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Niels Bohr reputedly commented that ‘Prediction 
can be very difficult, especially about the future’ 
(Rosovsky, 1991). Certainly that statement is 
true for prediction of processes in nature, includ-
ing soil erosion. It also may hold true when 
attempting to predict the future direction of a 
field of research. In 1990 Nearing et al. published 
a paper in the Soil Science Society of America 
Journal entitled ‘Soil Erosion Prediction Research 
Needs’. A retrospective assessment of that paper 
indicates that it was largely unsuccessful in out-
lining the important advances and changes in 
this field of science since it was published. One 
might want to keep that in mind when reading 
this chapter.

The Nearing et al. (1990) review of research 
needs was written during a time when the devel-
opment of process-based soil erosion models was 
at the forefront of the science. This was a line of 
research that began sometime in the late 1960s 
and early 1970s (Meyer & Wischmeier, 1969), and 
was near its peak of effort at the time. A team of 
scientists from the USDA was developing the 
Water Erosion Prediction Project (WEPP) model 
(Nearing et al., 1989; Laflen et al., 1997), which 
relied on a numerical, steady-state solution of the 
sediment continuity equation, and which focused 
heavily on modelling inter-storm variations in 
the determinant system properties such as soil 

erodibility, soil moisture, soil surface conditions, 
plant canopy and ground cover. Another team 
from Europe, in a project funded by the European 
Union, developed a model called EUROSEM 
(Morgan et al. 1998), which used a dynamic solu-
tion to the sediment continuity equation driven 
in part by a hydrological model based on the kin-
ematic wave equation (Woolhiser et al., 1990). 
EUROSEM is a single storm model that focuses on 
infiltration, runoff and erosion from individual 
storms, and allows the user to define initial system 
conditions for storms. In Australia, Hairsine and 
Rose (1992a,b) developed a dynamic solution to 
the sediment continuity equation that encom-
passed what were at that time novel and important 
descriptions of fundamental erosion mech anics 
not explicitly included in other models. These 
were based on the concept of balancing simulta-
neous entrainment, deposition and re-entrain-
ment of particles rather than relying on an 
independent sediment transport equation. A sim-
plified product from this line of research was later 
introduced as the GUEST model (Misra & Rose, 
1996; Yu et al., 1997). In the Soviet Union, 
Larionov (1993) had been working on yet another 
process-based description of soil erosion for the 
purposes of prediction.

Certainly there has been a great deal of value 
derived from the development of process-based 
soil erosion models, both in terms of practical 
application and advancement of the science. The 
engineers who worked on the clean-up of the 
Rocky Flats Superfund site in Colorado claimed 
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to have saved 600 million dollars by using the 
WEPP model for remediation design (Clark et al., 
2006), which was undoubtedly by any estimation 
a greater sum than had been spent in the develop-
ment of the model itself. Hundreds of scientific 
studies have been conducted over the last two 
decades related to applying and improving proc-
ess-based erosion models, including EUROSEM, 
WEPP, LISEM (DeRoo et al., 1996), the Hairsine-
Rose models, GUEST, and so on, the sum of 
which has resulted in a greatly improved under-
standing and quantification of soil erosion and 
sediment yields.

The four major conclusions of the Nearing 
et al. (1990) research-needs review paper were 
that the future of erosion modelling research 
would follow the paths of advancing: ‘…(i) funda-
mental erosion relationships, (ii) soil and plant 
parameters and their effects on erosion, (iii) data-
bases, user interfaces, and conservation system 
design, and (iv) model development and analysis.’ 
They further stated that ‘Development of proc-
ess-based erosion prediction technology has 
required the delineation and description of funda-
mental erosion processes and their interactions. 
Further improvement in prediction technology 
will require further delineation and mathemati-
cal descriptions.’ These statements generally rep-
resent reductionist science, which was the norm 
at least in this area of science at the time. Both 
the advantages and limitations of this approach 
were discussed by Govers (1996), who concluded 
in part stating:

‘The selection of priority subjects for process 
studies should be driven by the deficiencies 
between model predictions and field observa-
tions: the construction of an alternative, more 
sophisticated model to include an additional 
effect is only meaningful if a strategy can be 
devised which allows a validation of the model 
so that its presumed superiority can be proved.’

