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Abstract

Due to its modest data demands and transparent model structure, the Universal Soil Loss

Equation (USLE) remains the most popular tool for water erosion hazard assessment. However,

the model has several shortcomings, two of which are likely to have prominent implications for

the model results. First, the mathematical form of the USLE, the multiplication of six factors,

easily leads to large errors whenever one of the input data is misspecified. Second, the USLE has

a modest correlation between observed soil losses and model calculations, even with the same

data that was used for its calibration. This raises questions about its mathematical model structure

and the robustness of the assumed parameter values that are implicitly assigned to the model.

This paper, therefore, analyzes if the USLE could benefit from mathematical model

transformations that, on one hand, mitigate the impact of incorrect input factors and, on the

other hand, result in a better fit between model results and observed soil losses. For the analysis,

we revisit the original data set and consider the USLE factors as variables rather than their

common interpretation as parameters. We first use both nonparametric and parametric techniques

to test the robustness of the implicit parameter assignments in the USLE equation. Next, we

postulate alternative mathematical forms and use parametric test statistics to evaluate parameter

significance and model fit. A tenfold cross-validation of the model with the best fit tests the

sensitivity of the parameters for inclusion or exclusion of the data. The results show that the
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USLE model is not very robust, however, only slight model improvements are obtained by

drastic modifications of its functional form, thereby sacrificing the simple model structure that

was intended by its designers.
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1. The USLE

1.1. The model

The USLE is the most widely used model for prediction of water erosion hazards and

planning of soil conservation measures. It was adopted in 1958 by the Soil Conservation

Service in the USA to make long-term assessments of soil losses under different cropping

systems and land management practices. On the basis of a considerable experience with

more than 10000 plot years, 20 years later (Wischmeier and Smith, 1978), an updated

equation was formulated which product form bears a resemblance to a Cobb–Douglas

function with parameters of the value 1:

A ¼ R� K � L� S � C � P; ð1Þ

where A represents the soil loss, commonly expressed in tonnes ha� 1 year� 1. R refers to

the rainfall erosivity factor, calculated by the summation of the erosion index EI30 over

the period of evaluation. EI30 is a compound function of the kinetic energy of a storm and

its 30-min maximum intensity. The latter factor is defined as the greatest average rainfall

intensity experienced in any 30-min period during a storm. It can be computed from

automatic rain gauge charts by locating the greatest amount of rainfall in any 30-min

period and then doubling this amount to get the same dimensions as normal rainfall

intensity, i.e. rainfall per hour. K is the soil erodibility factor reflecting the susceptibility of

a soil type to erosion. It is expressed as the average soil loss per unit of the R factor. L is

an index of slope length, expressed as the ratio of the expected soil loss to that observed

for a field of 22.6-m length. S is a slope gradient index, the ratio of the expected soil loss

to that observed for a field of specified slope of 9%. C is an index for the protective

coverage of canopy and organic material in direct contact with the ground. It is measured

as the ratio of soil loss from land cropped under specific conditions to the corresponding

loss from tilled land under clean-tilled continuous fallow conditions. Finally, the

protective factor P represents the soil conservation operations or other measures that

control the erosion, such as contour farming, terraces, and strip cropping. It is expressed

as the ratio of soil loss with a specific support practice to the corresponding loss with up-

and-downslope culture.

The simple structure of the USLE formula (Eq. (1)) makes it easy to formulate

transparent policy scenarios by changing the land use types (C and P factors) under given

ecological conditions (R, K, L, and S factors). This, together with the low data require-

ments compared with physical-based models, such as WEPP and EUROSEM, explains the
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popularity of the USLE in small-scale water erosion studies at a continental (UNEP/

RIVM/ISRIC, 1996b; Van der Knijff et al., 2000), nationwide (Van der Knijff et al., 1999;

Schaub and Prasuhn, 1998; UNEP/RIVM/ISRIC, 1996a, 1997; Bissonnais et al., 1999),

statewide (Hamlett et al., 1992), regional (Folley, 1998), and watershed level (Mellerowicz

et al., 1994; Merzouk and Dhman, 1998; Young et al., 1987; Dostal and Vrana, 1998). The

USLE is also popular in (nationwide) land evaluation studies where it is linked with rule-

based procedures to determine the decrease in productivity (Kassam et al., 1991; Struif-

Bontkes, 2001) or to estimate changes in nutrient balances (Smaling, 1993).

