill networks and experimental results of Gomez et al.
[2003] at £=5h. (a) Mean number of rills per cross-slope transect computed from DEMs of experimental
results and model predictions with &= 1/144000, h.=0.003, and v,=0.0002 cm s~ '. (b) Mean rill depth
computed from DEMs of experimental results and model predictions with &= 1/144000, 4.=0.003, and
v,=0.0002 cm s~ .
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Figure 5. Contour plots of DEMs from experiments of
Gomez et al. [2003]. (a) Replication 1 at #=5h. (b) Replica-
tion 2 at #=>5h. Contour intervals are 5 mm.

flow concentration are closely spaced, diffusive transport often
dominates any differential fluvial erosion within the resulting
tightly spaced erosional features. Less successful micro-rills
fail, and the mean spacing between the major flow pathways
increases. Remaining micro-rills are less susceptible to diffusive
infilling and often inherit a larger percentage of the upstream
contributing area. This process continues until fluvial transport
dominates diffusive transport within the developing rills. This
conceptual model indicates that the spacing of parallel rills is
set by the smallest spatial scale for which channel incision
occurs faster than the timescale for the diffusive smoothing of
rill-like features. Rather than developing at a scale that is
optimal, i.e., the scale at which rill-like features may incise the
fastest, this suggests that parallel rills form at the smallest spatial
scale at which they are capable of being preserved (Figures 11
and 12).
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Figure 6. Topographic contours of model-predicted rill
networks, using the stream power erosion law, at t=5h.
Model predictions corresponding to (a) replication 1 and
(b) replication 2 of the experiments performed by Gomez
et al. [2003]. Contour intervals are 5 mm.
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Figure 7. Topographic contours of model-predicted rill
networks, using the shear stress erosion law, at r=5h.
Model predictions corresponding to (a) replication 1 and
(b) replication 2 of the experiments performed by Gomez
et al. [2003]. Contour intervals are 5 mm.

[43] The applicability of this conceptual model for rill spac-
ing is likely to depend on the properties of the initial surface
roughness. If high magnitude, large-scale roughness elements,
which are not easily influenced by diffusive sediment trans-
port, continually route flow into the same parallel pathways,
the resulting rill spacing may be constant for a wide range of
6 values. In general, the proposed scaling relationship is not
likely to be applicable in situations where the initial overland
flow pathways are widely spaced enough so that the timescale
for the diffusion of the developing micro-rills is longer than
the timescale for rill incision. Additionally, more complex sur-
faces may route overland flow more efficiently into fewer
pathways, each having relatively high stream power (shear
stress), thus requiring smaller values of k (), Ry, and L to
accomplish the differential erosion necessary for rill develop-
ment. In this sense, the rill incision timescale is dependent
upon both the statistical properties of the initial surface noise
and the regional slope in a manner that is not understood. In
numerical simulations, 7 is chosen to be small relative to the
regional slope and we consider only a single frequency of
noise, often encouraging flow to initially concentrate on a
scale that is sufficiently small such that the timescale for the
diffusion of the developing micro-rills is shorter than the
timescale for rill incision.

[44] An important relationship between network geometry
and the timescale over which the roughness elements diffuse
was observed and discussed by Simpson and Schlunegger
[2003]. Changes between the geometry of the initial flow
pathways and the final network can be attributed to the
ability, or lack thereof, of the surface roughness elements
to repeatedly influence flow patterns. Slopes with large
roughness elements have the potential to give rise to den-
dritic networks, as the roughness elements are more likely
to maintain sufficient magnitude so as to preserve initial flow
pathways over longer time periods. The roughness elements
are capable of repeatedly altering the path of the flow into
the same preferred micro-rills and generally only lose this
ability once the developing channels are themselves capable
of pirating flow. Although dendritic rill networks require
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Figure 8. Model-predicted rill networks (black) formed on initially noisy, planar surfaces. Parameter
values: $§=0.15, n=0.03, and (a) 6=0.2, k=0.14, =10 (b) 6=0.2, k=0.03, f=10""; (c) §=0.05,
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surfaces with sufficient noise to generate an initially den-
dritic drainage pattern, it is common for such surfaces to de-
velop parallel networks due to the dominance of diffusive
transport on the scale at which the noise is imposed
(Figures 8 and 14b). Such observations suggest that the
erosional environment in which the system is formed may

have as significant of an impact on network geometry as
the initial topography.

