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Thermal inertia is a physical property of soil at the land surface related to water content. We developed a
method for estimating soil thermal inertia using two daily measurements of surface temperature, to capture
the diurnal range, and diurnal time series of net radiation and specific humidity. The method solves for soil
thermal inertia assuming homogeneous 1-D diffusion of heat near the land surface. The solution uses a
boundary condition taken as the maximum likelihood estimate of ground heat flux made by a probabilistic
uncertainty model of the partitioning of net radiation based on the theory of maximum entropy production
(MEP model). We showed that by coupling the 1-D diffusion and MEP models of energy transfer at the land
surface, the number of free parameters in the MEP model can be reduced from two (P — soil thermal inertia
and I — thermal inertia of convective heat transfer to the atmosphere) to one (P is defined by I). A sensitivity
analysis suggested that, for the purpose of estimating thermal inertia, the coupled model should be parame-
terized by the ratio P/I. The coupled model was demonstrated at two semi-arid sites in the southwest United
States to estimate thermal inertia and these thermal inertia values were used to estimate soil moisture. We
found 1) parameterizing the MEP model with a constant annual P/I value resulted in surface flux estimates
which were similar to those made when daily P and I parameters were derived directly from measurements
of ground heat flux (Nash-Sutcliffe efficiency>0.95); 2) estimates of P made using the coupled model were
superior to those made using the diffusion model with a common linear approximation of the ground heat
flux boundary condition; and 3) thermal inertia was a better predictor of soil moisture in moderately wet
conditions than in dry conditions due to a lack of sensitivity of thermal inertia to changes in soil moisture
at low moisture contents.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

Thermal inertia, P [Jm−2 s−1/2 K−1], is a physical property of the
land surface which determines resistance to temperature change
under seasonal or diurnal heating. It is a function of volumetric heat
capacity, c [Jm−3 K−1], and thermal conductivity, k [Wm−1 K−1] of
the soil or other geologic material near the surface:

P ¼
ffiffiffiffiffi
ck

p
: ð1Þ

Thermal inertia of soil varies with moisture content due the differ-
ence between thermal properties of water (cw≈4.18, kw≈0.59) and
air (dry: ca≈0.0013, ka≈0.25). The temperature of a wet soil varies
less with diurnal heating than the temperature of a dry soil and a
number of studies have demonstrated that it is feasible to estimate
soil moisture given thermal inertia (e.g. Lu et al., 2009; Price, 1980).
epartment of Hydrology and
arger Bldg, Room 122, Tucson,
1 520 626 9712.
g).

rights reserved.
The problem of estimating thermal inertia using measurements of
surface temperature, perhaps in conjunction with other observations,
has also been widely studied; van de Griend et al. (1985) gave a con-
cise contemporary review and Cracknell and Xue (1996a) summa-
rized further developments. The common approach for estimating
thermal inertia is to model the Earth's surface as a 1-dimensional ho-
mogeneous diffusive half-space and derive surface temperature as a
function of the ground heat flux (G) boundary condition and soil ther-
mal properties. Cracknell and Xue (1996b) describe a classical Fourier
solution to the 1-D diffusion equation which can be used to estimate a
daily value of thermal inertia from two observations of surface tem-
perature and a time series of ground heat fluxmeasurements. The pri-
mary issue in applying this technique is that it is difficult to obtain
continuous measurements of G, and a number of studies have tried
to accommodate for this. For instance, Verhoef (2004) used the night-
time drop in surface temperature and an assumption that during the
night, ground heat flux is equal to net radiation, and found that this
led to reasonable estimates of P on clear, windstill nights. Wang et
al. (2010) approximated a diffusion solution using the diurnal ampli-
tude of ground heat flux in a way which required only two daily mea-
surements of G. Xue and Cracknell (1995) derived a solution for P by
approximating the ground heat flux boundary condition as a linear
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function of surface temperature according to Watson (1975). This re-
quired a time series of surface-incident radiation and an estimate of
the phase shift between one of the harmonic functions of surface ra-
diation and the same harmonic of surface temperature. When there
were no clouds and surface radiation could be approximated as a
sine curve, this was estimated as the time difference between
maximum temperature and maximum radiation and only two
measurements of surface temperature were necessary to derive a
daily P value. When there are clouds, time series of both surface
radiation and surface temperature are needed to estimate this phase
shift.

Recently, Wang and Bras (2011) developed a method for parti-
tioning net radiation into sensible, ground and latent heat fluxes
based on the principle of maximum entropy production (Dewar,
2005). This method (referred to as MEP) requires two parameters:
thermal inertia of the soil and a thermal inertia-like parameter repre-
senting resistance of the atmosphere to turbulent heat convection. It
was derived as a probabilistic minimization of epistemic uncertainty
and differs conceptually from the physically-based diffusion approach
to linking ground heat flux and soil thermal inertia.