However, the USLE has some intrinsic model limitations which require attention. A

nonparametric analysis of the original USLE data set (Keyzer and Sonneveld, 1998)

reveals that data on higher soil losses is scarce and large errors can be expected for high

rainfall data in combination with steep slopes and the lower and higher K values. This

analysis also showed that observations are largely concentrated around the lower soil

losses, where the model should give more reliable estimates. However, Nearing (1998)

showed that small soil losses were consistently overestimated while the higher ones were

underestimated. These results confirm earlier findings where the USLE model shows a

rather poor statistical fit when used to explain annual soil losses (R2 = 0.57) of the same

data that were used for its calibration (Risse et al., 1993). Furthermore, the mathematical

form of the USLE, the multiplication of six factors, leads to large errors whenever one of

the factors is misspecified (Wischmeier, 1976). This raises questions about the model

specification of the USLE and robustness of the implicit parameter assignments.

Therefore, an approach seems justified to investigate the impact of an equation

transformation of the USLE model that, on one hand, could mitigate the impact of

erroneous input factors and, on the other hand, result in a better fit between model results

and observed soil losses.

1.2. Improving the USLE

Various attempts to improve the predictive capability of the USLE technology have

been made in recent years, both along traditional and nontraditional avenues of inquiry.

Along the traditional route, whereby we seek to improve the prediction capabilities of the

model by focusing on better parameter estimations, the most extensive work is undoubt-

edly the Revised Universal Soil Loss Equation (RUSLE) (Renard et al., 1998). The

changes from the USLE to the RUSLE generally fit into two categories: (a) incorporation

of new or better data and (b) consideration of selected erosion processes. Recent data from

the western United States was used to develop a new map for the rainfall erosivity factor,

R. Obviously, this improvement and other similar improvements in the RUSLE that are

based on new or better data will have impact only for regional or other applications for

which the new data is relevant.

The incorporation of selected erosion processes into the RUSLE model has the

potential for broader prediction improvements. Some of these improvements include

functions for the seasonal variability in the soil erodibility factor, K; slope length and

steepness factors that are dependent on rill to interrill erosion ratios; inclusion of support

practice, P, factors for subsurface drainage, rangelands, off-grade contouring, and strip-

crop rotations; and the dependence of the contour P-factor on storm severity (Renard et al.,
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1991, 1998). Perhaps the most extensive changes in the model are the inclusions of sub-

factors in the cover-management factor, C, for the effects of prior land use, canopy cover,

ground surface cover, surface roughness, and soil moisture. It is difficult to assess the

improved function of the RUSLE as compared to the USLE because so many of the

changes in the new model are targeted for specific applications. For example, improve-

ments in the P-factor for subsurface drainage have significance only for the specific case

of drained fields, and do not affect the application of the model elsewhere. The increased

prediction capability of the RUSLE might best be stated in terms of the increase in the

scope of application, rather than its increased prediction accuracy for cases in which the

USLE was developed. It should also be noted that the RUSLE focuses on application

within the United States, and adaptation and use elsewhere have as yet been limited. In one

study using data that was collected on natural runoff plots located primarily in the eastern

half of the United States, the RUSLE model did not outperform the USLE in its prediction

accuracy (Tiwari et al., 2000).

