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Abstract - The Integral Equation Method (IEM) model and a

newly defined delta index were used to estimate near surface soil

moisture from C-band radar satellite imagery in a semi-arid

rangeland in southern Arizona, USA. Model results were

validated against soil moisture measurements made in the field at

the time of satellite overpass. The IEM model performed poorly

in this environment possibly due to abundant near-surface rock

fragments which were not considered in the model. The delta

index performed better than the IEM model and was shown to

work with both ERS and Radarsat imagery. Additionally the

index was simple to implement and implicitly accounted for both

rock fragments and surface roughness.
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I. Introduction

Near surface soil moisture conditions are primary

determinants ofcross-country mobility, irrigation scheduling,

pest management, biomass production, and watershed

modeling. Remote sensing has several advantages for

monitoring surface soil moisture, such as synoptic, timely

coverage with repeat passes, and efficiencies ofscale that

cannot be matched by ground methods. For these reasons,

there is much interest in developing remote sensing techniques

for monitoring surface soil moisture over large areas.

A. Background

Currently orbiting radar satellites may offer the best

opportunity for near surface soil moisture assessment due to

the strong response of radar backscatter to changes in soil

moisture, day or night operational capability, and deeper

sensing depths than optical sensors. The basis for soil

moisture measurements using radar is the difference in

dielectric constant, £, for dry soil (e = 2) and water (e = 80).

As the water content of a dry soil increases, so does the

dielectric constant, which directly affects microwave

backscatter, a0 [I]. Microwave energy penetration of soil is
on the order ofseveral centimeters [2], but surface roughness

and vegetation affect backscatter as much or more than soil

moisture [3], [2]. Different methods of accounting for

vegetation and roughness have resulted in numerous

approaches to extracting soil moisture from radar imagery.

B. Approaches

Researchers have shown it is possible to determine

soil moisture from C-band radar imagery using physical, semi-

empirical and empirical models. A unique category of

empirical approaches used in this research is image

differencing.

The most general and commonly used physical model

covering a wide range of microwave and surface parameters is

the Integral Equation Method (IEM) model of [4]. The IEM

model has been used successfully at multiple scales by [5] and

[6]. Other models exist but have a limited validity domain.

The semi-empirical models show improved results

over purely physical models and ease the difficulty of

obtaining surface roughness measurements, but again are

limited by the range in conditions for which they have been

validated. For these reasons radar models for a wide range in

surface properties have been only moderately successful [7].

Empirical models are generally limited to the range in

surface conditions and viewing geometry for which they were

developed. The predictive capability of single polarization or

single incidence angle radar for soil moisture is generally

positive, but weak due to influence ofhighly variable surface

roughness [8],[9],[IO], and [11J.

Another type ofempirical approach is the image

difference technique that can be used to advantage in

landscapes where surface roughness and vegetation is time-

invariant, thus optimizing the potential to observe backscatter

differences due solely to changes in near-surface soil moisture

[8] and [12]. Like empirical approaches, difference

techniques require calibration and may only apply to regions

and ranges in surface conditions where they have been

validated. Additionally, careful image to image registration is

critical for meaningful results.

II. Objectives

Objectives of this research were to: I) investigate the

relative accuracy of methods for determining surface soil

moisture from radar backscatter using the IEM model and a

difference index, 2) identify the primary factors affecting

accuracy in each method.
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III. Methods

A. Study area

The study area was the 150 km2 Walnut Gulch
Experimental Watershed (31°.43'N, 110o.41'W) in southern

Arizona (Fig. 1). The watershed is a semi-arid rangeland

supporting grass and shrub vegetation. Soils, composed

primarily ofalluvium, are sandy loams, and gravelly loamy

sands with approximately 30% rock fragment content.

Topography is rolling to mountainous [13] and [14].

TABLE I. Characteristics of radar imagery and number of
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Figure I. Location of Walnut Gulch Experimental Watershed in southern

Arizona, USA and 46 sites where ground measurements of soil moisture were

collected at times of satellite overpass.