[45] However, critical values of regional slope have been
suggested at larger scales that mark transitions between the
dominance of parallel and dendritic network types [Castelltort
etal.,2009; Jung et al., 2011]. We suggest that in cases where
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Figure 9. Model-predicted rill networks (black) formed on initially noisy, planar surfaces. Parameter
values: §=0.4, n=0.001, §=0.05, k=0.09, f=5x 10" 8 h.=0.003, £=1/120000, and (a) R=2cm

h™'; (b)R=4cmh™'.
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Figure 10. Comparison between initial overland flow pathways and the resulting parallel rill network.
(a) Final rill network and (b) major flow pathways on the initial surface.

the initial flow pathways are dendritic, it is possible for the
resulting rill network to transition from dendritic to parallel
in a gradual manner as the relative importance of diffusive sed-
iment transport is increased (Figure 13). This trend suggests
that the transition from dendritic to parallel rill networks is
not associated with any particular threshold value. On a larger
scale, the typical size of roughness elements and the range of
realistic parameter values may not allow for an analogously
smooth transition to occur in such instances. In the study of
rills, the magnitude of the roughness elements may vary by
several orders of magnitude and may be present at such a high
frequency that they are extremely susceptible to diffusive
smoothing over short timescales, with such changes making
them either sufficiently smaller and/or larger than the typical
depth of overland flow. One may be able to determine a mag-
nitude of roughness (at a given frequency) that serves as a
threshold below which parallel rill networks are favored, but
this would likely only include the one class of parallel net-
works that form from initially parallel drainage patterns and
not those which form from initially dendritic patterns.

[46] The landscape evolution equation is the most poorly
constrained aspect of this and similar models. The general form
of the equations can vary considerably depending on the domi-
nance of particular transport processes. Through particular

choices of the parameters &, /., and vy, several different types
of erosional environments are represented and two commonly
used empirical relationships are used to model fluvial erosion.
We find that when comparing numerical results to experimental
data, a detachment-limited erosion model leads to the formation
of deeply incised rills in the lower portion of the plot with no
appreciable rilling on the middle and upper parts of the slope.
Including the deposition of sediment within the model has the
effect of reducing downcutting in areas with high sediment con-
centration, which often correspond with rill locations. However,
when comparing experimental data with model predictions,
including the deposition of suspended sediment does not quali-
tatively change the results in a significant manner for the cases
tested. The idealized erosional environments that did not in-
clude rain splash as a limiting factor in fluvial erosion rates were
found to be inconsistent with experimental results within all
tested portions of the parameter space. The shear stress model
performs slightly better than the stream power model in cases
where E is not supply limited, but both models fail to be consis-
tent with experimental results. Shear stress and stream power
models both compare well with experimental data within
supply-limited erosional environments.

[47] Physical systems characterized by high rainfall rates,
small spatial scales, and shallow overland flow (such as the
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Figure 12. Model-predicted rill networks formed on a rough surface. The initial surface is the same in all
cases, but rill spacing decreases as . decreases. (a) A=1.1. (b) 1=0.9. (¢) 4=0.7. (d) 2=0.4. Contour

intervals are 1 cm.