Also, recently, two nontraditional approaches to improving the USLE have been

undertaken. One involves the use of fuzzy logic-based modeling (Tran et al., 2002). In

this case, a data set consisting of 1700 plot-years of information from 200 individual plots

at 21 sites in the United States were used. These were data that was used, in part, to

develop the USLE model. RUSLE parameters estimated from a previous study (Rapp,

1994) were listed with the measured soil loss data from each plot year. The data was

divided into several subsets based on ranges of some of the RUSLE parameters, and then

the measured soil loss data was related to the RUSLE parameters using the fuzzy logic

approach. The results indicated that the new fuzzy logic-based model provided a better fit

to the data than did RUSLE. Of course, in this case, the data used to develop the fuzzy

logic-based model was the same as those used to evaluate the model. The same data was

also used, in part, to develop the USLE that was precursor to the RUSLE. It is unclear if

the relative rankings of the two models (fuzzy logic and RUSLE) that would remain the

same were the models applied to other, independent data. Independent data from a

significant number of locations is difficult to find.

A second nontraditional approach to improving the USLE was made by Licznar and

Nearing (2003). This approach involved using artificial neural networks to predict soil loss

from natural runoff plots. Data from 2879 erosion events from eight locations in the United

States was used. In this case, neither USLE nor RUSLE parameters were considered, nor

were the results directly compared the USLE or RUSLE results. However, the results were

compared to the Water Erosion Prediction Project (WEPP) model (Flanagan and Nearing,

1995). We include a review of this work here because it used the same natural runoff plot

data source as was used to develop the USLE and the fuzzy logic-based model discussed

above, and it falls within the realm of essentially empirically based approaches to erosion

modeling. Neural networks were created using commercially available software that

related soil loss to 10 data elements: precipitation (mm), duration of precipitation (h),

canopy cover (ND), interrill cover (ND), effective hydraulic conductivity (mm h� 1),

adjusted interrill soil erodibility Ki (kg s m� 4) as computed by the WEPP model

(Flanagan and Nearing, 1995), adjusted baseline rill erodibility Kr (kg s m� 4) as

computed by the WEPP model (Flanagan and Nearing, 1995), number of days since last

disturbance (day), slope steepness (m m� 1), and slope length (m). The neural network was
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trained on a subset of the data, then applied to the remainder of the data set. Overall, the

neural network performed as good as or better than the WEPP model in predicting soil

loss.

The approach that we follow in this paper is to revisit the original USLE data set and

interpret the individual factors as variables instead of their usual interpretation of

parameters. This allows us to postulate alternative mathematical forms that accommodate

the USLE factors to test if we can improve the model fit. We start the analysis by testing

the robustness of the original mathematical form of the USLE using nonparametric

reliability estimates and parametric test results. We will also use the flexible form of the

nonparametric regression to evaluate the ‘best’ possible model fit with observed soil losses

and compare these with the parametric model fits. Finally, for the model with the highest

fit, we will test the sensitivity of the parameters for the inclusion or exclusion of the data

by a tenfold cross-validation (Weiss and Kulowski, 1991). In this procedure, the data set is

subdivided, at random, into 10 sets of about equal size. The model is estimated each time

with nine subsets of the data, keeping the remaining 10% as an evaluation set.

This paper is organized as follows. In Section 2, we introduce the data set and the

nonparametric and parametric technique that are used for the analysis. Section 3 presents

the results and Section 4 concludes.

2. Data and methods

2.1. Data

We use a representative sample of the original data set to review relationships among

observed soil loss, the model error, and explanatory variables. The data set was used by

Risse et al. (1993) to evaluate model efficiency and comprises 1704 observations on

annual soil loss, collected from 208 natural run-off plots at 22 experimental stations in the

USA, during the period 1930–1980. Each variable of the USLE equation was determined

on these sites.

2.2. Nonparametric estimation

The nonparametric estimation technique that is applied in this study yields a flexible

form that evaluates the ‘best’ possible fit between observed soil losses and model results.