Many of the realised advances in soil erosion sci-
ence and modelling over the last two decades 
have arisen coincidentally with our increased 

understanding of the limitations of the process-
based soil erosion models, and many of those 
limitations centre around variability and uncer-
tainties of many different types. These include 
issues related to, but not limited to: (a) natural 
variability in rates of soil loss from replicated 
soil erosion plots; (b) temporal variability, the 
importance of extreme erosion events and vul-
nerable site conditions, and the associated prob-
lems of interpreting short-term data records; (c) 
extreme spatial variability of erosion on the land-
scape, our lack of measured data to quantify that 
variability, and our limited ability to model the 
 variability correctly; and (d) the effects of input 
data variability on model projections, particu-
larly relative to cumulative model output uncer-
tainty. The reader will find that variability and 
uncertainty have been common themes through-
out this book, which represents a significant shift 
in thinking from two decades ago.

An eminent European scientist once stated 
that if there were to be a Nobel Prize for Soil 
Erosion Science, it would have to go to the study 
published by Wendt et al. (1986). In that study 
the authors reported soil erosion rates for 40 
cultivated, fallow, experimental plots located in 
Kingdom City, MO, in 1981. All of the 40 plots 
were cultivated and in other ways treated iden-
tically. The coefficients of variation between 
plots for the erosion rates measured for each of 
25 storms ranged from 18% to 91%. Based on 
the data from that study, they calculated that 
the 95% confidence interval for quantifying the 
mean erosion rate of two replicated plots for a 
given storm was plus or minus 175% of the 
mean value. In other words, the confidence 
interval for the mean erosion from the two plots 
would range from essentially zero to nearly 
twice the mean measured value. Also, the results 
of the study indicated that ‘only minor amounts 
of observed variability could be attributed to 
any of several measured plot properties, and plot 
differences expressed by the 25 events did not 
persist in prior or subsequent runoff and soil 
loss observations at the site.’ The study was sug-
gesting that replicated plots may give greatly 
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different  measures, and variable trends, of soil 
erosion for all conditions being equal.

Nonetheless, a survey of the literature will 
show that when scientists attempt to test a new 
soil erosion model or the application of a model in 
a new environment, they almost invariably rely 
upon measured data for comparison with model 
output results. Also, invariably, the documented 
fact that the data have enormous natural variabil-
ity is ignored: the measured data are assumed to 
be correct. If one were to model, for example, the 
40 replicated plots from the Wendt et al. (1981) 
study, with essentially the same soil, cover and 
rainfall conditions, the input parameters for the 
model would be nearly or exactly the same for all 
the plots. Given that the models are essentially 
all deterministic in nature, the output of the 
model would be a single value. In that case one 
could see where the modelled value falls within 
the distribution of the 40 measured values. 
However, if one only has a single (or two at best) 
measured erosion values with which to compare, 
one has no idea where that measured value lies 
within the distribution associated with the natu-
ral measurement variability. In most cases that 
variability would be much larger than recognized. 
Nearing et al. (1999) provided a more universal 
scheme for characterizing replicated plot variabil-
ity, and Nearing (2000) attempted to develop a 
procedure for using that information in model 
validation studies, but those concepts have been 
neither widely recognized nor implemented.

A major limitation that erosion modellers face 
in quantifying and comparing soil erosion rates is 
the lack of long-term data. The paradigm the 
world over for funding scientific research is the 
two- to five-year grant, which is a serious problem 
in terms of collecting long-term data. A study by 
Edwards and Owens (1991) found that soil erosion 
measurements on nine small watersheds in Ohio 
over 28 years were dominated by a few large 
storms. The five largest erosion-producing events 
out of more than 4000 accounted for 66% of the 
total erosion. On one watershed, one storm caused 
more than half of the 28-year total. Nearing et al. 
(2007) looked at 11 years of data from six small 

watersheds in the Walnut Gulch Experimental 
Watershed in southeastern Arizona. In each case 
the single largest storm on the record contributed 
between 9% and 11% of the total sediment yield 
for the 11-year period of record, and approximately 
50% of the sediment yield came from between six 
and ten events during the 11 years. Lane and 
Kidwell (2003) looked at data from four small 
watersheds in the Santa Rita Experimental Range 
in southern Arizona measured over 16 years. They 
found that the year with the largest erosion event 
accounted for between 18% and 26% of the total 
measured sediment. This temporal variability is 
one reason why we need soil erosion models. 
Appropriately constructed, a process-based model 
may have the ability to extrapolate a short record 
of measured erosion to a longer time frame. 
Nonetheless, the problem is that models devel-
oped and parameterized from short records that 
do not contain the extreme event probably will 
not effectively represent the extreme event. The 
most likely scenario will be that the impact of the 
extreme event will be under-predicted. This is 
one area obviously ripe for further research.

