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ABSTRACT: Measurement of crop residue cover over large areas is useful for monitoring

conservation tillage adoption, assessing carbon sequestration potential and erosion modeling.

This study was designed to test the accuracy of crop residue estimates in current Tillage Transect

Surveys, and to test the feasibility of predicting crop residue cover based on data recorded by

Landsat Enhanced Thematic Mapper Plus (ETM+) satellite scenes. A total of 468 corn and/or

soybean fields in 11 Minnesota counties were characterized for residue cover in the course of

three sampling campaigns coinciding in time with satellite scene acquisition. Results showed

that Tillage Transect Survey estimates were correct for 49 percent to 74 percent of fields when

either five or two categories were used in classification respectively. Regression analysis showed

a strong positive relationship between percent soybean residue cover and ETM+ bands 1,3, and 7

(r2 °o.66) and between percent corn residue and ETM+ bands 4, 5 and 7 (r2 ° 0.44). Three

additional indices based on satellite digital numbers, the Soil Tillage Index, Normalized Difference

Index, and Normalized Difference Tillage Index had coefficients of determination between 0.02

and 0.56 for corn and soybean residues. The Crop Residue Index Multiband model, a more

physically based model, correctly predicted residue cover categories for 30 to 64 percent of fields

when five or two categories were used in classification respectively. We conclude that remote-

sensing techniques had accuracy as good or better than Tillage Transect Surveys estimates when

residue cover classifications were decreased to two categories (0 to 30 percent, and >3o percent).

Since residue cover information is primarily needed to assess the extent of two categories,

conservation and conventional tillage, remote sensing with Landsat imagery provides a means of

sampling every field with an efficient, economical and uniform methodology.
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A comprehensive and efficient monitoring

program for estimating spatially distrib

uted crop residue cover is needed to track

trends in adoption of conservation prac

tices, compliance regulation, prioritiza-

tion of conservation efforts, carbon

sequestration and erosion modeling.

However, the only broad-scale monitoring

effort currently implemented relies on a

roadside survey methodology, the Tillage

Transect Survey of Hill (1995) that is time

consuming, laborious and expensive. The

Tillage Transect Survey is conducted annually

or every three 10 five years by most

Midwestern states in agricultural counties

(CTIC, 2004). Methods of residue cover

assessment are needed that can replace or

augment information collected by the Tillage

Transect Survey over large areas. A remote

sensing approach may provide a more effi

cient method for obtaining this critical infor

mation over large areas in a timely manner.

Estimating crop residue cover using remote

sensing techniques has been extensively

researched but infrequently implemented in

monitoring programs. Major obstacles

include cost and availability of cloud free

optical imagery, and difficulties In developing

an effective way to differentiate soil and

residue under field conditions. Three gener

al categories including fluorescence, active

radar backscatter. and passive optical

reflectance lave been investigated for crop

residue cover assessment.

Fluorescence induced by laser excitation has

been shown to unambiguously differentiate

crop residues from soil (McMurtrey et al.,

1993; Daughtry et al.,1997; and Daughtry et

al., 1996b). However, detection of fluores

cence signals is hampered by difficulty in

generating sufficient laser-induced excitation

energy for field-scale work. The weakness of

the fluorescence signal relative to ambient

daylight conditions is also problematic.

Using radar satellite data, McNairn et al.

(1996,1998a. 1998b) reported that quantita

tive residue cover estimates were difficult

to determine due to interacting effects of

surface roughness and soil moisture that

affect backscatter intensity. However, type of

residue was easily discerned due to roughness

characteristics of the residues. They also

found it possible to determine whether tillage

had occurred between two successive image

acquisition dates due to changes in surface

roughness that increased backscatter.

Optical imagery is more readily available

and affordable than other remote sensing data

products, making it an attractive choice for

assessing crop residue cover over large areas.