Furthermore, we use statistics on the reliability of the estimate to evaluate the robustness of

the assumed parameter values of the model. The nonparametric technique is effectuated by

a kernel density regression (e.g. Bierens, 1987) according to the following stochastic model

ŷðxÞ ¼
Z

yðxþ eÞwðeÞde;

where y is the dependent variable (e.g. observed soil loss), x is a vector of explanatory

variables and e denotes measurements errors in x. The function y(x + e) is the unknown

(erosion) function, and the regression takes the expected value of this function. For an

infinite sample of observations spread evenly over the domain of x, it would be possible to
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evaluate this expected value. However, with a finite sample of size S, the value of y can only

be estimated, and for this, the kernel density regression uses the Nadaraya–Watson

estimator:

ỹðxÞ ¼
X
s

PsðxÞys; ð2Þ

where Ps, at any point x with observations, indicates the probability of being the correct

value of ỹ(x). This (Eq. (2)) is a probability weighted sample mean. The probabilities are

computed on the basis of the distance of xs from the given point x, attributing higher weight

to nearby points. Weights are assigned using a postulated density function (the kernel) for e
whose spread is controlled by the window size parameter h, which standard value is

determined by Eq. (3),

h ¼ 4

nðd þ 2Þ

� � 1
dþ4

; ð3Þ

with n the number of observations and d the number of exogenous variables (Silverman,

1986). The mollifier program supposes that all the elements of e are independently and

normally distributed. The mollifier also calculates several statistics that reflect the

estimates’ reliability. In this exercise, we use the partial derivative of the regression curve

with respect to the explanatory variable xk
t at data point xt, as well as a measure of reliability

for it. For this, it evaluates at every data point:

BỹðxtÞ
Bxtk

¼
X
s

BPsðxtÞ
Bxtk

ys: ð4Þ

From Eq. (4), we derive the probability of a wrong sign of the first derivative, the

mathematical explanation of which is relegated to the Appendix A. A value of 0.5 indicates

that on average, the slope information is uninformative, above 0.5 it has the wrong sign, and

the more below 0.5, the more reliable the average slope.

2.3. Parametric techniques

The parametric technique used in this paper is the conventional regression techniques of

ordinary least squares. We use t-scores to test robustness of assumed parameter values of

the USLE factors and evaluate the correlation coefficient (R2) between the observed soil

losses and model results when alternative mathematical forms of the USLE are used.

3. Model robustness and modifications

3.1. Robustness

The robustness of the functional form is tested both in a nonparametric and a parametric

way. The factor values of R, K, L, S, C, and P form here the independent variables and

observed soil losses constitute the dependent variable.
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The nonparametric test calculates the probability of a wrong sign of the first derivative

of the individual parameters which provides a measure of significance of the associated

variable with the dependent variable. Table 1 presents the probability of a wrong sign of

the first derivative for the USLE factors. All factor values are close to 0.5, while the P-

factor even exceeds this level, indicating a rather low association of the variables with soil

loss.

However, there is no formal test statistic such as a v2 to relate this statistic to the

measured one and hence the results have to be interpreted without a formal test. Therefore,

we will also analyze the robustness of the USLE form with a parametric technique that

allows for a more common and formal interpretation. The approach is to interpret the

mathematical formula of the USLE as a Cobb–Douglas function with power coefficients

of 1. We then evaluate the significance of added parameters ai in Eq. (5) as:

logA ¼ a0 þ
X5
i¼1

ð1þ aiÞlogXi; ð5Þ

where a0 is a constant and ai a parameter value that belongs to the vector Xi, which

represents the USLE factors (R, K, LS, C, and P). The results of this estimation are given in

Table 2.

All parameters are significant at the 1% level, except for the K-factor, which is highly

insignificant. Parameter values of K and LS factors are almost zero indicating that the

exponents are close to 1, approximating the assumed values in the USLE model. The

estimated parameter values for C, R, and especially the P-factor, however, largely deviate

from the assumed value of the power exponent and seem not to be very robust. Together

with the results of the nonparametric analysis, this implies that possible model improve-

ments can be obtained by estimating different parameter values for the individual USLE

factors.