Jetten et al. (2003) published a review on the 
application of models in terms of spatial distribu-
tions of erosion rates within watersheds. Not sur-
prisingly they found that the models were able to 
characterize sediment yields from watershed out-
lets only moderately well, a result they attributed 
to ‘the high spatial and temporal variation of ero-
sion and sediment transport and our inability to 
assess and/or describe this variability in terms of 
the input parameters normally used in erosion 
models.’ The models performed even more poorly 
in terms of characterizing the spatial erosional 
patterns within the watersheds: ‘The application 
of the LISEM tested here shows that accurate pre-
dictions at the grid-cell resolution at which the 
model is run are impossible.’ They found that 
the finer and more detailed the resolution for the 
model inputs and grid, the worse were the spatial 
predictions. Obtaining good spatial predictions of 
measured erosion requires extensive and detailed 
spatial datasets (van Oost et al., 2004). The 
number of scientific papers in the literature 
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related to modelling spatial distributions of soil 
erosion is relatively large, particularly with the 
increasing use of GIS in modelling, but studies 
that make any attempt to evaluate the spatial 
predictive capability of the models using meas-
ured data are very few.

If we have learned anything over the past two 
decades it is that increased model complexity 
does not correspond to improved capability to 
predict soil erosion rates and sediment yields. 
It is important to keep in mind, however, 
that improved prediction capability, in terms of 
improved ability to quantify erosion rates and 
amounts as a function of system properties and 
inputs, is not the only goal for the models. Models 
also form a structure for integrating our under-
standing of soil erosion processes. Complex mod-
els may also play a role in addressing some 
problems that simple models cannot – climate 
change, for example. Govers (1996) noted this in 
his review paper on soil erosion models, as did 
Williams et al. (1996) in discussions of modelling 
climate change impacts on soil erosion. Also, 
complex models do not necessarily need to remain 
complex in the application phase. A good example 
of this was the evolution of the Hairsine-Rose 
model framework (Hairsine & Rose, 1992a,b) to 
that of the GUEST model described in Chapter 11. 
Another example was the use of the framework 
of the WEPP model (Laflen et al., 1997) to the 
simpler, more targeted-use, and less data- intensive 
Rangeland Hydrology and Erosion Model (Wei 
et al., submitted), as well as the web-based WEPP 
Climate Assessment Tool (Bayley et al., in 
preparation).

Model complexity can lead to increased pre-
diction uncertainty. Chapter 4 addressed the issue 
of model uncertainty in a great deal of detail. The 
most mathematically accurate, and hence com-
mon, manner to assess the propagation of input 
errors is with the use of Monte Carlo simulations 
using distributions of input parameter variation 
(e.g. Wei et al., 2008). Conceptually, however, the 
first-order error (FOE) framework (Wu et al., 2006) 
allows one easily to visualize error summation in 
the models as a function of complexity. Every 
input parameter for a model carries with it some 

degree of uncertainty, which can be expressed 
using FOE by using a coefficient of variation (CV). 
Prediction uncertainty associated with parameter 
definition will propagate through all models to 
generate some level of uncertainty in the model 
response, which within the FOE analysis is 
expressed as a CV of the model response. The 
degree to which the error propagates is directly 
proportional to the sensitivity of the model out-
put to the model input parameter and to the input 
uncertainty (CV). First-order errors sum with 
each additional input parameter, so the decision 
on whether to add an additional input parameter 
to a model is whether or not the new process 
described by the equations that use the parameter 
adds more to prediction capability than is lost 
through the additional error propagated due to 
the uncertainty in the value of the input param-
eter. This is more or less equivalent to the state-
ment attributed to Govers (1996) above.

Hairsine and Sander (2009) recently provided 
a further description of the trade-offs in the devel-
opment of models of soil erosion by water. 
Figure 20.1 shows the conceptual trade off 
between data availability, model complexity and 
model performance as proposed by Grayson and 
Bloschl (2000) for hydrological prediction. For any 
application with a given level of data available, 
there will be an optimum level of model com-
plexity that will allow one to reach optimum pre-
dictive performance (see bold solid line in 
Fig. 20.1). In order to move forward with increas-
ing model predictive performance, model com-
plexity must move forward hand-in-hand with 
data availability. To make progress, we should be 
constantly moving in the direction of the solid 
arrow in Fig. 20.1. When one is using a model 
that is parameter-rich and informed by a rela-
tively small amount of data, predictive perform-
ance deteriorates due to parameter identifiability 
problems because the model is too complex. We 
contend that this is the current situation for most 
existing models of soil erosion and related sedi-
ment transport in most predictive environments. 
Thus these models plot in the bottom right-hand 
corner of Fig. 20.1, in which case the path to 
greater predictive capability is along the bold 
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dashed arrow: more often than not we need more 
and better data rather than more complex models 
to improve erosion predictions.