In this paper, we combine the diffusion and MEP models for the
purpose of estimating daily values of soil thermal inertia. The result
is a reduction in the number of parameters required for MEP parti-
tioning of surface fluxes from two to one. The model requires only a
single (daily) parameter and inputs in the form of a net radiation
time series and two daily measurements of surface temperature. We
show that this coupling results in an approximation of a diffusion-
like representation of near-surface turbulent convection, and we
chose an appropriate parameterization of the coupled model for the
purpose of estimating P based on a sensitivity analysis. The ability
of the model to estimate soil thermal inertia was demonstrated
using measurements taken at a field site in southern Arizona, USA,
and an example of estimating soil moisture from thermal inertia is
provided. Finally, we provide a demonstration of the method for esti-
mating thermal inertia using level 3 MODIS imagery taken by the
Aqua platform in 2004.

2. Model development

2.1. The diffusion model

Heat flow in a one dimensional half-space with constant physical
parameters, is given in terms of thermal inertia as

P2
δT x; tð Þ

δt
¼ k2

δ2T x; tð Þ
δx2

; ð2Þ

T(x,t) is temperature at depth x and time t. Boundary conditions
used by Jaeger (1953) and others are

lim
x→∞

T x; tð Þ
��� ���b∞ ð2:1Þ

T x;0ð Þ ¼ T0 ð2:2Þ

−k
δT x; tð Þ

δx x¼0 ¼ G tð Þ:j ð2:3Þ

The general Fourier series solution to [2] with the properties that T
is periodic in time and exponentially decaying with depth is (Carslaw
& Jaeger, 1959, p65)

T x; tð Þ ¼ T x;0ð Þ þ
X∞
n¼1

Ane
−P

kx
ffiffiffiffiffi
ωn

p
cos ωnt−P

k
x
ffiffiffiffiffiffiffi
ωn

p
−�nÞ;

�
ð3Þ

ω is the fundamental frequency, �n is the phase shift of the nth har-
monic of surface temperature with respect to zero time (taken here
as solar noon), and An is the amplitude of the nth harmonic. Surface
temperature is

T 0; tð Þ ¼ T 0;0ð Þ þ
X∞
n¼1

An cos ωnt−�nÞ;ð ð3:1Þ

and periodic heating at the surface expressed as harmonic functions
of ω is

G tð Þ ¼ P
X∞
n¼0

ffiffiffiffiffiffiffi
ωn

p
Ancosðωnt−�n þ

π
4
Þ ¼

X∞
n¼0

Cncos ωnt−rnð Þ: ð4Þ

If G(t) are known then the magnitude Cn ¼ PAn
ffiffiffiffiffiffiffi
ωn

p� �
and phase

rn ¼ �n− π
4Þ

�
quantities can be estimated using standard discrete

Fourier methods on G so that P may be derived as the ratio of mea-
sured to modeled change in surface temperature between times t1
and t2 (Cracknell & Xue, 1996b)

P ¼
∑∞

n¼1
Cnffiffiffiffiffiffiffi
ωn

p cos ωnt1−rn−
π
4

� �
−∑∞

n¼1
Cnffiffiffiffiffiffiffi
ωn

p cos ωnt2−rn−
π
4

� �
Tmeasured 0; t1ð Þ−Tmeasured 0; t2ð Þ :

ð5Þ

Temperature changes are used to account for the unknown initial
condition, T(0,0), and a fundamental frequency of ω=1 [day−1],
which describes diurnal heating, leads to a daily effective value of
P from [5].

2.2. The MEP model

Given limited knowledge about any system, the most likely state
of the system is the one which maximizes the statistical entropy
(see Shannon, 1948) of the uncertainty probability distribution
(Jaynes & Bretthorst, 2003, pp 353). Wang and Bras (2011) showed
that under this consideration, the maximally likely state of the land
surface energy balance is the one which minimizes the dissipation
function

D ¼ 2
G2

P
þ H2

Ih
þ E2

Ie

 !
; ð6Þ

under the constraint

R ¼ GþHþ E ð7Þ

where R, H and E [Wm−2] are net radiation, sensible heat flux and la-
tent heat flux respectively, and Ih and Ie [Jm−2 s−1/2 K−1] are the
thermal inertia parameters related to sensible and latent heat fluxes.
Wang and Bras (2009) pointed out that sensible heat flux is actually
due largely to convection rather than conduction and that Ih should
be interpreted as a thermal inertia-like parameter of turbulent heat
transfer. Using Monin-Obukhov similarity theory (Arya, 2001), they
derived Ih as

Ih tð Þ ¼ ρcp
ffiffiffiffiffiffiffiffiffiffiffi
C1κz

p
C2

κzg
ρcpTref

 !1
6

H tð Þj j16 ¼ Ið Þ H tð Þj j16; ð8Þ

where ρ is the density of air, cp is the specific heat capacity of air, κ is
the von Karman constant, g is gravity, and C1 and C2 are parameters
depending on the stability of the atmosphere in the surface layer
with values given by Businger et al. (1971), and listed in Wang and
Bras (2009); Tref is a reference temperature and z is distance from
the surface. We did not use these values and instead treated I, as
defined by [8], and which is a daily constant parameter of the
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atmosphere, as a calibration parameter. Wang and Bras (2011)
derived the corresponding expression for Ie as