3.2. Improving the model fit

We start the exercise on model improvement by applying a nonparametric regression on

the USLE factors and soil losses. The flexible form of the nonparametric model provides

us with a ‘theoretical’ best fit between model results and observed soil losses. The R2 of

the nonparametric regression, again between factor values of R, K, L, S, C, and P as

Table 1

Results of the nonparametric regression on the USLE data set

Variable Probability of wrong

sign for 1st derivative

R-factor 0.47312

LS-factor 0.48187

K-factor 0.49746

C-factor 0.46322

P-factor 0.50082
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independent variables and observed soil losses as dependent variable, shows a value of

0.76, which is, for the given window size, the best achievable fit between this model and

the observed data that can be obtained. However, this nonparametric model has as

disadvantage that while the model derived in this manner is highly flexible and elaborate,

it only reflects theoretical restrictions through the choice of variables and not through

properties of the functions, precisely because the moulding of the model into a particular

shape is almost exclusively driven by the data. In the context of policy modeling, in this

case on decisions of land management, this is considered undesirable and a parametric

approach is therefore preferred.

We therefore aim at a better model fit by testing different analytical forms in which

model calculations (A) and individual factor estimations (Xb) are taken as empirical data

for independent variables, while observed soil losses (S) form the dependent variable. The

selection of nonlinear deviations of individual factors is based on the results of the

nonparametric analysis (Keyzer and Sonneveld, 1998). The functions and correlation

coefficients are presented in Table 3. All parameter estimates were significant at the 0.01

level and the Cobb–Douglas function has the best fit. The parameter values of the

variables (a1 to a5) are therefore similar as those in Table 2 minus the value one, while the

value of the constant (a0) remains the same. Analogous to the discussion of the results

presented in Table 2, we note that most parameter values of the Cobb–Douglas function

are close to unity approximating the original USLE exponents, while the intercept is near

zero. The C and R components have a somewhat larger deviation, while the P-factor is an

exception with a much lower value. The large deviation of the P-factor is most probably

due to the small sizes of the run-off plot which are not suitable for the monitoring of soil

Table 3

USLE variables and assessments accommodated in mathematical forms and correlation coefficients

Name Functional format R2

Linear S= a(A) + b 0.5700

Quadratic S= a(A)2 + b(A) + c 0.5773

Polynomial S= a(A)3 + b(A)2 + c(A) + d 0.5774

Cobb–Douglas lnS ¼ aþ
P

i bilnXi 0.6035

Exponential I S= exp(aA + b) 0.5762

Exponential II S ¼ expða
P

i bilnXiÞ 0.4387

Mitscherlich–Baule S ¼ að1� expð
P

i biXiÞÞ 0.5768

Table 2

Results of the parametric regression on the USLE data set

Parameter (symbol Eq. (5)) Estimate

Constant (a0) 0.3947

R (a1) 0.1641*

K (a2) � 0.0702*

LS (a3) 0.0243*

C (a4) � 0.1387*

P (a5) � 0.6692**

*Parameter values were at the 0.0001 significance level.

**Parameter value at the 0.001 significance level.
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conservation practices. The R2 of 0.6045 is only slightly higher than the USLE model fit

(R2 = 0.57).

3.3. Tenfold cross-validation

The estimated parameters of the Cobb–Douglas function are tested for their sensitivity

to the inclusion or exclusion of observations by a tenfold cross-validation procedure. Fig.

1 presents the estimates.

All parameters retain their original sign, but vary in the deviations from their mean

value. Parameters for rainfall erosivity, soil erodibility, and coverage factor exhibit minor

fluctuations, and are highly significant throughout the estimation rounds. The topography

index (LS-factor) is also highly significant but its value is less stable reporting maximum

deviations from its mean value of 15%. The protection factor is most sensitive for the

exclusion of the data and has a maximum of 100% deviation from its mean value and has

the lowest significance of all parameters. The R2 differs only with 0.01 or 0.02 from the

0.6035 value that was obtained for the entire data set. The results are sufficient to deduce

that the parameters are stable except for the protection factor which shows a high

sensitivity to the inclusion or exclusion of observations.