And so we come back to the subject of the 
chapter and ask: ‘In what direction will the future 
of soil erosion modelling go?’ The 1950s to the 
1970s was the period of empirically-based erosion 
equation development, culminating in the sec-
ond Universal Soil Loss Equation release in 1978 
(Wischmeier & Smith, 1978). The 1970s to the 
1990s was a period of development of process-
based erosion models facilitated by computer 
simulation modelling. As discussed above, much 
of the progress during the 1990s and 2000s has 
focused on understanding and representing uncer-
tainty associated with model applications. In 
most recent years we have seen, and (we predict) 
into the future we will continue to see, advances 
in spatial modelling and up-scaling, interfaces 
that utilize GIS, the increased use of remotely 
sensed data, and web-based delivery systems tied 

to large databases for soils, topography, land use 
and weather. This does not mean that we will not 
also see advances in other aspects of the model-
ling. Empirical modelling has continued, for 
example, as evidenced by the publication of the 
Revised Universal Soil Loss Equation in 1997 
(Renard et al., 1997), and there is much work yet 
to be done on solving the problems associated 
with model and data uncertainty, as discussed 
above. Uncertainty will continue to play a large 
role in our thinking on erosion, and ideally will 
lead to new ways of both modelling soil erosion 
and thinking about how we manage land for pur-
poses of conservation. Nonetheless, practical 
goals associated with management decisions will 
require a set of model requirements that stress 
data reliability and availability, ease of use, capa-
bility for routing water and sediment through 
watersheds, and ability to delineate primary 
trends in erosion rates as a function of manage-
ment practices and changing climate.
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Fig. 20.1 Schematic diagram of the relationship between model complexity, data availability and predictive 
performance (reproduced with permission from Grayson & Bloschl, 2000). The added arrows are: the full line 
which is the ideal path of model development where added complexity is supported by new data; and the 
dashed line which is the more common scenario where new data acts to better constrain existing models.
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The material in this book goes a long way to 
pointing to the probable future of soil erosion 
modelling. A perusal of the applications chapter 
of this book indicates that watershed- and basin-
scale assessments have become a dominant inter-
est to modellers (see chapters 9, 13, 14, 16, 18 
and 19). As we look to larger areas and up-scaling 
soil erosion models (chapters 6 and 19), spatial 
interfaces complete with GIS will continue to 
play a big role in new model development. The 
use of the Internet as a delivery mechanism for 
erosion models will certainly also be important 
in the future (chapters 16 and 17).

Continued data collection for supporting ero-
sion modelling will be critical. Paucity of data 
remains a major limitation to the development of 
reliable models. The types of data needed will 
correspond to the new emphases in the model 
applications. Whereas in the past, plot studies 
have been the basic data of the erosion modeller, 
in the future modellers will increasingly need 
spatial data on erosion patterns and sources 
(Walling, 2005). Fortunately, there is a wide range 
of sediment sourcing tools now available to test 
models that accumulate sediment across com-
plex environments. Motha et al. (2004) applied a 
combination of minor and major element chem-
istry and sediment magnetic properties to assess 
the proportion of sediment reaching a river from 
different sources, including gravelled and ungrav-
elled roads and hillslope erosion from different 
soil types. Rhoton et al. (2008) performed simi-
lar work in the Walnut Gulch Experimental 
Watershed in southeastern Arizona. On a smaller 
spatial scale, Polyakov et al. (2004) used rare earth 
element oxides to measure the erosion, redistri-
bution and deposition of sediment in a small agri-
cultural watershed in Ohio. Sediment tracers that 
differentiate between surface and subsurface soil 
have been used widely to assess the proportion of 
river sediment coming from hillslope, stream 
bank and gully erosion (see review by Mabit et al., 
2008). In some instances these techniques have 
been extended to assess the contributions of rill 
and sheet to hillslope erosion (Wallbrink & 
Murray, 1993). Sediment tracers that differentiate 
between soil and sediment that was sourced from 

land uses with specific vegetation types are under 
active research (Gibbs, 2008).