Ie tð Þ ¼ λ2qs tð Þ
cpRvT 0; tð Þ2 I H tð Þj j16 ¼ s tð ÞIh tð Þ; ð9Þ

where Rv is the universal gas constant, λ is latent heat of vaporization
and qs is surface specific humidity. They showed that Eq. (6) is mini-
mized under the constraint (7) when

G tð Þ ¼ P
I

� 	
B tð Þ
s tð Þ H tð Þ H tð Þj j−1

6 and ð10:1Þ

E tð Þ ¼ B tð ÞH tð Þ; ð10:2Þ

B tð Þ ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 11

36
s tð Þ

r
−1

 !
: ð10:3Þ

Wang and Bras (2011) estimated P using measurements of soil
moisture and, rather than calibrating Tref and z in [8], calibrated I di-
rectly using observations of energy fluxes for some time period under
the assumption that I was constant at a given site over a number of
days. Given P and I, Eq. (10) can be solved implicitly for G and H
under the constraint (7).

2.3. The coupled model

For any given daily value of I, measured diurnal surface tempera-
ture fluctuation and time series of net radiation, P can be found
which solves Eq. (10) under the constraints (7) and (4). In applica-
tion, this is an optimization problem and for a trial value of P, time
series of G, H, and E are estimated using the MEP model and an esti-
mator P̂ is derived from G using Eq. (5). P is chosen such that the dif-
ference between P and P̂ is minimized. The coupled MEP and soil-heat
diffusion model contains four unknown quantities: P, I, G and H, and
three equations: Eq. (5) and Eq. (7), and Eq. (10). Combining these
equations results in a relationship between I and H which is analo-
gous to the relationship between P and G in Eq. (4),

Ið ÞΘ tð Þ ¼ B tð Þ
s tð Þ H tð Þ H tð Þj j−1

6;where ð11Þ

Θ tð Þ ¼
X∞
n¼0

ffiffiffiffiffiffiffi
ωn

p
Ancos ωnt−�n þ

π
4

� �
ð11:1Þ

is from Eq. (4). If Ih were constant over a single day and not depen-
dent on the sensible heat flux, the MEP model would be identical to
a composite 1-D diffusion system with two different homogeneous
half-spaces sharing a boundary at the land surface — one with ther-
mal inertia P and one with thermal inertia Ih (Wang & Bras, 2009).
Since Ih is dependent on the boundary condition, flux partitioning at
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Fig. 1. Examples of theoretical relationships between model parameters P and I. The
the land surface is conceptually asymmetrical and the MEP model
no longer exactly represents a diffusive system. Eq. (11) is the
solution of a particular linearized approximation of a hypothetical in-
homogeneous diffusion-like representation of turbulent heat transfer
to the atmosphere. If we accept this approximation, it is possible to
estimate the total thermal inertia of the system as

Pþ 1þ B tð Þð Þ s tð Þ
B tð Þ Ih ¼ R tð Þ

Θ tð Þ : ð12Þ

Without an additional constraint we have no information about
the ratio P/I, and it is necessary to parameterize the model.

2.4. Sensitivity analysis and parameterization

An appropriate parameterization of the coupled model was cho-
sen according to a sensitivity analysis conducted using synthetic
data (Fig. 1). Synthetic net radiation (R*) was generated using a stan-
dard top-of-the-atmosphere solar radiation curve for latitude
l=31.3o and day-of-year doy=100 attenuated by a constant multi-
plicative atmospheric transmissivity factor of CT=0.80 and albedo
of α=0.15. This was further attenuated independently with proba-
bility 0.25 at each time step by a uniformly distributed multiplicative
cloud factor (cf) on the range [0.6,1]:

R� tð Þ ¼ cf tð Þð Þ 1−αð Þ CTð Þ 1367ð Þ sin
lπ
180

� 	
sin dð Þ þ cos

lπ
180

� 	
cos dð Þ cos 2πtð Þ

� 	
ð13Þ

d ¼ 0:398ð Þasin 4:871þ 0:017 doyð Þ þ 0:033sin 6:224þ 0:017 doyð Þð Þð
ð13:1Þ

cf tð Þ eU 0:6;1½ �; P 0:25ð Þ
cf tð Þ ¼ 1; P 0:75ð Þ

)
: ð13:2Þ

Thermal inertia values P* were drawn from a uniform distribu-
tion on the range [700,2500] [Jm−2 s−1/2 K−1] and for each sam-
pled value of P*, P*/I* was set to a number of constant values:
{0.5,1,1.5,2,2.5,3,4,5}. A measured time series of atmospheric specif-
ic humidity (from the field site discussed in Section 3.1) was used
in lieu of surface specific humidity. I* was derived from P* for each
P*/I* value and surface temperature and ground heat flux were esti-
mated implicitly using an iterative technique of alternately deriving
G* from T* using Eq. (10) and Eq. (7) and T* from G* using Eq. (3.1)
and Eq. (4) until T* and G* converged on stable values. An initial
guess of T*(0,t)=−10cos(ωt) was provided. After convergence, it
was always the case that P* could be derived from T*(0,t1), T*(0,t2)
and G* using Eq. (5) to within 1% accuracy; surface temperature
measurement times were 4:00 and 13:00.

