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Abstract

Introduction Interest in the use of sediment tracers as a tool
to complement traditional water erosion or deposition mea-
surements has increased due to the additional information
they provide, such as sediment source identification, track-
ing of sediment movement across the landscape at various
temporal and spatial scales, and estimation of soil ero-
sion rates. For these reasons, the utility and robustness
of sediment tracing approaches using a wide range of
substances and soil properties have been evaluated in numer-
ous studies.

Conclusions A review of established tracing approaches
identified five distinct groups of tracing approaches: fallout
radionuclides, rare earth elements, soil magnetism and mag-
netic substances, other tracers, and sediment fingerprinting
techniques. This paper describes the basic theory of each
tracing approach in assessing soil erosion and sediment
redistribution, describing their methodology and main ap-
plications, and summarizing the commonalities and differ-
ences between the approaches. It also identifies research
gaps and future trends.
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1 Introduction

Current rates of soil erosion are unsustainable (Pimentel 2006)
and rates of erosion by water could increase significantly over
the next century due to changes in both land cover (Yang et al.
2003) and precipitation (Nearing et al. 2005). Concerns about
the adverse effects associated with accelerated soil losses have
led to an urgent need for reliable quantitative data on the
extent and rates of soil erosion worldwide (Lal 2001). Such
data are required to: (a) obtain a better understanding of the
processes and the main controlling factors of water erosion;
(b) validate soil erosion/sedimentation prediction models; and
(c) provide a basis for developing scientifically sound land use
policies and selecting effective soil conservation measures and
land management strategies, including assessment of their
economic and environmental impacts (Toy et al. 2002;
Morgan 2005; Boardman 2006). Traditional techniques, such
as erosion plots and surveying methods for monitoring water
erosion, are capable of meeting some of these information
requirements but they have a number of important limitations
in terms of the representativeness of the data obtained, their
spatial and temporal resolution, associated spatial patterns
over extended areas, and the costs involved (Higgitt 1991).
Traditional monitoring and modelling techniques for soil
erosion/sedimentation require many parameters and many
years of measurement. For example, to obtain long-term ero-
sion data in agro-ecosystems, experimental plots have to be
carried out over decades to integrate the inter-annual variabil-
ity of climate and cropping practices (Mabit et al. 1999).

The quest for alternative methods of soil loss assessment,
due to water erosion to complement and enhance existing
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methods, has directed attention to the use of tracing approaches
for documenting rates and spatial patterns of soil redistribution
within the landscape. These approaches are used to determine
the rate of soil loss or sediment generation/production and to
track soil redistribution through the landscape. One of the main
reasons for the number of different tracing techniques available
is that no single tracer fulfils all the requirements of a tracer for
erosion and sediment dynamics. According to Zhang et al.
(2001), the ideal tracer would have the following characteris-
tics: (a) strong binding to soil particles or ready incorporation
into soil aggregates, (b) high analytical sensitivity, (c) easy and
inexpensive to quantify, (d) low background soil concentration,
(e) no interference with sediment transport, (f) low plant uptake,
(g) environmentally benign, and (h) available in variants with
similar, but distinguishable, physicochemical properties for
multiple tracking. These demands have led to increased spe-
cialization in the use of different tracer approaches. Most stud-
ies to date have compared the estimates of erosion and
sedimentation rates obtained from tracer analysis with model
predictions (e.g. Busacca et al. 1993) or conventional measure-
ments (e.g. Mabit et al. 2009), but no comprehensive literature
review has been published describing the uses and the applica-
tions of the various existing sediment tracer approaches.

A Dbibliographic research was carried out in June 2011.
Figure 1 presents the results of a search of the Web of
Science database (http://wokinfo.com/webtools/searchbox/)
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using the following as search terms in the title or as keywords:
“erosion and tracer” or “sediment and tracer” or “sediment
and tracking”. The search excluded reviews and tillage and/or
wind erosion studies. Only studies that used tracers to make a
determination of water erosion or sedimentation rates, or in
some cases relative erosion contribution, were considered in
this study and were further refined by manually checking that
the articles corresponded to experiments involving sediment
studies using tracers, as defined within the context of this
review. The threshold between small catchment and large
basin was set at 100 ha. Table 1 lists all the references
consulted to establish Fig. 1.

The aim of this review is to produce a synthesis of the
commonly used tracer approaches used in water erosion
studies, with three specific objectives: (a) to describe the
current tracing approaches, with an indication of the scale of
observation; (b) to describe the main applications of the
most utilized tracer approaches; and (c) to discuss limita-
tions of each approach that should be improved in the future.
The review begins with the most commonly used technique,
fallout radionuclides, followed by rare earth elements, mag-
netism, and other forms of tracers. The final section presents
an overview of sediment fingerprinting techniques, which
generally use multiple soil/sediment characteristics that are
usually naturally present, but heterogeneously concentrated,

across the landscape.
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Fig. 1 Bubble plot indicating the distribution of erosion studies with tracers found in the review by scale and kind of tracer
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Table 1 References of the erosion studies with tracers summarized in Fig. 1 by scale and kind of tracer

Tracer type

References

Fallout radionuclides

“Benninger et al. (1998), Dai et al. (2011), de Roo (1991), Kronvang et al. (1997),
Li et al. (2010), Martz and de Jong (1987), Olley et al. (1993), Porto et al. (2011),
Walling et al. (2000), Zhang and Walling (2005),

"Bacchi et al. (2000), Busacca et al. (1993), Brown et al. (1981), Chiu et al. (2008),
di Stefano et al. (1999), Estrany et al. (2010), Lance et al. (1986), Loughran et al. (1988),
Lu and Higgitt (2000), Mabit et al. (2009), Ming-Yi et al. (2006), Martz and
de Jong (1991), Mizugaki et al. (2008), Montgomery et al. (1997), Spomer et al. (1988),
Walling and He (1999b), Walling et al. (1999), Wilson et al. (2008), Yin and Li (2008)

“Bajracharya et al. (1998), Belyaev et al. (2010), Cuesta and Delgado (1997), Fifield
et al. (2010), Hassouni and Bouhlassa (2006), Higgitt et al. (2000), Kachanoski (1988),
Kachanoski and de Jong (1984), Li et al. (2009), Mabit et al. (2008b), Olson et al. (2008),
Quine et al. (1999a), Schuller et al. (2000), Sutherland (1992), Wallbrink et al. (2002),
1999: Walling et al. (2009), Xinbao et al. (1990), Zhang et al. (1998)

9Bernard et al. (1992), Quine et al. (1999b), Syversen et al. (2001), Wallbrink and Murray (1993),

Woolridge (1965)

Rare earth elements “Mahler et al. (1998)