The primary complicating factor in a passive

optical reflectance approach was the similarity

of spectral signatures for soils and residues

across a wide range of wavelengths (Daughtry

et al., 1996a; Gausman et al., 1975; Nagler et

al.. 2000). However. Aase andTanaka (1984)

and McMurtrey et al. (1993) recognized that

calibrations for unique combinations of soil

and residue could be achieved provided the

contrast between the soil and residue was

great. Because reflectance signatures of crop

residues and soils are monotonic over much

of the spectrum, even band ratios have not

substantially improved discrimination capa

bility. A notable exception is the Cellulose

Absorption Index (CAQ (Nagler et al.. 2000;

Daughtry et al.. 1996b) that exploits the weak

absorption of short wave infrared wavelengths

in senesced plant materials that does not

occur in soils. Water is also a strong absorber

of energy in the same wavelength region, and

thus may obscure differences between soil

and plant litter.
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Figure i

The CRIM concept in 2-0 feature space. Points R and S were 100% and zero% residue cover,

respectively. Point M represented residue cover between zero and 100% that was proportional

to its position between the soil and residue lines. The X and Y axes were reflectance intensities

in waveband 1 and waveband 2 (modified from Biard and Baret, 1997).

Residue line

McNarin and Protz (1993) applied linear

regression to Landsat thematic mapper

derived indexes and percentage residue cover

measured in the field and found TM bands

4 and 5 were most strongly related to per

centage residue cover. They correctly classify

65 percent oflighter-colored sandy fields into

one of three residue categories and 92 per

cent of darker silty soils. Using logistic

regression, vanDeventer et al. (1997) deter

mined that a ratio of thematic mapper bands

5 and 7 was most strongly correlated with

crop residue type. They achieved 93 percent

classification accuracy of tillage type into

either a conventional or a conservation

practice. Gowda et al. (2001) extended this

approach and obtained up to 77 percent

classification accuracy for two residue cover

categories. As noted by others, both

vanDeventer et al. (1997) and McNarin and

Protz (1993) attribute increased classification

accuracy for darker soils to the greater con

trast with light-colored residues.

The Crop Residue Index Multiband

model developed by Biard and Baret (1997) is

a unique semi-physical approach based on a

linear mixing model of composite soil and

residue reflectance. It requires tliat bare soil

and pure residue reflectance spectra are

known (Figure 1). A laboratory test of their

linear mixing model showed that the rela

tionship of Crop Residue Index Multiband

model predicted vs. measured residue cover

was very strong (R2 = 0.988).

The objectives of this study were; 1) to

evaluate the accuracy of the currently imple

mented Tillage Transect Survey; 2) to deter

mine the absolute accuracy of published

optical remote sensing models; and 3) to

determine the accuracy of new simple empir

ical models by comparing model predictions

to In-field residue cover measurements.

Materials and Methods

Ground measurements. The ground refer

ence data used in this project were collected

with a modification of the line transect

method described by Morrison et al. (1993).

A 3.05 in (10 ft) length of 2.5 cm (1 in) diam

eter PVC pipe was marked every 15.2 cm

(6 in). The pipe was laid perpendicular to

tillage direction at multiple random locations

within fields. At each tick mark on the pipe

an observer looking vertically straight down

on one side of the pipe noted the presence or

absence of crop residues. The reliability of this

method for obtaining repeatable measures of

residue cover was determined by intensively

sampling several large fields in December

1999. These data were used to determine

appropriate sample sizes needed to obtain a

repeatable measure of crop residue cover.

A total of 468 corn and/or soybean fields

were sampled in 13 southern Minnesota

counties (Figure 2) using the above method

in the course of three sampling campaigns

coinciding in time with three Landsat 7

ETM+ satellite scene acquisitions. All fields

were sampled within five days of scene acqui

sition to minimize the possibility of changes

in surface conditions (i.e. tillage) that would

not be represented in the scene. Residue

type was also noted for each field. To elimi

nate mixed pixel effects line transects were

chosen to avoid field, topographic, or soil type

boundaries. The locations of all fields sam

pled were recorded with a 'sportsman grade"

global positioning system (GPS) that meas

ured positions to within 10 m (32.81 ft) of

true location. Fifty percent of the sampled

fields were withheld for model validation.

Each optical model (McNarin and Protz,

1993; vanDeventer et al. 1997; Biard and

Baret, 1997) and the Tillage Transect Survey

data was evaluated by comparing computed

percentage residue cover vs. residue cover

measured in the field using die modified line

transect method.

We physically measured residue cover

using the modified line transect method in

161 fields that were part of the Tillage

Transect Survey. Fields were chosen based on

a random start point and sampling of every

nlh field thereafter along Tillage Transect

Survey routes (Congalton and Green. 1999).

For these fields, physically measured percent

age residue cover values were placed in

categories (0 to 15.16 to 30.31 to 50,51 10

75. and 76 to 100 percent) corresponding to

those used in the Tillage Transect Survey.