B. Imagery

Both ERS-2 and Radarsat-1 imagery were used in

this study (Table 1). The ERS-2 imagery and associated soil

moisture data were obtained from field campaigns conducted

in 1997 at three sparsely vegetated grass and shrub sites that

were sampled repeatedly over time [12].

Three Radarsat-1 images were acquired coincident

with field measures of soil moisture in 2003 on 30 July, 31

August, and 16 September. Geometry for these images was

selected to match an historic image acquired 04 January 2002.

The ERS-2 and Radarsat-1 backscatter coefficients were

computed as the average ofa 7 x 7 pixel window representing

8100 m2and 1225 m2 respectively due to differences in spatial
resolution. Additionally, all Radarsat-1 images were median

filtered with a 5 x 5 moving window prior to averaging in

order to reduce speckle.

C. Soil moisture measurements

Soil moisture measurements were made either

gravimctrically or with factory calibrated capacitance probes

within a few hours of 11:00am and 6:30pm for ERS-2 and

Radarsat overpass times respectively. Soil moisture for the

January 2003 image was assumed to be a uniform 3% at all

sites.

n

pixel

resolution

polarization

incidence

angle

frequency

wavelength

ERS-2

All dates

10

12.5

VV

23°
C-band

(5.3 GHz)

5.6 cm

RADARSAT-1

04 Aug 2002

18

8

HH

46°

C-band

(5.3 GHz)

5.6 cm

RADARSAT-1

All other dates

44

8

HH

46°

C-band

(5.3 GHz)

5.6 cm

D. Roughness

Surface roughness was obtained from previous

research [8]. It was measured with a pin meter at all ofthe

sites used with the I EM model. Both root mean square error

(rms) ofsurface heights and correlation length (L) were

computed for 30 one-meter roughness transects at each site.

Results were averaged by site for use in simulations using the

IEM model.

E. Models

A pseudo inversion ofthe Integral Equation Method

(IEM) model was created with a Look-Up-Table (LUT) to

estimate soil moisture from backscatter and roughness input

variables. The LUT was used to predict soil dielectric from

Radarsat pixel values and roughness at field sites. Soil

dielectric was converted to soil moisture using the relationship

ofHallikainenetal. [15].

An image difference technique proposed by Moran et

al. [12] was modified by normalizing the difference of pixel

values to the dry scene value. The delta index was defined as,

A-index = abs[(oo a°diy)'100], (1)

where o°^ = average radar backscatter ofdry soil,
and O°VM = average radar backscatter ofwet soil.

Results from both IEM inversion and A-index

methods were validated against in situ measurements of

surface soil moisture determined at the time of satellite

overpass.

IV. Results

A. Backscatter - Soil Moisture Relationship

On a site by site basis the relationship between 5x5

pixel averaged backscatter and soil moisture was weak (r =

0.11). However, the relationship between watershed averaged

backscatter and corresponding field measured soil moisture

when averaged by date was strong (r2 = 0.97) (Fig. 2). These
findings agreed with other researchers [10], [12], [16], and

[17]. Spatial averaging reduced the effect of residual speckle,

while temporal grouping maintained a large range ofsoil
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moistures that induced a response greater than the noise level

ofthe sensor.
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Figure 2. Relationship between mean volumetric soil moisture and mean

Radarsat backscatter at the watershed scale. Backscatter and soil moisture

were averaged by date for the 44 field sites. Soil moisture for the January

image was not measured, but assumed to be 3% at all sites.

B. IEM

There was a strong relationship between Radarsat

backscatter and IEM modeled backscatter for 44 sites when

grouped by date and averaged spatially across the study area

(Fig. 3), but the LUT was a poor predictor of volumetric soil

moisture at the study area scale (Fig. 4). This was because

there was only 1.7 dB range in Radarsat backscatter for the

14% range in average watershed volumetric soil water content

during the study (Fig. 2). The narrow range in observed

Radarsat backscatter for the range ofmoisture conditions in

the watershed resulted in a correspondingly narrow range in

predicted soil moisture (2.6%) using the LUT (Fig. 4).