Kimoto et al. (2006a), Polyakov et al. (2009, 2004)

“Deasy and Quinton (2010), Matisoff et al. (2001), Stevens and Quinton (2008),
Wude et al. (2008), Yang et al. (2008)

YKimoto et al. (2006b), Li et al. (2006), Michaelides et al. (2010), Polyakov and Nearing (2004), Pu-Ling
et al. (2004), Tian et al. (1994), Wei et al. (2003), Xue et al. (2004), Zhang et al. (2003)

Soil magnetism and magnetic
substances

c

dCaitcheon (1993), Dearing et al. (2001), Maher et al. (2009), Slattery et al. (2000),
Walling et al. (1979), Yu and Oldfield (1993)

bHardy et al. (2000), Royall (2001)

dArmstrong et al. (2010), Guzman et al. (2010), Parsons et al. (1993), Ventura et al. (2002)

Other tracers a

b

°Schwertmann and Schmidt (1980)

9Bennett et al. (2010), Mentler et al. (2009), Olmez and Pink (1994), Plante et al. (1999),
Riebe (1995), Sharma et al. (2009), Spencer et al. (2011), Wheatcroft et al. (1994),
Young and Holt (1968), Yu et al. (2011)

Fingerprinting studies

“Barcellos et al. (1997), Collins and Walling (2002), Collins et al. (1998), Cunha et al.

(2006), de Junet et al. (2009), Devereux et al. (2010), Fox and Papanicolaou (2008a, b),
Juracek and Ziegler (2009), Kouhpeima et al. (2011), Martinez-Carreras et al. (2010a, c),
Martinotti et al. (1997), Miller et al. (2005), Minella et al. (2008), Motha et al. (2003),
Nosrati et al. (2011), Poulenard et al. (2009), Rhoton et al. (2008), Rowan et al. (2000),
Russell et al. (2001), Rustomji et al. (2008), Sawhney and Frink (1978), Schoonover et al.

(2007), Walling et al. (2007)
°Fox and Papanicolaou (2007)

“Bellanger et al. (2004)
d

*Studies made at large catchments (>100 ha)
" Studies made at small catchments (<100 ha)
¢ Studies made at hillslope scale

4 Studies made at small plot or laboratory scale

2 Tracing approaches
2.1 Fallout radionuclides

Fallout radionuclides (FRN), such as '*’Cs (half-life, #,=
30.17 years), 'Be (t1,=53.12 days), and >'°Pb (¢1,=

@ Springer

22.26 years), are the most extensively used soil redistribution
tracers reported in the scientific literature (Walling 2003; Mabit
et al. 2008a), representing approximately half of all the studies
included in Fig. 1. Of the various FRN used, '*’Cs is by far the
dominant one."*’Cs is an anthropogenically derived radioiso-
tope produced in great quantities and released into the
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stratosphere and globally distributed during the atmospheric
testing of thermonuclear weapons from the mid-1950s to the
1960s. Fallout of '*’Cs began in 1954, peaked in the 1960s
after moratoriums on testing and the Test Ban Treaty signed in
1963, and fell to almost zero levels by the 1980s. Locally,
additional '*”Cs was released by the Chernobyl nuclear power
plant accident in 1986, adding a second spike. This radioiso-
tope has been used in a wide variety of depositional environ-
ments to determine erosion and sedimentation rates for medium
time scales (tens of years) across a broad range of spatial scales:
from hillslope (e.g. Wallbrink and Murray 1993) and small
catchment (e.g. Higgitt et al. 2000) to large basins (e.g. de
Roo 1991). By combining field measurements with model
analysis, '*’Cs has also been used to determine rates of water
and tillage erosion (e.g. Quine et al. 1999a) or to differentiate
between surface, subsurface and stream bank sources (Li et al.
2003; Zhang and Walling 2005). Two other radionuclides have
been tested and validated: 2'°Pb to provide longer-term esti-
mates (approx. 100 years) of soil redistribution magnitudes
(e.g. Walling and He 1999b), and more recently, 'Be to estimate
short-term erosion and sedimentation rates (e.g. Walling et al.
1999). 2'°Pb is a naturally occurring product of the ***U decay
series derived from the decay of gaseous “*’Rn, the daughter
of *°Ra. **°Ra exists naturally in soils and rocks and decays in
situ to generate 219pp, This is termed supported 2'°Pb and is in
equilibrium with the amount of **°Ra in soils. The 2'°Pb used
as a soil erosion tracer is unsupported >'°Pb (*'°Pb.,) and
reaches the soil as fallout, as a result of the diffusion of small
amounts of **’Rn to the atmosphere. "Be is a naturally occur-
ring cosmogenic radionuclide produced in the stratosphere and
troposphere as a result of nitrogen and oxygen spallation and
subsequently deposited as fallout.

These three FRN have a strong affinity to fine soil particles
and are mostly mobilized and transported by physical pro-
cesses such as water, tillage, and wind erosion (Mabit et al.
2008a). In fact, for using an FRN as a soil erosion tracer it is
important that it has a specific environmental behaviour in-
cluding chemical stability and a limited mobility in soil envi-
ronments. For example, ceasium is the most electropositive
and the most alkaline element among alkali metals. Therefore,
after its deposition at the soil surface it is rapidly and strongly
adsorbed on the cation exchange sites of fine soil particles
(clay and organic particles) and can thus be considered as
being essentially non-exchangeable (Davis 1963; Lomenick
and Tamura 1965; Ritchie and McHenry 1990). The '¥’Cs
intercepted by the plant canopy can be transferred to the soil
via wash-off and the biological uptake from soils by vegeta-
tion can be considered negligible (Dahlman et al. 1975). If
adsorbed by the vegetation, the '*’Cs is released to soils when
the vegetation dies and decays (Davis 1963; Rogowski and
Tamura 1970a; b; Dahlman et al. 1975). Therefore, lateral
redistribution of '*’Cs in soils by biological and chemical
processes is insignificant in comparison with the movement

of '*’Cs by physical processes, i.e. erosion and transport by
water and wind (Ritchie and McHenry 1990). For these rea-
sons, and since '*’Cs fallout was relatively uniformly distrib-
uted across the landscape and strongly adsorbed by soil
particles, it has been used worldwide under various agri-
environmental conditions as a soil tracer for studying the
physical processes of erosion and sedimentation and to pro-
vide quantitative information on their rates and spatial patterns
(e.g. Mabit et al. 2008a; Ritchie and Ritchie 2008).