For each resulting set of R* and T*, P/I was varied over the range
[0.1,5.5] and G was derived for each P/I value using Eq. (10) and Eq.
3 4 5 6
P/I

0 1 2 3 4 5 6
0

1000

2000

3000

P/I

I

true parameters used to derive these relationships are marked with asterisks.
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(7); P was derived from G and T* using [5] and I was derived from
P and P/I. Each curve in Fig. 1 represents this mutual variation of
P and I (and P/I) given R* and T*. Results from a single value of P*
are reported; these results are representative of findings from all of
the sampled P* values. The parameters values used to generate sur-
face temperature from net radiation for each curve (P*, I* and P*/I*)
are marked with asterisks, although any point along each curve is
an equally appropriate solution given the constraints of the model.

A natural extension of Wang and Bras (2011) would be to assign a
constant value to I, however the sensitivity of P to I is higher than
the sensitivity of P to P/I (Fig. 1) and thus it would be preferable to pa-
rameterize by P/I. The slope of relationships between I and P is much
less than −1 meaning that errors in I will be magnified in estimates
of P. On the other hand, relationships between P/I and P improve
with larger values of P/I in the sense that errors in P/I are increasingly
damped in estimates of P as P/I increases. When the coupled model
is parameterized by P/I, MEP provides the boundary condition for
the 1-D diffusion model and P and I are completely determined.

3. Model demonstration

In this section, we provide a demonstration of the coupled model
for estimating surface fluxes, thermal inertia and soil moisture. In the
following subsections we describe the study site used for this demon-
stration (Section 3.1), show that the constant P/I parameterization
does not preclude reasonable surface flux estimates from the MEP
model (Section 3.2), compare estimates of soil thermal inertia
made by the coupled model to those produced by the Xue and
Cracknell (1995) diffusion solution with a linearized boundary condi-
tion (Section 3.3), and derive soil moisture estimates from coupled-
model thermal inertia values using the Lu et al. (2009) approach
(Section 3.4). These soil moisture estimates are compared to in situ
measurements. In Section 3.5 we provide a remote sensing demon-
stration using MODIS surface temperature measurements.

Model performance is evaluated in terms of surface flux estimates,
thermal inertia estimates, and soil moisture estimates using Nash-
Sutcliffe model efficiency coefficients (Nash & Sutcliffe, 1970). These
statistics are identical to coefficients of determination when the linear
regression between modeled and observed variables is assumed to
have slope one and intercept zero. That is, when {yi} are the N obser-
vations, {ŷi} are the N model predictions, and �y is the mean of the
observations the model efficiency is defined as

rNS ¼ 1−∑N
i¼1 ŷi−yið Þ2

∑N
i¼1 yi−�yð Þ2 : ð14Þ

Model efficiency has range rNS∈(−∞,0] and larger values indicate
superior models; when rNS is negative, the mean of the observations
provides a better predictor of {yi} than the model.

3.1. Study sites and data

Data used for demonstrating the model came from two measure-
ment sites at the Walnut Gulch Experimental Watershed in southern
Arizona, USA over one calendar year from Jan 1 to Dec 31, 2010. Lucky
Hills (31.744°N, 110.052°W, 1370 m) is a desert shrubland site dom-
inated by a diverse stand of mainly-Chihuahuan species (Scott et al.,
2006). Kendall (31.737°N, 109.942°W, 1531 m) is a semidesert grass-
land site comprised mainly of C4 grasses with a few scattered shrubs
(Scott et al., 2010). The soil at Lucky hills is 52% sand, 20% silt and 25%
clay with 0.8% organic carbon fraction and the soil at Kendall is 55%
sand, 26% silt, and 22% clay with 1.1% organic carbon fraction
(Ritchie et al., 2009). Soil porosity was calculated using a pedotransfer
function from Cosby et al. (1984) as SWs=0.34 [m3m−3] at Lucky
hills and SWs=0.42 [m3m−3] at Kendall. Average annual rainfall is
320 mm at Lucky Hills and 340 mm at Kendall (Scott, 2010) with
~60% of the rainfall arriving around the summer months of July –