Sediment that is deposited can be used as an 
accumulated record of the transport history. 
Where this history is well defined, it can serve as 
a testing ground for predictive models run retro-
spectively. A key element in this approach is the 
association of the deposited sediment with events 
in the rainfall record. A wide range of evidence 
has been used to establish the age of recent 
(within the past 100 years) layers of sediment 
deposition. These include charcoal layers from 
known fires, and labelling by atmospheric events 
including the atmospheric testing of nuclear 
weapons (e.g. 137Cs as reviewed by Walling and He 
(1999) and Walling et al. (1999), and plutonium as 
introduced by Everett et al. (2008) ). Until recently, 
many of the sediment dating techniques used 
in geochronology and anthropology were not 
applicable to the last 100 years. The advent of 
optically stimulated luminescence and other 
techniques has enabled the assessment of the age 
of modern deposited sediment and residence 
times of sediment in fluvial systems (Gale, 2009). 
Sediment dating data are now available for recent 
agricultural history (Olley et al., 1998). The appli-
cation of single-grained, optically stimulated 
luminescence has now extended this develop-
ment to small samples and ages greater than 
2 years (Gale, 2009; Pietsch, 2009).

Each of these forms of sediment dating and 
tracing techniques serve to provide further data 
to our models of sediment transport. Specifically, 
we can test the question of ‘Are we getting the 
right answer for the right reason?’ in terms of 
when the sediment was transported, from what 
soil type it was sourced, what were the eroding 
processes (sheet, rill or gully), and what land use 
was in place at the source of the sediment.

Integrating the use of remote-sensing data into 
the erosion modelling process has the potential 
to offer an opportunity to verify independently 
and provide initial conditions to models, but also 
to change the way we conceptualize modelling of 
erosion. Two key methodologies include the 
determination of effective vegetative soil cover 
and the direct sensing of sediment concentration 
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in surface waters. Remote sensing has long been 
used to assess vegetative cover at regional to glo-
bal scales. There is increasing use of libraries of 
time series of images to assess time variations in 
cover (Lu et al., 2003). These time series permit 
assessment of spatial and temporal variations of 
cover inputs to models and the evaluation of 
hindcast predictions from crop and pasture mod-
els. Limitations in the classifications of some 
forms of cover, specifically bleached dead vegeta-
tion, have been resolved by Guerschman et al. 
(2009). Remotely sensed interpretations of soil 
moisture and soil surface roughness could also be 
important mechanisms for informing erosion 
models (Rahman et al., 2008). At the catchment 
scale there are some prospects for the use of 
remote sensing in estimating the concentration 
of surface water sediment concentrations directly. 
A further form of remote sensing with ramifica-
tions for erosion modelling is the development 
and availability of rainfall radar data (Steiner 
et al., 1995). These data could be made useful in 
providing more spatially and temporally realistic 
inputs of rainfall rates than do conventional and 
often sparse networks of rain gauges. Where all of 
these techniques could have the advantage of pro-
viding a spatial-rich source of data for evaluation 
and identifying the initial conditions of models, 
near real-time remote sensing combined with 
models also opens up the prospects of data–model 
fusion where initial conditions for models, 
 rainfall rate inputs and parameter estimation are 
 continuously and automatically updated. These 
techniques have been extensively developed in 
terrestrial and ocean biogeochemical models (e.g. 
Barrett et al., 2005).

Ultimately, the model builder must combine 
lines of evidence to assess and improve models. 
To do this well the product should track the ridge 
indicated by the solid arrow in Fig. 20.1. The use 
of multiple lines of evidence will result in more 
robust models that engender more confidence for 
use in predictive environments. A case study of 
adaptive changes to a model and the consequent 
prediction of spatial erosion processes was pro-
vided by Rustomji et al. (2008). This study showed 
that default parameters from a national assess-

ment could be significantly improved by local 
information so as to give a progressive refinement 
of sediment source maps used to target manage-
ment actions.

Underlying the discussion above is also the 
increasing understanding that ‘Stationarity is 
Dead’ (Milly et al., 2008). We live in a rapidly 
changing world with respect to both land use and 
climate (Chapter 15). As population increases, 
stresses on land resources will continue to 
increase, often in those areas of the world that are 
already severely stressed. When we add to that 
trends of increasing rainfall amounts (Karl & 
Knight, 1998), rainfall intensities (Groisman 
et al., 2005), and rainfall erosivity (Nearing, 2001), 
it becomes evident that our erosion models must 
be able to represent a world of changing land use 
and a changing climate.
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