In addition to these three main FRN (137Cs, "Be, and
219pp, ) already present into the soil, other radionuclides
that have been used as erosion tracers include >’Fe (t1p=
44.51 days; e.g. Woolridge 1965) and '**Cs (#,,=2.06 years;
e.g. Syversen et al. 2001). These two radionuclides were
incorporated into small controlled experimental areas
(points and lines of 1.5 m in a bare area and a tilled plot
of 225 m?, respectively) as a liquid solution, providing a
usable method for tracing surface soil movement at a small
scale for local investigations.

The determination of erosion and/or sedimentation rates
in the landscape is based on: (a) the determination of the
reference inventory of the radionuclide in stable and
undisturbed locations (sites such as flat permanent pastures
or forests reflecting the original fallout input, without ero-
sion and/or deposition processes) and (b) the comparison of
this undisturbed tracer inventory and its vertical distribution
to the investigated disturbed soil profile. This inventory is
periodically replenished in the case of "Be and *'°Pby,. In
the case of '*’Cs fallout, the inventory decreases according
to its radioactive decay. Figure 2 illustrates the typical
distribution of the areal activity of the various FRN in
reference sites (undisturbed soil) and cultivated sites
exhibiting deposition or erosion. In undisturbed areas,
137Cs and 2'°Pb,, are distributed mostly in the first 10 cm
of the soil, with the highest concentration close to the
surface and quickly diminishing with depth. This reflects
the existence of downward migration due to soil processes,
such as bioturbation or preferential water flow. Because of
its short half-life, 'Be is only found in the first few
centimetres of the topsoil. When applied to the soil surface
as a solution in short-term experiments, the radionuclides
are mostly concentrated in the top 2—4 cm of the soil
(e.g. Syversen et al. 2001).

The first step in using the FRN approach is to select a
representative reference site as close as possible to the study
area and to determine a sufficient number of samples to
include the uncertainty linked to the spatial variability of
the initial fallout. To avoid bias of the FRN reference level, a
repeated-sampling concept can be applied. It requires two
sets of samples and use of point-specific values, the FRN
inventories of the first set of samples being considered as
the reference levels (e.g. for '*”Cs see Tiessen et al. 2009; Li
et al. 2011). Because of the mechanisms regulating fallout

@ Springer
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Fig.2 Typical depth distributions of Fallout radionuclides (from /eft to
right: 37Cs, ?'°Pbe,, and "Be) in an undisturbed (a) and a cultivated
(b) eroded soil in Morocco. NB: The uncertainty of the measured mass

distribution, the concentration of these tracers in reference
areas is subjected to spatial variability at global, regional,
field and plot scales. Sutherland (1991, 1996) suggested that
in undisturbed areas, approximately 10 sampling points will
usually be necessary to provide an accurate estimate for the
reference inventory. In investigated cultivated areas, the
number of samples taken to determine inventory values
varied widely from a few cores per hillslope transect
(e.g. Cuesta and Delgado 1997) to up to 60 on agricul-
tural fields (Owens and Walling 1996), and between 68
and 80 in small catchments (Ritchie et al. 2009 and
Wallbrink et al. 2002, respectively). Soil samples are
usually collected to a depth (usually 50-60 cm) sufficient to
measure the total content of radionuclides present in the
profile and are often subdivided into regular depth in-
crements (usually 5-10 cm in cultivated area; 2.5 or 5 cm in
the case of the reference site) to obtain the radionuclide’s
vertical distribution.

Typically the amount of a specific radionuclide within the
soil profile is quantified in mass activity (Bqkg ') or areal
activity (Bqm ?) using gamma spectroscopy.

The next step is to translate the radiotracer areal activities
into erosion or sedimentation rates (tha ' year ') using appro-
priate theoretical conversion models. These models are for-
mulated for both cultivated and uncultivated soils, for each
FRN (137Cs, 21%pp, ., and 7Be), and are associated with a user-
friendly software for their implementation (Walling et al.
2002). The election of the model and the assumptions made
in its calibration have a direct impact on the soil redistribution
magnitude obtained (Walling and He 1999a). As an example,
the '*’Cs conversion models are summarized in Table 2. One
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of the most widely used models is the Mass Balance Model
(MBM 1).
dA(?)

T (1)

I(r) — (l + S)A(t)

Where ¢ is time since start of '*’Cs accumulation, A(7) is
cumulative activity per unit area, R is erosion rate, d is
cumulative mass representing average plough depth, A is a
decay constant for '*’Cs, and I(f) is an annual deposition
flux at time ¢.

The results obtained with the MBM 2 model (see Table 2)
are likely to be more realistic than those provided by the
simplified MBM 1. The results obtained with the MBM 2
involve additional parameters that take into account several
specificities of '*’Cs that improve the precision of the soil
loss assessment as compared to real measured erosion rates
(e.g. Fulajtar 2000). However, in order to use this model,
some parameters (e.g. relaxation mass depth and the pro-
portion of the annual '*’Cs input susceptible to removal by
erosion) are more difficult to specify. The MBM 3 model
(see Table 2) represents an important improvement over the
other existing models because it takes into account the
effects of tillage-induced soil movement processes which
could lead to soil loss rates as high as those by water erosion
(see Li et al. 2007). However, the advanced models (MBM 2
and 3) can only be used for individual downslope transects.
By using one of the conversion models in Table 2 it is
possible to obtain point values of erosion or sedimentation
rates from punctual '*’Cs activity levels, interpolate the data
and create a soil redistribution map (Ritchie et al. 2009)
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Table 2 Review of models for estimating erosion rates from '*’Cs measurements from models requiring a lower number of information (less
parameters) to be used (upper part of the Table) to those requiring more information (more parameters), to be used (lower part of the Table)

Model

Approach

Empirical relationship™ °
Proportional model®

Empirical measurements from plots measurements.

Assume complete mixing of '*’Cs in the plow layer. Soil loss is proportional

to '*7Cs loss since the beginning of accumulation.

Mass balance model (MBM 1)*

It models the change of '*’Cs in soil profile due to time changes in '*’Cs inputs,

losses due to erosion and incorporation of soils without '*’Cs from
below the plow layer.

Profile distribution model®

Assuming a given shape of the '*’Cs profile distribution with depth

in undisturbed soil.

Refined mass balance model (MBM 2)*

Including also the removal of freshly deposited '*’Cs before cultivation and

grain size selectivity associated with sediment mobilization and transport.

Mass balance model including tillage (MBM 3)*
Diffusion and migration model®

It is a mass balance model including soil redistribution caused by tillage.
It includes the redistribution of '*’Cs into the soil trough diffusion

and migration processes.

* Applicable to cultivated soils
® Applicable to undisturbed soils

and/or average the values in homogeneous areas and
establish a full sediment budget (Wallbrink et al. 2002).
Complementary and in-depth information about the differ-
ent FRN conversion models and their parameters have been
recently provided by Walling et al. (2011).