The primary reason for poor predictive capability of

the IEM generated LUT in this environment was likely due to

the abundance of rock fragments near the soil surface. Rock

fragments occupied significant bulk volume in the research

watershed, but held no water and maintained a constant

dielectric near that ofdry soil regardless ofthe moisture status

ofthe surrounding soil matrix. Thus, rock fragments

effectively reduced the sensitivity ofbackscatter even for large

changes in volumetric water content. For C-band

scatterometer data a 90% reduction in the range ofobserved

emmisivity was attributed to 35% rock volume in wet and dry

soils [18].

A dielectric vs. soil moisture relationship was

required in forward iteration ofthe IEM model for LUT

construction, and for inversion to estimate soil moisture. In

this study an empirical dielectric vs. soil moisture relationship

for non-rocky soils was used [IS]. Results would likely

improve if the dielectric vs. soil moisture relationship was

modified as a function ofvolumetric rock fragment content as

proposed by Jackson et al. [18].
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Figure 3. Observed radar backscatter versus modeled radar backscatter for 35

x 35 m! areas in 2003. Each point is an average of44 sites.
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Figure 4. Predicted volumetric water content obtained through IEM generated

LUT versus field volumetric water content on four dates in 2003. Soil

moisture for the January period was not measured, but assumed to be 3%.

C. Delia index

The A-index approach was a better predictor of field

volumetric water content than the IEM generated LUT

approach (Fig. 5) as indicated by a nearly 1:1 relationship with

volumetric soil moisture. Unlike the IEM, the A-index

required two images, a dry reference image and a wetter

image, to generate a relative change in water content that

implicitly accounted for both roughness and volume scatter

caused by rock fragments. This method provided meaningful

results as long as surface roughness and vegetation density did

not change significantly between image acquisition dates.

Precise image registration was required to avoid erroneous

change detection.

It follows that the A-index should increase as soil

moisture increases due to a lager numerator in equation (I) for

wet conditions. However, there is not a clear physical

explanation for the 1:1 relationship between volumetric water

content and the A-index. The relationship may hold in other

sparsely vegetated environments because it is independent of
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surface roughness conditions, rock fragments and vegetation

and depends primarily on the relationship between volumetric

water content and real dielectric which is relatively consistent

for most non-clayey mineral soils, and is robust to differences

in bulk density [15].
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Figure S. Delta index and volumetric soil moisture for Held conditions

sensed by both ERS and Radarsat satellites.

An additional advantage ofthe A-index approach is

the convenience of using data from multiple sensors as long as

a reference image for each sensor is available. A prominent

disadvantage is its limitation to areas of un-changing surface

roughness. The A-index is easier to implement than IEM

model inversion but it should be tested in other environments.

V. Conclusions

The relationship between radar backscatter and site

specific soil moisture was poor but improved dramatically

when sites were spatially averaged. This indicated that radar

backscatter was sensitive to large changes in soil moisture and

may be useful for predicting soil moisture over large areas or

across spans oftime that include large changes in soil

moisture.

The IEM generated LUT approach to estimating soil

moisture was negatively affected by the abundance of rock

fragments in the near surface soil in the study area as indicated

by a narrow range in observed backscatter for a large range in

observed soil moisture content. It should be re-examined by

modifying the dielectric vs. soil moisture relationship to

account for volumetric rock fraction in the near surface soil.

The A-index was a better predictor of soil moisture as

indicated by its approximation ofthe I: I line with soil

moisture, and it was shown to be useful with both ERS and

Radarsat imagery. It accounted for sparse vegetation, rock

fragments and surface roughness implicitly by using a

reference image that contained that 'information' in a spatial

context. It was easier to implement than the IEM generated

LUT but required careful image registration and would only

be useful in environments where surface roughness and

vegetation do not change between image acquisitions. It

should be tested in other environments to determine if this

relationship is universal for sparsely vegetated areas.
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