September. Net radiation, surface temperature, atmospheric specific
humidity, soil moisture and all surface fluxes were measured every
half hour; soil moisture was measured at a depth of 5 cm below
bare soil and surface temperature was measured over bare soil. Sensi-
ble and latent heat fluxes are measured using an eddy covariance
tower and ground heat flux is measured with soil heat flux plate
(REBS Inc., Seattle, WA) installed 8 cm below bare soil near both
sites surface temperature measurement sites. Average soil tempera-
ture for 0–8 cm soil depth was determined by averaging measure-
ments from thermocouples located at depths 2 and 5 cm above each
soil heat flux plate. Measurements of the rate of change of soil tem-
perature above the heat flux plates in combination with the soil
bulk density and soil water content allowed calculation of the ground
heat flux at the surface (G) by determining the changes in heat stor-
age of the 0–8 cm soil layer (Scott, 2010). We used atmospheric spe-
cific humidity as a surrogate for surface specific humidity, which is
difficult to measure. During 2010, there were 315 days without bad
or missing surface flux data at Lucky Hills and 316 days at Kendall. Ex-
cept when noted, we used only twomeasurements of surface temper-
ature daily — one taken in the morning at 4:00 and one taken in the
afternoon at 13:00 in order to capture diurnal surface temperature
fluctuation.

Validation P values were computed using the 1-D diffusion model
(Eq. (5)) with measured ground heat flux boundary conditions and
two daily measurements of surface temperature. These values repre-
sent the best estimates of soil thermal inertia available using surface
flux measurements without detailed knowledge of the subsurface.
Validation I values were obtained by optimizing the coupled model
with respect to I — that is, by choosing I independently each day to
minimize the difference between that day's validation P value and P
estimated by the coupled model. Half-hourly time series of measured
specific humidity and half-hourly time series of surface temperature
were used in Eq. (9) for calibrating daily validation values. Daily val-
idation I values for 2010 had coefficients of variation σ

μ ¼ 0:205 at
Lucky Hills and σ

μ ¼ 0:194 at Kendall; and daily validation P/I values
had coefficients of variation σ

μ ¼ 0:217 at Lucky Hills and σ
μ ¼ 0:198

at Kendall (Fig. 2). The dispersion of these distributions were similar
at each site which supports the decision to use a constant P/I rather
than a constant I based on the sensitivity of P discussed in Section 2.4.

3.2. Surface flux estimates

To assess the impact of the constant annual parameterization on
MEP model performance we compared estimates of surface energy
fluxes made both using daily validation P and I values and using an
annual constant P/I to ground-truth measurements. Ground, sensible
and latent heat fluxes were estimated at a 1/2 h time step at both sites
over the course of the year. In the validation parameter case, the en-
tire half-hourly time series of surface temperature was used in Eq. (9)
whereas in the constant annual parameterization case, surface tem-
perature necessary for Eq. (9) was approximated as a diurnal sine
curve with amplitude equal to the difference between twice-daily
surface temperature measurements taken at 4:00 and 13:00. In the
latter case, a value of P/I=2 was used at both sites which was close
to the mode of the validation parameter distributions (Fig. 4). As we
will demonstrate, it was unnecessary to refine this parameter esti-
mate further suggesting that a reasonable value can be sufficient.
These flux estimates were compared to measured surface fluxes at
Lucky Hills (Fig. 3) and Kendall (Fig. 4); model efficiency coefficients
are listed in Table 1. The constant annual P/I parameterization re-
duced the efficiencies for various fluxes by between 2% and 9%
at Lucky Hills and 0.5% to 3% at Kendall as compared to fluxes pre-
dicted using (daily) validation P and I values derived directly from
half-hourly time series of measurements of ground heat flux. The
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efficiency coefficients between flux values estimated by MEP with
validation parameters and the constant parameterization were great-
er than rNS =0.95 in all cases (Table 1).

3.3. Thermal inertia estimates

When the coupled model is parameterized by P/I, it is possible to
estimate P using G predicted by MEP to derive the Fourier coefficients
needed for Eq. (4) — that is, MEP supplies the boundary condition
needed by the diffusion model. This parameterization does not take
advantage of the diffusion and MEP coupling to constrain surface
flux estimates but it is the preferred coupling for predicting P given
the sensitivity analysis from Section 2.4. Daily values of P and I were
estimated at Lucky Hills for 315 days and Kendall for 316 days in
2010 using the coupled model and these estimates were compared
to validation P and I values derived using Eq. (5) with Fourier coeffi-
cients determined from measured G time series (Fig. 5). The efficien-
cy coefficients for P were rNS=0.435 at Lucky Hills and rNS=0.587 at
Kendall. This comparison serves to validate the MEP as a boundary
condition for the problem of estimating thermal inertia, but it does
Table 1
Efficiency coefficients between measurements and estimates of half-hourly surface
fluxes at Lucky Hills (315 days) and Kendall (316 days) in 2010 made with the MEP
model parameterized with daily validation parameters and a constant P/I=2.