Recently, other radioisotopic soil tracers have attracted
the attention of the research community, for example pluto-
nium isotopes (Everett et al. 2008; Tims et al. 2010; Hoo et
al. 2011; Ketterer et al. 2011), such as 239py (t1p=
24110 years) and **°Pu (1,,=6561 years), which are alpha
emitters and originated from nuclear weapon test fallout
like '*”Cs. Their main advantage over other FRN is the long
half-life of *°Pu and **°Pu, which ensures their long-term
availability to be used as tracers for environmental purposes.
However, they do have limitations, such as the need for
acquisition of accurate detection.

2.2 Rare earth elements

Rare earth elements (REE) represent approximately 13 % of
tracer studies found in Fig. 1 and provide a good example of
the issues that can arise when developing the use of a
specific tracer in water erosion studies for different soils
and different scales. This approach relies on REE being
incorporated into the soil prior to the experiment, and the
determination of the concentration in the soil and sediment
after a period, from weeks (e.g. Zhang et al. 2003) to years
(e.g. Kimoto et al. 2006a).

There are many small-scale studies using REE as tracers,
including: at the flume scale to study detachment and deposi-
tion processes (e.g. Michaelides et al. 2010) and rill erosion
processes (e.g. Lei et al. 2000); at the plot scale (e.g. Tian et al.
1994) to study the impact of different topographical positions

on soil erosion under simulated rainfall; and at the hillslope
scale (e.g. Deasy and Quinton 2010) or the small catchment
scale (e.g. Polyakov et al. 2004, 2009). Deasy and Quinton
(2010) tagged only the upper millimetres of undisturbed soil
in short-term experiments. They used three REEs to tag upper,
mid and downslope hillslope areas with a length varying from
66 to 99 m. Within these hillslopes a fourth tracer was used to
tag the soil in the tractor wheel marks. They showed after three
rainfall events that the upslope area was the most eroding area
of the hillslope, while the wheel tracks acted mainly as con-
duits for sediment transport. Polyakov et al. (2004) divided a
0.68-ha catchment into geomorphological homogeneous areas
and tagged each one using a different REE. The sampling
density used in this study was 94 sampling points over
6,800 m?, each of which comprised 30 sub-samples taken in
a 2-m radius around the sample point. Using sediment samples
from different rainfall events and soil samples taken from the
upper 30 mm of soil, the authors studied sediment redistribu-
tion and sediment budgets within the catchment for a period of
approximately 5 months. Kimoto et al. (2006a) followed a
similar approach in the same agricultural catchment to obtain
sediment redistribution and sediment budgets for the different
geomorphological units of the catchment. However, they
point out that just the upper millimetre of the soil was tagged
and therefore was suitable only for short-term studies as the
tagged soil layer may be rapidly eroded. REE can also be used
at larger spatial erosion scales, such as studying the sediment
transport in a karst area in which a lanthanide-labelled clay
was deployed (Mahler et al. 1998).

REE can be detected at very low concentrations (up to parts
per billion) using neutron activation analysis (INAA, e.g.
Orvini et al. 2000) or by inductively coupled plasma-mass
spectrometry (ICP-MS) after acid extraction (Zhang et al.
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2001). The majority of the REE studies use ICP-MS with a
similar acid extraction procedure, most of them following the
method of Zhang et al. (2001), although some use a slightly
modified procedure (e.g. Deasy and Quinton 2010).

To convert REE concentrations into erosion and deposi-
tion rates, conversion models (equations) are necessary.
Polyakov and Nearing (2004) confirmed the validity of the
formulas through an indoor-flume experiment using simu-
lated rainfall over a uniform slope of 4 mx4 m divided in
segments and tagged with different REE. By sampling the
soil surface and the sediment measured at the outlet of the
flume and determining the REE concentration before and
after each rainfall simulation, they were able to determine
erosion and sedimentation rates along the flume slope as
well as sediment source during the simulations. The amount
of sediment delivered from segment ; to the flume outlet in

the time-step ; (Lfl: ), can be calculated as:

L[:Tjiq

=7y @

Where ; is the tracer or segment index, ; is the time-step
index, 7 is the total mass of the sediment delivered at the
flume outlet during time-step ;, and O is the original average
concentration of the tracer for segment ;. REE concentration
CC is obtained as the result of correcting the direct ICP-MS
measurements for soil background and the extraction effi-
ciency of each element. Eq. (2) can be rearranged to deter-
mine a ratio of sediment discharged to that originated from

each segment ; during time ;, R):

. cd U
R=—""L=_
o, T

3)

The sum of the sediment ratio for each segment gives the
overall sediment ratio, defined as the ratio between the
amount of sediment delivered to the outlet and the amount
of sediment generated on hillslopes, for the whole flume at
each time step. This should be equal to 1 if the tracer is
completely recovered. Weighting each Ré for the sediment
mass delivered at each time step j, it is possible to determine
the sediment ratio for the whole rainfall simulation. Zhang
et al. (2003) also determined erosion and sedimentation
rates at a given flume position comparing erosion rates
calculated from REE concentrations in surface soil samples
taken before and after six rainfall simulations with determi-
nations of sediment loss based on high resolution scanning
of the soil surface at the same time intervals. The close
agreement between the approaches and R values close to 1
demonstrated the applicability of the REE method in labo-
ratory experiments, which then led to its successful use at
the field scale (e.g., Polyakov et al. 2004). In addition, by
analysing sediment collected at the end of flume during the

@ Springer

simulations for REE, it was possible to provide information
on changing sediment sources during the simulations.

There are some other concerns that need to be addressed
regarding the use of REE as tracers. Several studies have
explored methods of incorporating these tracers into the soil
and the selectivity of their binding to different aggregate
sizes, all of them using REE in their oxide forms. Zhang
et al. (2001) found that the best way to incorporate these
tracers into the soil was by serial dilutions with dried soil
sieved to 6 mm and pre-wetted with deionised water to
approximately 15 % water content. When applied in larger
field experiments, the application methods varied: spreading
incubated tagged soil on the surface followed by a light
tillage, as done by Polyakov et al. (2004) in a small agri-
cultural catchment; spreading the tagged soil on the surface
followed by water spray to improve binding to soil aggre-
gates (e.g. Polyakov et al. 2009); excavating soil pits and
refilling with tagged soil in selected areas of a hillslope (e.g.
Yang et al. 2008); spraying as water solution in wheel track
areas along a hillslope (e.g. Deasy and Quinton 2010); or by
mixing REE with sand before spreading (e.g. Stevens and
Quinton 2008). In all the cases, the interpretation and
analysis of the experimental measurements were condi-
tioned by the initial distribution of the tracer along the
soil profile, which was restricted to the upper few millimetres
in the case of surface applications of Polyakov et al. (2009)
and Deasy and Quinton (2010), and deeper in the case of
Polyakov et al. (2004).