This allowed measured percentage residue

cover to be compared directly with visually

estimated residue cover obtained by Tillage

Transect Survey observers. Agreement was

tabulated to determine the number of fields

correcdy classified by observers using the

physically measured percentage as the refer

ence standard.

Imagery. Landsat ETM+ satellite images

were obtained for 28 March 2000, 3 June

2001, and 10 November 2001. The June
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Figure 2
The Minnesota River Basin watershed and location of counties in and near the Minnesota River

Basin where fields were sampled for crop residue cover in 1999,2000 and 2001. The counties

sampled were: McLeod, Carver, Sibley, Scott, Wright, Nicollet, Meeker, LeSueur, Rice, Blue Earth,

Waseca, Steele, and Dodge.

scene represented spring residue cover condi

tions after planting while the November

scene represented residue cover after fall

tillage. In general, the November scene had

the driest soil conditions with an average of

18 days having passed since precipitation.

The June and March scenes had dry surface

crusts, but moist subsurface conditions

resulting from up to 1.5 cm {0.6 in) of pre

cipitation in some locations two to four days

prior to scene acquisition.

All scenes were georeferenced using road

intersections visible on both USGS 7.5'

digital orthophoto quadrangles and the satel

lite image. The accuracy of registration was

evaluated by root-mean-square (RMS) error

and was maintained < 0.30 pixel (10 m or

32.8 ft) for all three scenes. Each scene was

Table 1. Average accuracy of the Tillage Transect Survey visual classifications of crop

residue cover conducted by agency personnel in three Minnesota counties.

Corn Bean

n = 100 n 3 53

• % Fields correctly classified

Number of

Categories*

Corn + Bean

n=161*

5"

3"

49

74

74

50

70

70

45

77

77

1 The number of categories between 0 and 100% into which residue cover was grouped for

classification assessment.

" Categories were: 0 to 15,16 to 30, 31 to 50, 51 to 75, 76 to 100 percent

P Categories were: 0 to 30, 31 to 75, 76 to 100 percent

' Categories were: 0 to 30, 31 to 100 percent

4 The Bean + Corn data groupings were not the sum of Bean and Com groups because

additional fields that had both com and soybean residue mixed in the same field were

included in the Bean + Com group.

radiometrically and atmospherically corrected

using the cosine of sun angle and dark object

subtraction method of Chavez (1996). or

normalized with the multiple-date empirical

radiomeiric normalization method described

by Jensen (1996). In the remainder of this

paper cosine of sun angle and dark object

subtraction corrected pixels were reflectance

corrected, while multiple-date empirical

radiomeiric normalization method pixels

were empirically corrected brightness values.

Digital number refers to un-corrected pixel

brightness values.

An area of interest polygon was drawn on

the image around portions of fields where

physical measurements of residue cover were

made via the modified line transect method.

Due to errors inherent in scene registration that

induce positional uncertainty of up to one-

third pixel we focused our analysis on a cluster

of nine pixels that encompassed the area sam

pled in the field, thus ensuring that the area

sampled in the field was included in the area of

interest. The pixel values within the area of

interest were extracted for the six visible and

near-infrared bands and arithmetically averaged

for regression analysis. Data were grouped by

digital number, multiple-date empirical radio-

metric normalization, or cosine of sun angle

and dark object subtraction method to evaluate

the effectiveness of atmospheric correction on

predictive capability of the models. Within

these groups, data were analyzed by residue

type to determine whether corn or soybean

residue was more easily discriminated from

bare soil backgrounds.

Soil and residue lines for the Crop Residue

Index Multiband model were typically

determined by regression on Landsat band

three versus band five values from completely

covered or completely bare fields (Biard and

Baret, 1997). In this study, residue predictions

using this approach of determining soil and

residue lines were poor and for this reason, an

alternative method was tested where the soil

line was determined as a line drawn through

the 'darkest' two pixels that could form a

lower bound for the cloud of all points plot

ted in two-band feature space. Similarly, the

residue line was determined as a line drawn

through the 'brightest' two pixels that were

not bare light colored fields. Percent residue

cover was determined computationally as

the ratio of two angles, that between the soil

and residue line, and that defined by a vector

passing through the mixed pixel and the

intersection of the soil and residue lines.
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Results and Discussion

Evaluation of In-Held measurement of residue

cover. On December 13,1999 we intensively

sampled corn residue fields that had been

moldboard plowed, and chisel plowed.