MEP w/
validation
parameters
vs. measured

MEP w/
constant
P/I=2 vs.
measured

MEP w/ constant
P/I=2 vs. MEP
w/ validation
parameters

Lucky hills G 0.786 0.760 0.973
H 0.886 0.866 0.991
E 0.500 0.455 0.967

Kendall G 0.783 0.778 0.980
H 0.910 0.899 0.994
E 0.623 0.604 0.975
not investigate the assumptions of 1-D homogeneous thermal
diffusion.

As a comparison, we tested the Xue and Cracknell (1995) model of
thermal inertia which is based on similar principles as [5] but uses a
boundary condition which approximates H and E fluxes as a linear
function of surface temperature based on the suggestion of Watson
(1975). Though the original implementation uses a standard daily
solar radiation curve in the boundary condition, we used net radiation
to account for clouds; this resulted in an expression for ground heat
flux:

G tð Þ ¼ R tð Þ−Ac−BT 0; tð Þ: ½15�

Ac and B are linearization coefficients. Xue and Cracknell (1995)
showed that the system Eq. (2) with boundary condition (15) can
be solved for P given two daily measurements of surface temperature
and an estimate of the phase difference between surface temperature
and radiation; the bias Ac cancels in the same way as T(0,0) by using
measured daily temperature changes and the value of B is completely
(implicitly) determined by the phase difference. The phase shift of
radiation with respect to solar noon for harmonic n is δn, and the ex-
pression for diurnal temperature fluctuation is

T 0; t1ð Þ−T 0; t2ð Þð Þ ¼
XNt2
n¼1

An
cosðωnt1−�nÞ−cosðωnt2−�nÞ

P
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωnþ ω

ffiffiffi
n

p
b þ ω

2b2

q ð16Þ

b ¼ tanð�1−δ1Þ
1− tan �1−δ1Þ;ð ð16:1Þ

�n ¼ atan
b
ffiffiffi
n

p

1þ b
ffiffiffi
n

p
� 	

þ δn: ð16:2Þ

Solving Eq. (16) for P given measurements of T(0,t1) and T(0,t2)
results in an expression analogous to Eq. (5) when the boundary
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Fig. 5. Scatter plots of daily P and I estimates made using the coupled model with P/I=2 plotted against validation daily P and I values calculated using measured G to derive Fourier
coefficients for equation [4]. Lucky Hills (top) uses 315 days worth of data from 2010 and Kendall (bottom) uses 316 days. Efficiency coefficients for P estimates at the two sites are
Lucky Hills: rNS =0.435 and Kendall: rNS =0.587.
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condition is Eq. (15) rather than a measured or directly estimated
G time series. In a situation where net radiation cannot be approxi-
mated by a single harmonic, it is necessary to calculate all of the δn
directly from the net radiation time series using standard Fourier
methods, and also to calculate �1 from the full daily temperature
time series. We used the entire day's temperature time series to
find the phase difference between the first harmonic of radiation
and temperature, (�1−δ1), which is used in Eqs. (16) and (1), and es-
timate P as the ratio of modeled to measured surface temperature in a
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Fig. 6. Scatter plots of daily P estimates made using the Xue and Cracknell model with a linea
Lucky Hills: rNS =−12.3 and Kendall: rNS =−6.14.
way analogous to Eq. (5) using Eq. (16) to model diurnal surface tem-
perature fluctuations. This model utilizes the entire day's time series
of surface temperature whereas our implementation of the coupled
MEP-diffusion model only utilizes surface temperature measure-
ments at two time points. These estimates of P were compared to val-
idation values (Fig. 6) and have efficiency coefficients rNS=−12.3 at
Lucky Hills and rNS=−6.81 at Kendall compared to rNS=0.435 at
Lucky Hills and rNS=0.587 at Kendall using the MEP boundary
condition.
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rized boundary condition plotted against validation P values. Efficiency coefficients are



Table 2
Parameters for the Lu et al. (2009) model [17] to estimate soil moisture from thermal
inertia at Lucky Hills and Kendall. Sand fraction and organic matter fraction are from
(Ritchie et al., 2009).

Sand
Fraction
[m3m−3]

Organic
Fraction
[m3m−3]

Porosity
[m3m−3]

Residual Water
Content
[m3m−3]

Lucky Hills 0.52 0.01 0.34 0.04 0.40 2.65
Kendall 0.55 0.01 0.42 0.03 0.65 2.95
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3.4. Soil moisture estimates

Our motivation for estimating thermal inertia was ultimately to
exploit its dependence on water content in order to estimate soil
moisture. Lu et al. (2009) described a model relating volumetric soil
water content (SW [m3m−3]) to thermal inertia based on the original
theory of de Vries (1963):