The second consideration is the selectivity in REE bind-
ing to soil aggregates of different sizes. Zhang et al. (2001)
determined the concentration of five REE in tagged soil
aggregates separated by wet sieving. The soil used was
well-structured silt-loam soil and the results in Fig. 3 sug-
gest a more or less homogeneous distribution along different
aggregate sizes. These results support the assumption of
non-selective binding among the soil aggregates used in
the calculations of tracer erosion rates made in experiments
using REE on these kinds of soils (e.g. Zhang et al. 2003;
Polyakov and Nearing 2004). However, this assumption of
non-selective binding to different soil aggregates is not
always achieved, as in Kimoto et al. (2006b), who made a
similar analysis using the same five REE in a coarse-
textured soil in a semi-arid area. Table 3 shows the trend
towards an increased concentration in the finer aggregate
sizes. Kimoto et al. (2006b) explained this trend as a func-
tion of the higher clay content of the finer aggregate sizes,
which provide the chemically active clay surfaces to which
the REE bind. They suggest that in situations where selec-
tive binding takes place, the REE analysis should be made
by separating samples into sub-samples of aggregate sizes
that present homogeneous binding of REE—which in-
creases the time, cost and complexity of the analysis—and
including those differences in the calculations of soil erosion
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Fig. 3 Total extractable rare
earth element (REE)
concentrations of the tagged
REE-tagged soil (whole) and
individual aggregate size
groups after sieving (adapted
from Zhang et al. 2001,
published with the permission
of Soil Science Society

of America 2012)

rates. Alternatively, the tagged soil that is applied to the soil
surface may be separated by size fractions prior to field
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application so that each size fraction may be incubated with
the same, desired concentration of REE (Polyakov et al.

Table 3 Total extractable REE concentrations of the REE-tagged soil and individual aggregate size groups after sieving (adapted from
Kimoto et al. 2006b, published with the permission of Elsevier 2012)

Particle size group Particle size (mm) Ratio
Kendall area Lucky Hills area
La Pr Nd Sm Gd La Pr Nd Sm Gd
Group D 4.7-8.0 2.5 1.9 7.1 2.1 5.8 2.1 1.4 4.3 3.1 5.5
Group C 2.0-4.7 4.2 4.0 8.6 5.0 11.9 4.0 2.8 7.6 6.6 10.3
7-2.0 5.8 6.7 11.5 8.6 23.1 4.4 3.0 9.7 9.0 14.2
3-7 7.4 9.2 15.3 12.4 31.5 4.4 33 10.0 10.6 16.4
Group B 18-3 5.7 7.2 11.7 10.1 23.3 7.0 5.2 15.4 17.0 249
.09—-.18 6.7 9.0 14.0 12.4 31.3 8.5 7.2 15.3 19.7 30.2
Group A .04-.09 33.0 51.6 439 47.5 126.3 19.3 18.1 27.7 34.8 60.9
.02-.04 96.9 110.3 77.3 103.2 2344 55.1 55.8 53.1 50.6 131.5
.01-.02 95.7 103.1 76.0 77.9 215.8 493 104.9 50.4 39.3 173.2
<.01 41.0 473 353 24.1 66.5 50.3 54.0 40.8 26.3 96.5
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2009). Soil losses would be overestimated in these situations
of preferential binding and selective transport of different
aggregate sizes. Therefore, it is important to determine this
selectiveness by comparing aggregate distributions of
tagged and untagged soils and textural class of sediment.
The studies of Zhang et al. (2001) and Kimoto et al.
(2006b) also demonstrated that, as expected, due to their
strong binding to soil particles, REE was not leached in soil
column experiments.

2.3 Soil magnetism and magnetic substances

Magnetic tracing studies refer to approaches using magnetic
properties in two different ways. One discriminates sedi-
ment sources through the natural magnetic properties of soil
constituents (e.g. Dearing et al. 2001), and the other ap-
proach uses magnetic tracing substances, incorporating
them into the soil and measuring their concentration and
distribution in soil and sediment before and after an exper-
iment. Table 4 summarizes some of these magnetic proper-
ties measured in both kinds of studies, which are based on
measuring the magnetization of the sample under different
magnetic fields. It is beyond the scope of this review to
provide a thorough discussion of the magnetic properties of
minerals, but a good introduction can be found in several
texts (e.g. Maher 2007).

For source discrimination, soil and sediment processing is
similar to that described in the fingerprinting approach (see
below), as it is based on the use of magnetic properties
naturally present in soils materials. Magnetic properties of soil
mineral constituents, especially iron oxides (magnetite,
maghemite, hematite, goethite and pyrrohite), allow for the
discrimination of different types of soil. Bias introduced by
selective transport is a major concern and has been addressed
by processing the samples and analysing only the material
most likely to be transported. For example, Slattery et al.
(2000) analysed material screened to <63 um, because in their

6.2 km? English study catchment there was no evidence of
suspended sediment of a larger size. Maher et al. (2009)
analysed the medium sand fraction between 250 and
355 pum, because this was best suited for the transport pro-
cesses in their study of tropical sediment provenance in NE
Australia. On other occasions, the sample has been divided
into sand, clay and silt fractions, as in Yu and Oldfield’s
(1993) sediment source study for a reservoir in Spain. It is
also possible to correct the bias by specific surface or empir-
ical functions, as in the case of the fingerprinting studies
described in the next section. The interpretation of magnetic
fingerprinting has relied on a variety of statistical approaches,
from full un-mixing models (e.g. Yu and Oldfield 1993;
Slattery et al. 2000) and to alternative approaches such as
cluster analysis (e.g. Maher et al. 2009).