Fig. 1. Tenfold cross-validation.
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We therefore conclude that, although the assumed parameter values of the parametric

form of the USLE are not robust, postulating different parametric forms only slightly

increases the robustness of the parameter values, but does not result in substantial

improvements of the correlation with observed soil losses and goes at the expense of

the simple USLE model structure.

4. Summary and conclusions

This paper investigates if the USLE could benefit from mathematical model trans-

formations that, on one hand, mitigate the impact of incorrect input factors and, on the

other hand, result in a better fit between model results and observed soil losses. For the

analysis, the original USLE data set is revisited whereby we consider the individual USLE

factors as variables rather than their common interpretation as parameters. We first use

both nonparametric and parametric techniques to test the robustness of the implicit

parameter assignments in the USLE equation. Next, we postulate alternative mathematical

forms and use test statistics to evaluate parameter significance and model fit. A tenfold

cross-validation of the model with the best fit evaluates the sensitivity of the parameters

for inclusion or exclusion of the data.

Both the nonparametric and parametric results show that the parameter values of the

USLE formula are not very robust. However, we could only obtain a slight model

improvement in robustness of parameter estimates and model fit by modifying its

functional form, thereby sacrificing the simple model structure that was intended by its

designers (Wischmeier, 1976).

Further research should not aim at refinements of the functional format but, for

example, concentrate on the inclusion of other explanatory variables like the IXEA index,

proposed by Kinnell (1995). This dynamic index combines the summation of excess

rainfall and rainfall kinetic energy and enhances the fit, especially when soils have high

infiltration capacities.
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Appendix A. Statistical reliability of mollifier estimates

The mollifier program assesses the partial derivative of the regression curve as well as a

measure of its reliability. For this, it calculates the first partial derivative of

yshðxÞ ¼
X
s

ysPs
hðxÞ ðA1Þ
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to xk at point x, where k represents an explanatory variable, at all data points xt.

BỹðxtÞ
Bxk

¼
X
s

BPs
hðxtÞ
Bxk

ys: ðA2Þ

Since
P
s

BP s
h ðx

tÞ
Bxk

¼ 0, we can write

Bỹðx tÞ
Bxk

¼
X
s

BPs
hðxtÞ
Bxk

ðys � ytÞ; ðA3Þ

where yt refers to the tth observation. As by definition,
BP s

h ðx
tÞ

Bxk
¼ Ps

h
BlogP s

h ðx
tÞ

Bxk
, and it follows

that

BỹðxtÞ
Bxk

¼
X
s

P s
hðxtÞ

BlogPs
hðxtÞ

Bxk
ðys � ytÞ

� �
: ðA4Þ

Let us now rewrite and interpret the term in square brackets.

BlogPs
hðxtÞ

Bxk
¼ BlogwsðxtÞ

Bxk
�
XS
h¼1

Ph
h ðxtÞ

BlogwhðxtÞ
Bxk

ðA5Þ

Now, for a density ws(x
t) =w((xs� xt)/h) where w is a normal joint density with diagonal

variance matrix and variance rk
2 around xt, it follows that

BlogwsðxtÞ
Bxk

¼ xsk � xtk
r2
k

: ðA6Þ

Hence, the term in square brackets can be rewritten as

BỹðxtÞ
Bxk

¼
X
s

P s
h ðxtÞ½nskdsk�; ðA7Þ

where nsk ¼
xs
k
�xt

k

r2
k

�
P
h

Ph
hðxtÞ

ðxh
k
�xt

k
Þ

r2
k

and dsk ¼ ðys � ytÞ:

In other words, the term in square brackets is the contribution of observation s to the

slope.

For given xt, this enables us to define the probability of a positive sign for the slope as

Pþ
k ðxtÞ ¼

X
s

P s
hðxt j nskd

s
kz0Þ: ðA8Þ
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Hence, the probability of a wrong sign can be calculated as

P#
kðxtÞ ¼ Pþ

k ðxtÞ; if
BỹðxtÞ
Bxk

< 0; and 1� Pþ
k ðxtÞ; if

BỹðxtÞ
Bxk

z0: ðA9Þ
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