SW ¼ Mf SWs−SWrð Þ þ SWr ð17Þ

Mf ¼ 1−
ln P−Pr

Ps−Pr

� �
ε

0@ 1A−1
μ

ð17:1Þ

Pr ¼ −1:0624 SWsð Þ þ 1:0108 ð17:2Þ

Ps ¼
ffiffiffiffiffiffiffiffiffi
kscs

q
ð17:3Þ

cs ¼ ρqcq 1−SWsð Þ þ ρwcwn ð17:4Þ

ks ¼ ksfq
� �

31−sf
� �� �1−n

kwð Þn ð17:5Þ

Physical constants are: specific heat capacity of water cw=4.18
[Jm−3 K−1], specific heat capacity of quartz cq=0.80 [Jm−3 K−1],
thermal conductivity of water kw=0.594 [Wm−1 K−1], thermal
conductivity of quartzkq=7.7 [Wm−1 K−1], density of water ρw=1
[g cm−3], and quartz density ρq=2.65 [g cm−3]. Mf is the moisture
fraction (between residual and porosity), Ps is the thermal inertia of
saturated soil and Pr is the thermal inertia of soil at residual moisture
content. Free parameters are: sand fraction sf [m3m−3] organic mat-
ter fraction of [m3m−3], porosity SWs [m3m−3], residual water
content SWr [m3m−3], and two empirical shape parameters ε and μ.
We set the sand and organic matter fractions according to Ritchie
et al. (2009) and porosity according to Cosby et al. (1984)
(Section 3.1) and used a daily mean value of measured SW and
daily validation P values to calibrate the residual moisture content
and shape parameters ε and μ by hand; the resulting model is com-
pared to calibration data (validation P and measured soil moisture)
in Fig. 7, and the calibrated parameter values are listed in Table 2.
Negative errors in P estimates for soil with low moisture content
can result in thermal inertia values which are less than the residual
moisture thermal inertia value (Pr); when this occurred we set the es-
timated soil moisture value to residual moisture content (SW=SWr).

We used the calibrated model to predict daily soil moisture at
Kendall and Lucky hills using estimates of thermal inertia from the
coupled MEP and diffusion model (Fig. 8). At low soil moisture values
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Fig. 7. The relationship between validation thermal inertia and soil moisture according to [1
coupled MEP-diffusion model and daily-averaged soil moisture (scatter points) at Lucky Hi
( ∼b0.1 [m3m−3]) there is almost no expected change in thermal
inertia with change in moisture (Fig. 7), meaning that small errors
in P resulted in large errors in SW when the soil was dry. At higher
moisture levels, thermal inertia was more sensitive to changes in
soil water content and predictions became more accurate in wetter
conditions. This was due to the fact that soil at the Walnut Gulch
were relatively dry for most of the year, and at very low moisture
contents, soil water exists as an absorbed film and does not span
gaps between solid soil particles. Until a critical moisture value is
reached (dependent on clay content and particle size) thermal con-
ductivity and thermal inertia are insensitive to moisture content
(Tarnawski & Leong, 2000). The relationships between thermal iner-
tia and soil moisture which we saw at the Kendall and Lucky Hills
sites were conceptually similar to those found in fine-grained soils
such as reported by Murray and Verhoef (2007) (see their Fig. 1b), al-
though the critical values at our study sites were higher than in
previously-reported soils. These high critical values were likely due
to high gravel content in the topmost soil layer at these study sites.
The efficiency coefficients for these SW estimates were both less
than zero: rNS=−0.184 at Lucky Hills and rNS=−0.052 at Kendall.
This inefficiency was due largely to the high critical value and the sen-
sitivity of thermal inertia to soil moisture content.

3.5. MODIS demonstration

We used the new method for estimating thermal inertia with
MODIS surface temperature data derived from Aqua images of the
Walnut Gulch watershed (~150 km2) taken in July and August of
2004. Soil moisture (5 cm depth), net radiation and specific humidity
were measured at both Lucky Hills and Kendall during this time peri-
od. Before July 13 (doy 195), the soil at Lucky Hills was very dry
(SW~0.03 [m3m−3]) and slightly wetter (SW~0.08 [m3m−3]) at
Kendall. Between July 13 and Aug 24 (doy 237) there was approxi-
mately 95[mm] of measured precipitation. We estimated thermal in-
ertia from 21 day and night Aqua image pairs acquired from the Land
Process Distributed Active archive Center (LP-DAAC, 2007) and re-
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7] with parameters from Table 2 (solid line) and estimates of thermal inertia from the
lls and Kendall.
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Fig. 8. Scatter plots of daily soil moisture estimates made using P from the coupled model plotted against measured daily average soil moisture values at Lucky Hills (top) and
Kendall (bottom). Efficiency coefficients for these soil moisture estimates are Lucky Hills: rNS =−0.184 and Kendall: rNS =−0.052.
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sampled onto a NAD83 projection grid; the spatial resolution of these
images before and after reprojection was ~0.927[km]. Night overpass
times ranged from 1:00 to 3:00 and day overpass times ranged from
12:00 to 14:00; overpass times were approximated to the nearest
hour. Hourly net radiation and specific humidity time series at each
image pixel for each day were extrapolated as inverse-distance
weighted combinations (linear) of measurements taken at Kendall
and Lucky Hills, and thermal inertia was calculated by the coupled
model as described in Section 2 with P/I=2.