The second main approach is the incorporation of a
magnetic tracer to the soil, whose concentration can be
determined from measurements of its magnetic properties.
In the case of incorporated magnetic tracers, these studies
have been made at small scales (from 1 to 522 m?). Parsons
et al. (1993) applied crushed magnetite in selected transects
perpendicular to the longitudinal slope on a 18 m widex
29 m long plot during rainfall simulations to study interrill
sediment transport, noticing potential problems due to the
different density of the tracer compared to soil aggregates.
Ventura et al. (2002) applied magnetic beads which were
encased in resin over the soil surface to study detachment
and deposition on a 4-m> plot under simulated rainfall. The
magnetic tracer allowed the identification of net detachment
and deposition areas. However, the quantification of erosion
rates would need a wider range of sizes and densities of the
tracer as a preferential sediment sorting was observed,
which enriched the tracer concentration in the sediment.
Hu et al. (2011) identified areas of deposition or detachment
using simulated rainfall and inflow experiments to simulate
the interrill and rill components of soil erosion. For that
purpose, they developed five combinations of fine soil,

Table 4 Summary of magnetic soil properties measured in erosion tracers in soils

Property

Brief description

Low frequency magnetic susceptibility y;

Magnetic susceptibility is the ratio between the magnetization of the material

and the magnetic field strength under which is measured. In this case
at low frequency (0.47 kHz)

High frequency magnetic susceptibility y;
Isothermal remanent magnetization /RM

Magnetic susceptibility at high frequency (4.7 kHz)

Isothermal remanent magnetization is the remanence left in the sample after

a steady field (1-1000 mT) has been applied for a short time (e.g. 100 s)
and then switched off at a constant (isothermal) temperature, often room
temperature. It is classified depending on the strength of the field, e.g. soft
(0-20 mT), mid (20-300 mT), hard (300-1000 mT)

Saturated isothermal remanent magnetization SIRM
Anhysteretic remanent magnetization ARM

It is the maximum IRM

Magnetization acquired by the combined effects of a large alternating

field and a small DC field
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magnetic powder and fly ash with cement or bentonite, three of
which could not move in phase with soil. Most of these studies
measured the magnetic susceptibility of soils (m*kg™"), which
can be determined in the laboratory or directly in the field.

Guzman et al. (2010) used silt-sized magnetite mixed by
serial dilutions with four different soils. They carried out
rainfall simulations in 1 m? boxes to study the behaviour of
the magnetite as an estimator of soil losses, measuring the
variations of magnetic susceptibility before and after the
simulations. This approach identified the need to correct
for differences in soil bulk density after the simulations
and the selective transport of the finer soil fraction that
tended to be enriched in tracer using:

wel(52)- (5

Where x, and x,are the net magnetic susceptibility of the
soil before and after the rainfall simulation and f; represents
an increase of the magnetic susceptibility of the sediment
compared to the original tagged soil due to the possibility of
selectivity in the transport of the tracer with sediment. f;. is
the ratio of the initial bulk density divided by the bulk
density at the sampling time. One limitation of this model
is the upper limit of £, is equal to one, which considers the
decrease of bulk density of expansive soils after the rainfall.
As with previous tracing approaches, magnetic tracers also
require the use of a conversion model to calculate total soil
losses, based on the assumption that losses of net magnetic
susceptibility, and therefore, losses of the tracer are propor-
tional to soil losses S:

w

Where w is the weight of the tagged layer before the
simulations and a is the tagged area

A recent approach has been proposed by Armstrong et al.
(2010), who enhanced soil magnetic properties through
intense and localized heating. This could be useful at small
scales where areas do not present significant differences in
natural magnetic properties. Magnetism is also commonly
used as a tracer in the study of sediment dynamics following
wildfire, as fire has been shown to enhance the magnetic
signature of soil allowing for the discrimination between burnt
and unburnt areas (e.g. Blake et al. 2000).

2.4 Other tracers

A final set of erosion tracer studies are those identified as
“others”, grouping alternative approaches that have been, or
are being, developed as potential soil tracers. Most of them
are preliminary studies at a small scale and found only in a
few instances in the literature review.

Young and Holt (1968) used fluorescent glass particles.
Their bulk density (2.6 gecm ) and size (44-125 um) were
similar to that of the soil mineral particles. They were ob-
served with UV light after rainfall simulation experiments at
plot scale (4 mx 10 m). Plante et al. (1999) developed labora-
tory scale ceramic tracer spheres with a 13 % Dysprosium
concentration that could be quantified using instrumental neu-
tron activation analysis. Schwertmann and Schmidt (1980)
described the use of Cu applied to the soil as fungicide as a
tracer to determine long-term soil erosion in a way that re-
sembles some of the early applications of '*’Cs. Another
alternative has been the use of sediment material segregated
by grain size and labelled with gold and silver after immersion
in a solution with these elements; their concentration is then
measured using instrumental neutron activation analysis
(Olmez and Pink 1994). Wheatcroft et al. (1994) used this
approach in a preliminary study of sediment movement in
Massachusetts Bay, USA. Sharma et al. (2009) presented
preliminary results of a polymer microsphere tracer. Each
microsphere was coded with a unique DNA sequence, of
which there are essentially limitless combinations, and can
be measured using real-time polymerase chain reactions.
These polymers are also relatively short-lived, which can be
an advantage in some experimental conditions. At the labora-
tory scale, Mentler et al. (2009) presented the first results of
the potential use of organophilic clays as sediment tracers in
erosion studies, obtaining extraction efficiencies of about
85 %, and Spencer et al. (2011) presented the results of a field
experiment using holmium-labelled montmorillonite to track
fine sediment in urban water management systems.

3 Fingerprinting studies

The second largest group of tracing studies in Fig. 1 is
grouped under the generic name of fingerprinting studies.
These are discussed as a separate group because this approach
is focused on identifying the source of sediments. These
studies are based on comparing the composition, for a given
set of soil properties (considered as natural tracers), of the
sediment collected at the end of a catchment with the soil
properties from different areas within the catchment. Using
this approach, it is possible to identify what fraction of the lost
sediment at the catchment outlet or deposition reservoir comes
from each area of the catchment. A large number of different
properties (physical, chemical, or biological) have been used
in fingerprinting studies, and these are summarized in Table 5.
The number and type of properties used in specific studies
varies, depending on the catchment characteristics, objectives
of the study, and availability of analytical capability.

Some studies use this approach at a small scale with a small
number of properties. Bellanger et al. (2004) identified and
monitored sources of soil organic matter in runoff water in
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three agricultural plots (30 m?) using the ratio of 5'°C and
5'°N isotopes as discriminating properties. Fox and
Papanicolaou (2007) used the same properties to distinguish
between sediment coming from upland rillinterrill erosion
and floodplain headcut erosion in a small agricultural catch-
ment (0.71 km?). For larger areas, as in the study of Russell
et al. (2001), who established the origin of suspend sediment
within two agricultural catchments (<4 km?), a larger number
of determinants were selected—between 8 and 12 depending
on the study catchment and the objective. Most of these
studies have been developed at the large basin scale where
differences in soil properties are easier to establish. The study
of Rhoton et al. (2008) discriminated sediment sources of a
150-km? catchment from six different sub-catchments using
nine physical properties, 15 chemical properties, a stable
carbon isotope (5"*C) and radionuclides ("*’Cs, “°K, ***Ra)
measured in soil samples and sediment.