Gomez et al. [2003] experiments) are systems in which one
might expect raindrop impact to exert control over the fluvial
detachment and transport of sediment. High rates of rainfall
combined with shallow (or discontinuous) overland flow pro-
vide the mechanism through which the soil can be repeatedly
impacted by raindrops. Numerical results are consistent with
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this hypothesis, demonstrating that such an environment can
be adequately modeled within a framework where the only
sediment available for fluvial transport lies within a damaged
layer of sediment created by the raindrop impact process.

[48] Raindrop impact may have an additional role within
the sediment transport process that is not included within
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Figure 13. The transition between parallel and dendritic rill networks. (a) J, calculated from final rill net-
works formed on planar surfaces with low relative roughness. (b) J, calculated from the corresponding ini-
tial overland flow pathways. (c) J, calculated from final rill networks formed on planar surfaces with high
relative roughness. (d) J, calculated from the corresponding initial overland flow pathways.
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Figure 14.

Initial flow pathways and model-predicted rill networks formed on a rough surface. (a) Major

flow pathways on the initial surface. Model-predicted rill networks formed on the same initial surface as in
(a) when (b) 8=0.44, (c) #=0.22, and (d) §=0.03. Model-predicted rill networks transition from parallel
to dendritic as 0 decreases. When 0 is small, the final rill network resembles the initial flow pathways.

the current model. Raindrops can splash sediment into the
water column where it may be subsequently transported. The
importance of this process is likely to depend on the depth of
overland flow, which shelters the underlying sediment from
raindrop impact, as well as the distribution of raindrop size
and momentum. We expect that including such a process
would result in only minor changes within the context of this
study by increasing erosion within inter-rill areas. An approx-
imate upper bound on the amount of erosion due to rain splash
induced entrainment of sediment can be found by estimating
the mass splashed per unit area per unit depth of rainfall,
im. Let a9 and v, denote the takeoff angle and takeoff velocity
of'a particle. Based on experiments, Dunne et al. [2010] define
im for a completely exposed soil surface as

2ngar{,

N v2 V2/T ¥ 2cosagsingg

where a=0.0104, j=0.927, and o= 11° are constants deter-
mined from experimental data and r, is the raindrop diameter.
Assuming a drop diameter of 3 mm, and allowing v, to vary
between 1 and 2m s~ ', consistent with reported takeoff veloc-
ities for sand particles of varying grain size [Dunne et al.,
2010], im can be estimated to be of order 1. With a rainfall rate
of4cmh ™" and a soil bulk density of 1200 kg m >, this would
imply a sediment detachment rate of order 10~ °m s ™. This is
likely an overestimate for several reasons. First, the presence
of overland flow will shield the underlying soil. Second, we
implicitly assume that all splashed sediment is entrained into
the overland flow. In shallow inter-rill areas, T and Q are both
small and splashed particles may settle back on the bed. Still,

im

(17)

erosion attributed to rain splash induced sediment entrain-
ment may be important for accurately predicting erosion
within inter-rill areas, especially over timescales longer than
several hours. However, given that erosion due to the direct
entrainment of sediment from rain splash is estimated to
occur significantly slower than rill incision (approximately
10> m s~ "), it is not included in this study.

[49] Sediment entrainment induced by rain splash may be
an important process that contributes to the mean lowering
of'inter-rill areas. A more complex formulation of frictional re-
sistance may also be important in determining erosion rates in
shallow inter-rill areas. Typical overland flow depths in inter-
rill areas may vary significantly in comparison to the size of
surface roughness elements, which may lead to changes in
the coefficient of friction in those areas [Lawrence, 1997].
The main focus of this study is rill morphology, but including
rain splash induced sediment entrainment and a variable
friction factor may lead to improved model predictions of
inter-rill erosion.