Thermal inertia images from doy 186, 233 and 238, are illustrated
in Fig. 9; lighter pixel color corresponds to higher thermal inertia and
wetter soil. Approximately 90[mm] of precipitation fell between doy
186 and doy 233, and 3–5[mm] fell on doy 237. These images indicate
that the soil was generally wetting between doy 186 and doy 233 and
Fig. 9. Thermal inertia maps derived from three level 3 MODIS Aqua day and night
image pairs with spatial resolution ~0.927[km]. The Walnut Gulch watershed is out-
lined and data points which are closest to the Kendall (East) and Lucky Hills (West)
measurement stations are marked. Soil moisture on these dates was, at Kendall: 0.07,
0.12, and 0.10 [m3 m−3], and at Lucky Hills: 0.03, 0.10, and 0.09 [m3 m−3] on days of
year 186, 233, and 238 respectively.
drying between doy 233 and doy 238. At Lucky Hills, except for in
very dry conditions (SW=0.03 [m3m−3]) MODIS-derived thermal
inertia was strongly related to measured water content. Fig. 10 plots
this relationship along with a Lu model, [17], with shape coefficients
calibrated to this data (μ=0.60 and ε=1.00). The MODIS measured
thermal inertia was often less than Pr approximated by [17,2], and it
was necessary to assign a value of Pr=400 [Jm−2 s−1/2 K−1]. At
Kendall, which is a grassland site, the correlation between thermal in-
ertia and measured soil moisture (not shown) was negative due to
the fact that evapotranspiration during the daytime was higher
when there was moisture available in the near-surface soil. Higher
evapotranspiration caused surface cooling from the perspective of
the satellite, and there were smaller diurnal surface temperature fluc-
tuations when water was available for transpiration by C4 grasses.

4. Conclusions and discussion

Results showed that it is possible to estimate soil thermal inertia
from net radiation specific humidity and two daily measurements of
surface temperature by coupling the recently developed MEP model
of surface energy fluxes with the classical diffusion model of ground
heat flux. This coupling approximates sensible and latent heat trans-
fer to the atmosphere as a linear diffusive system even though the
thermal inertia of the air is taken to be dependent on the sensible
heat flux. The coupling reduces the number of free system parameters
from two to one – P is determined uniquely by the choice of I, – and
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we demonstrated that when estimating P, it is preferable to parame-
terize by a constant P/I rather than a constant I as had been done pre-
viously. We demonstrated the model at two field sites where this
parameterization was appropriate and where it was reasonable to
choose a constant P/I for an entire calendar year.

Results showed that:

(i) The MEP model parameterized by an annually constant P/I pre-
dicted surface fluxes with accuracy similar to the MEPmodel pa-
rameterized by daily P and I calibrated directly from measured
ground heat flux and surface temperature assuming 1-D homog-
enous diffusion in the subsurface;

(ii) The coupled model produced estimates of soil thermal inertia
which were superior to those produced by the Xue and Crack-
nell diffusion solution with a linearized boundary condition;
and

(iii) Thermal inertia was not sensitive to soil moisture at low
moisture contents, however the relationship improved in mod-
erately wet conditions.

There are still several issues with the application of this method
which will need to be addressed before it can be expected to estimate
soil moisture in an operational remote sensing setting. First, it is not
reasonable to expect to have time series of net radiation and specific
humidity measured at a sub-daily time step at the arbitrary location.
It might, however, be possible to constrain a spatially distributed set
of model solutions, over, for instance, a pixilated thermal image, by
making assumptions about homogeneous cloud cover. Second, the
model is only applicable to bare soil conditions given that the temper-
ature of the soil surface must be known in order to apply the ground
heat flux boundary condition. The MEP is theoretically able to predict
evapotranspiration and it might be possible to estimate soil surface
temperature by considering the extent of vegetation cover and the
magnitude of the evapotranspiration flux. The implications of this or
another type of approximation will need to be assessed. Third, the pa-
rameterization by P/I is sub-optimal. It would be desirable to con-
strain this value at the daily time scale using additional information,
either in the form of an independent measurement or an independent
relationship between P and I or G and H; many such relationships
have been proposed which could be examined for application to
this problem. Finally, the estimation of soil moisture using the Lu et
al. (2009) model requires a set of parameters (sf, of, SWs, SWr, ε and
μ) which we cannot expect to calibrate at an arbitrary remote sensing
location. A holistic approach to addressing these concerns might be to
use a dynamic model of soil moisture in conjunction with the MEP
boundary condition to estimate P. Soil moisture accounting, in part
driven by MEP estimates of latent heat flux, would provide an uncer-
tain constraint on daily values of P given uncertainties in parameter-
ization, vegetation and clouds.
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