Soil and sediment sampling design depends on the study
catchment, the nature of the properties selected and particular
conditions of each study and requires the use of geostatistical
techniques and variograms to optimize sample numbers
(McBratney and Webster 1983). Small et al. (2002) described
the principle sources of uncertainty within fingerprinting stud-
ies and developed a Bayesian Monte Carlo-based methodol-
ogy to assess the importance of sampling design.

Viscarra Rossel et al. (2006) provide a review of studies
using NIR-Vis and other spectroscopic techniques that dem-
onstrate their potential for soil and sediment characterization.
For instance, Cafiasveras et al. (2010) used diffuse reflectance
spectroscopy for categorising soil zones through soil aggre-
gate stability estimations. Similarly, Martinez-Carreras et al.
(2010a, b) used a spectra-reflectance-based fingerprinting
approach for documenting suspended sediment sources dur-
ing storm runoff events in an agricultural catchment in
Luxembourg, although these authors found that the confi-
dence associated with the source tracing results decreased
with increasing spatial scale (Martinez-Carreras et al. 2010c).

Potential fingerprinting properties should be measurable
in both the source area and in sediment and should be

conservative between sediment generation and delivery
(Mukundan et al. 2010). In some studies, the properties used
to discriminate the sediment source are decided a priori, and
subsequently reduced following a statistical analysis (Fox
and Papanicolaou 2007). This process is described well by
Collins and Walling (2002) and Walling (2005) and has
been used with minor modifications by several researchers
(e.g. Minella et al. 2008). In the first stage of this approach,
the null hypothesis that the source material samples are
drawn from the same population is tested. To maximize
the discrimination between the sources, while minimizing
the size of the property subset, a second stage of statistical
analysis, based on a stepwise multivariate discriminating
function, is used to select the optimum set of fingerprint
properties from those identified in the first stage. From this
analysis it is also possible to establish the associated un-
certainties with the fingerprint property values used to char-
acterize each source. The final step is to estimate the relative
contribution of each source to the sediment samples collect-
ed at the catchment outlet. This is usually done using a
multivariate mixing model:

Yi= Zaisps (6)

Where y; is the concentration of the element i in the
suspended sediment sample, a;; is the concentration of the
element 7 in source s and Py is the relative contribution of
source s. This model assumes that the suspended sediment
retains the characteristics of its source and that the
suspended sediment comprises material only from the iden-
tified sources, so XP;=1, and 0<P;<1. Examples of apply-
ing such mixing models are described by Yu and Oldfield
(1989) and Walling and Collins (2000). The model in Eq.
(6) is over-determined and it must be fitted iteratively by
minimizing an objective function. These approaches have
been applied to different samples, both intra-event and
multi-event. Solution of Eq. (6) is not unique and its
equifinality has been explored to provide an estimation of
the uncertainty of sediment source predictions. For instance,

Table 5 Summary of soil properties measured in some of the fingerprinting studies of Fig. 1

Class

Soil and/or sediment properties

Chemical® (Concentration)

Organic C, Inorganic C, Total C, C/N, pH, Extractable Ca, Extractable Mg, Extractable K,

Extractable Na, Al,, Al,, Aly, Fe,, Fe,, Feq, Mn,,, Mn,, Mng, 3'°C, 8"°N, Total Si, Al, Ag,
Bi, Cd, Cr, Hg, Fe, Ca, Mg, Mn, Na, K, Ti, P, Zn, Sr, Pb, Ni, Cu, As, Mo, Sn, U, Pb, Sb,
Sn, Inorganic P, Organic P, Total P, 204py, 206py, 207py, 208py,

Physical

Sand, clay and silt fraction, Water dispersible clay, Aggregation index, Frequency dependent

magnetic susceptibility (0.47 y 4.7 KHz), '37Cs, “°K, ?*°Ra, Unsupported >'°Pb, Anhysteretic
remanent magnetization (ARM), Isothermal remanent magnetization (SIRM and IRM at —0.1 T),

Infrared spectroscopy

Biological

Sterol rations, E. coli, Enterococci bacterial signatures

* Subscripts ,, ,, and ; denote pyrophosphate, oxalate, and dithionate extractable, respectively
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Rowan et al. (2000) provided an analysis using the GLUE
procedure to explore all the possible solutions of the multi-
variate mixing model. The results of this study provided a
means to distinguish between the different contributions of
each sediment source in probabilistic terms.

Mukundan et al. (2010) followed a multi-step process
minimizing Wilks’ lambda to separate the best fingerprints
to differentiate the sediment sources. The multivariate mixing
model of Collins et al. (1998) was subsequently used to assess
the source contribution to the suspended sediment. Mukundan
et al. (2010) checked the results of the multivariate mixing
model with the help of the end-member mixing analysis
(EMMA, e.g. Christophersen et al. 1990), generally devel-
oped through principal component analysis with conservative
tracers. Both models gave similar results in the Mukundan et
al. (2010) study. The introduction of a Bayesian Monte Carlo
Markov Chain (MCMC) solution scheme in the un-mixing
model of Fox and Papanicolaou (2008b) adds a multivariate
normal parameterization to the sampling process to account
for the episodic character of erosion, which occurs at different
rates in different parts of the catchment. The MCMC method
allows the posterior distribution of the parameters to be deter-
mined (e.g. Press et al. 2007). As Fox and Papanicolaou
(2008b) remarked, the introduction of the un-mixing model
offers a promising way to analyse non-equilibrium erosion
processes. One of the challenges in these kinds of studies is to
account for the selectivity in the sediment transport process
and its impact on the concentration of the measured soil
property in the sediment. A common strategy is to analyse
the selected properties in the fine fraction of the soil and
sediment, using the <53 to <63 um fraction (Rowan et al.
2000; Fox and Papanicolaou 2007). Sometimes the screening
is limited to a coarser fraction, as in the case of Rhoton et al.
(2008), in which the fraction <2 mm was used. An additional
step to correct for the selectivity in sediment transport, and the
bias introduced into the comparison of soil and sediment
tracer concentrations, is correcting by the ratio of the specific
surface area and organic matter content of the suspended
sediment and that of the potential source material (e.g.
Collins et al. 1997, 1998). However, some authors have noted
that the relationship between geochemical and radionuclide
concentrations and specific surface area is non-linear for spe-
cific surface areas >1 m? g', instead proposing relationships
that need to be experimentally determined from fractionation
of the source material (e.g. Russell et al. 2001).