[s0] Analysis of the Gomez et al. [2003] experiments indi-
cates that rilling occurs at the upper portions of the plot on a
timescale that is surprisingly comparable to rill development
within the lower portions of the slope despite order of magni-
tude differences in stream power (and shear stress) within the
two regions (Figure 3). Under the assumption that stream
power and shear stress are good indicators of the fluvial de-
tachment rate of sediment, it is possible to attribute this effect
to a lack of readily transportable material. It is suggested from
experiments [e.g., Gabet and Dunne, 2003 ] that the interaction
between raindrops and the substrate is responsible for either
directly detaching sediment or disturbing the bed in a manner
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that makes sediment available for detachment by the flow.
When it is assumed that raindrop impact damages a layer of
sediment, which can later be more easily eroded, it has the
effect of limiting erosion rates at the lower portions of the
slope as well as providing a means for material to be more eas-
ily transported by the flow in the upslope portions of the plot
(Figure 3). The mathematical representation of this process
within the model is simplified, and the entrainment of undam-
aged bed material is not accounted for. It is likely that a second
critical threshold exists, particularly for large-scale hillslope
erosion problems, after which the flow is capable of transport-
ing undamaged bed material.

[5s1] One could compute E using friction slope in place of
bed slope, which is commonly used in many applications for
simplicity. We find that the difference between bed slope
and friction slope for a range of rainfall rates and various
stages of rill incision is minimal in most areas, with the two
slope quantities varying by less than 15% in more than 90%
of pixels. Attempting to reproduce experimental results using
a model with £ > > 1 is still not possible with a friction slope
formulation of stream power. When using the best fit
parameters for replications 1 and 2, the model-predicted mean
rill depth and mean number of rills per transect change by less
than 15% when using friction slope in place of bed slope.

[52] Inthe non-dimensionalization of the landscape evolution
equation, the erosional environment is assumed to be detach-
ment limited. In numerical results of rill networks on idealized
surfaces, the erosional environment only approximates such
conditions as v is finite. The values of & and /. were chosen
to be small enough to prevent rapid incision of well-developed
rills in the lower portions of the slope while still being large
enough to avoid the development of terminating rills (Figure 9),
an occurrence that might influence mean rill spacing but would
not be predicted by the detachment-limited model.

6. Conclusions

[53] A numerical model has been presented for a variably
erodible surface subjected to rainfall. The model accounts
for three modes of sediment transport: the direct transport
of material due to rain splash, the fluvial detachment and
transport of bed material damaged by raindrop impact, and
the deposition of suspended sediment. It is found that the
rate at which original bed material is damaged by raindrop
impact may serve as an important mechanism for limiting
entrainment rates. Model results agree well with experimen-
tal data when raindrop-aided sediment transport is accounted
for by allowing the substrate to develop a damaged layer of
sediment overlying the undamaged, non-erodible soil. A
simplified version of the model using excess stream power
or shear stress to determine entrainment rates, without any
limitations based on the availability of detachable sediment,
is found to be incapable of qualitatively reproducing rill
networks formed in physical experiments. Including the
deposition of suspended sediment within the model does
not have a significant qualitative effect on the ability of the
model to match experimental data.

[54] Rill network geometry is found to depend on the rela-
tive importance of diffusive and advective sediment transport
mechanisms, as quantified by a landscape Peclet number, as
well as the initial slope and magnitude of surface roughness.
Numerical results suggest that both parallel and dendritic

networks can form on surfaces with high magnitudes of initial
roughness while parallel networks dominate over a wide range
of parameter values when the magnitude of surface roughness
is small. Dendritic networks tend to form when channelization
occurs fast enough to develop the micro-rills suggested by the
initial flow pattern over a rough surface. Parallel networks
generally form when advective transport is small in compari-
son to diffusive transport or when the initial surface roughness
is small. We find no clear critical values of regional slope and/
or surface roughness that marks a transition from the preva-
lence of dendritic to parallel networks. On many of the simple,
random surfaces tested, network type can transition from par-
allel to dendritic as advective sediment transport becomes
more dominant than diffusive sediment transport. A scaling
relationship for the mean spacing of parallel rills is developed
based on a balance between the timescales for the diffusion of
rill-like features and fluvial erosion.
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