Biomarkers have also been used as sediment fingerprints.
The compound specific stable isotope (CSSI) approach is
based on the concept of differences in “land-use”, which is
typically defined by the plant communities growing on the
land. Different plants produce different CSSI signatures
(Chikaraishi and Naraoka 2003), such as §'*C or §"°N.
These plant communities label the soil where they grow by
exuding organic biomarkers. Using the CSSI approach, the

isotopic signatures of soil biomarkers from each sedimenta-
tion zone can be used to determine the proportional contribu-
tion of each soil source using multi-source mixing models
(Phillips and Gregg 2001, 2003; Gibbs 2008). Recently,
Nosrati et al. (2011) has proposed enzyme activity as a poten-
tial sediment tracer for discriminating sediment sources, al-
though they may show important temporal dynamics, and it
seems that new addition tracing methods will probably arise
from this rapidly advancing field.

4 Final considerations and challenges for the future

A comprehensive literature review on tracing approaches used
in water erosion studies was carried out, describing established
tracing approaches and their application to soil erosion re-
search. In addition to these approaches, new and emerging
tracing approaches are also mentioned. The FRN approach
offers advantages when documenting erosion and deposition
rates because: (a) FRN are present worldwide and can provide
information on soil redistribution rates and patterns at various
temporal scales (there are no scale constraints, apart from the
number of samples to be analysed), (b) depending on the FRN
approach used, they integrate all processes involving soil par-
ticle movements—from a single event up to a period of one
century, and (c) erosion/sedimentation estimates are retrospec-
tive and can be obtained through a single soil sampling “cam-
paign” and long-term monitoring is not required. Among the
major constraints, the following should be considered: (a)
accurate selection of the reference site and the determination
of its inventory value is vital, (b) the proper application of this
approach requires a multi-disciplinary team involving environ-
mental, soil and gamma spectroscopy expertise, and (c) FRN is
an indirect approach, therefore a sound understanding of the
conversion models and their parameters is needed.

REE tracers have attained significant use in small- and
medium-scale erosion studies in the last two decades, providing
spatial and temporal information on soil erosion and sediment
redistribution. REE have many of the desirable characteristics
of an ideal sediment tracer, such as: (a) the possibility of
multiple tracers, (b) the strong-binding ability to soil aggre-
gates, and (c) the possibility of being detected at very low
concentrations. They thus provide a promising tool to track
sediment movement through the landscape. However, their use
entails some notable limitations such as: (a) the preferential
binding to finer soil aggregates, (b) the incorporation in to the
soil profile without disturbing it, and (c) the complexity of the
analytical approaches (e.g. ICP-MS after acid extraction),
which can present some uncertainty. Nonetheless, even in soils
with strong preferential binding across a range of aggregate
sizes, the problem can be minimized by either separating the
soil used to tag the soil surface into size fractions prior to
incubating them with REE (Polyakov et al. 2009), or
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conducting the REE analysis after separating the sampled
material into sub-samples of aggregate sizes that present rela-
tively homogeneous binding of REE, and including those
differences in the calculations of tracer erosion rates (Kimoto
et al. 2006b).

Research studies using soil magnetic properties as natural
tracers have common issues with fingerprinting studies but
have the advantage of simple analytical tools to determine soil
and sediment properties. Until now, most of these studies using
magnetic properties as tracers have been carried out at large
scales (in the case of soil mineral magnetic properties) or at a
laboratory/plot scale (for incorporated magnetic tracers).
Depending on the magnetic tracer employed: (a) this approach
would be useful at a broad range of spatial and temporal scales
under different soil management regimes to identify source of
sediments, monitor soil movement and estimate soil erosion
rates, (b) the use of physical technology to measure the mag-
netic properties does not require a complex preparation of soil
samples and so direct measurements in the field are possible,
and (c) this technology allows relatively inexpensive process-
ing of a large number of samples, which facilitates an more
accurate mapping of soil magnetic properties. Despite the
relative simplicity of using and measuring magnetic properties
compared to other tracer measurements, this approach has
some drawbacks: (a) some of the incorporated magnetic tracers
used show a higher density compared to soil minerals, thus
interfering with soil movement; (b) the approach shares some
shortcomings with REE, for instance the preferential binding
to finer soil particles; and (c) it is impossible to incorporate
these tracers into the soil profile in undisturbed soils.

A significant number of new tracers have been developed,
or are in development, mostly for use at hillslope or small
catchment scales. Their potential as sediment tracers have
been evaluated under controlled conditions and most of them
are in a preliminary stage of evaluation and currently it is hard
to draw conclusions as to their advantages and disadvantages.

Fingerprinting studies combine soil properties with mathe-
matical and statistical methods, allowing the identification and
quantification of sediment sources depending on differences
in soil properties, especially at large scales where these differ-
ences are more apparent. This approach presents several ad-
vantages compared to other tracer approaches: (a) it does not
present temporal limitations, (b) it avoids many of the opera-
tional problems that appear with other sediment tracers, such
as the incorporation in to undisturbed soils, and (c) the possi-
bility of using multiple natural sediment tracers to identify
sediment sources at large scales. Some limitations of the
fingerprinting are that: (a) this approach is well established
but requires sophisticated approaches to evaluate the uncer-
tainty of the predictions and complementary methods, such as
air photographs, to interpret the results; (b) the variability of
bottom sediment properties and possible particle size effects
can complicate the differentiation of sources of sediment; and
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(c) to obtain consistent results it is important to employ a
variety of sediment properties, which could require large
amounts of sediment and which is not always easy to obtain.
In the future, spectroscopic techniques may also have the
ability to provide low cost analytical procedures and thus the
ability to process large amounts of soil and sediment samples
of small mass, thereby facilitating tracer studies.

Work on radionuclides and fingerprinting studies are well
advanced over the other tracing technologies, but still have
associated with them significant uncertainties in the calculated
erosion and deposition rates, and the attribution of sediment
sources. Future research should focus, amongst other issues,
on reducing the uncertainty associated with the conversion of
tracer concentrations into erosion rates, for which a good
understanding of the tracer distribution along the tagged soil
profile and its affinity to particular soil aggregate sizes will be
key. For new tracers in development, studies already pub-
lished in fingerprinting and radionuclides might provide sig-
nificant help. A key line of research for the future is the
development of tracers requiring inexpensive and rapid anal-
ysis approaches that are able to process quickly a large number
of samples. This seems to be feasible using multiple magnetic
properties of soils, whether induced or natural, or spectroscop-
ic techniques. Both techniques, allow rapid, non-destructive
and quantitative measurements of soil and sediment proper-
ties, even in the field. These techniques would allow us to
understand the behaviour of the tracer under many different
conditions and the important role that spatial variability might
play in understanding water erosion. Also important is the
development of “ephemeral” tracers that disappear in months
or years, as in the case of DNA microsphere spheres, allowing
experimental areas to be used for further experiments without
the problems caused by contamination with tracers used in
previous experiments.
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