Results Indicated that approximately 200 tick-

points were sufficient to provide a repeatable

measure of residue cover (within five percent

of the mean) for both chisel and moldboard

plowed fields. This is in agreement with find

ings of Laflen et al. (1981) for minimizing

variance in corn residue cover estimates.

Evaluation of Tillage Transect Survey. The

residue cover estimates of the Tillage Transect

Survey for the soybean and corn fields ranged

from 45 to 77 percent correct, depending on

the type of residue and number of categories

into which residue cover was grouped (Table 1).

For this reason only in-field line-transect meas

urements of residue cover were used for remote

sensing model development and evaluation.

The relatively poor classification accuracy

achieved by Tillage Transect Survey observers

using five cover categories was likely due in

part to making observations at oblique view

angles. When viewed obliquely, exposed soil

was more difficult to see which generally

resulted in overestimation of crop residue for

categories less than 25 percent (Table 2).

Approximately 15 percent of all fields sam

pled by the line-transect method in this study

fell between 25 and 35 percent residue cover,

a cover range important for discriminating

between conservation and conventional

tillage, which was mis-classified 58 percent of

the time byTillage Transect Survey personnel.

Evaluation of published regression models.

Other researchers have published models

for predicting crop residue cover using

Landsat imagery (McNarin and Protz. 1993;

vanDeventer et al.. 1997). The Soil Tillage

Index and Normalized Difference Tillage

Index indices of vanDeventer et al. (1997),

using bands 5 and 7, generally out performed

the Normalized Difference Index of

McNarin and Protz (1993), using bands 4 and

5 (Table 3), which may be due to cellulose

absorption in band 7. These indices were

tested with digital number and atmospherical

ly corrected, and radiometrically normalized

pixel values. When data from all three scenes

were combined the indices computed from

digital number values outperformed those

computed from atmospherically corrected

and multiple-date empirical radiometric nor

malization method corrected scenes, indicat

ing the atmospheric correction methods did

Table 2. Evaluation of Tillage Transect Survey (ITS) observer error. Percentage of TTS

visual classifications of crop residue cover that were below, above or equal to the category

determined by in-field measures of crop residue.

Cover

category8 n"

0-9.9%

10-19.9%

20-24.9%

25-34.9%

35-44.9%

45-54.9%

55-69.9%

70-100%

55

38

18

24

12

7

6

1

Below

0

8

39

46

25

86

50

0

— % Visual estimates—

Above

27

55

56

12

0

0

0

0

Equal

73

37

5

42

75

14

50

100

1 Categories in italics were chosen to represent +/• 5% of the upper boundary used in

each of the TTS classification system categories.

a Fields of com and or soybean residue classified via the TTS survey crew and

independently using the in-field line transect method.

not improve discrimination of residues from

soil backgrounds. This lack of improvement

with corrective measures may reflect the

atmospherically clear conditions at the time of

scene acquisitions.

Given that these indices were empirically

derived, there was no physical explanation for

their performance ranking based on coeffi

cients of determination. In general, the

results showed that the indices suggested by

McNarin and Protz (1993) and vanDeventer

et al. (1997) were poor predictors of residue

cover for the conditions tested in this study.

Evaluation of new regression models.

Using the ground reference database of

measured residue cover, regression models

were developed for digital number, multiple-

date empirical radiometric normalization,

and atmospherically corrected pixel values

(Table 4) by splitting the data set and using

half for calibration and half for validation. In

all cases a three-band combination (3, 5, and

7) yielded the most efficient model. This was

in agreement with vanDeventer et al. (1997)

and Gowda et al. (2001). Inclusion of

additional bands in regression models did not

Table 3. Coefficients of determination for indexes published in the literature when applied

to Minnesota conditions.

Residue5 Signal* n NDI° STI" NDTI'

Bean + Corn

Bean + Corn

Bean ♦ Corn

Bean

Bean

Bean

Corn

Corn

Corn

DN

MERN

COST

DN

MERN

COST

DN

MERN

COST

468

468

468

205

205

205

258

258

258

0.38

0.36

0.10

0.47

0.46

0.06

0.31

0.29

0.13

0.47

0.46

0.40

0.38

0.36

0.05

0.56

0.55

0.03'

0.48

0.47

0.08

0.40

0.38

0.19

0.56

0.55

0.02'

5 The Bean + Corn data groupings were not the sum of Bean and Corn groups because

additional fields that had both corn and soybean residue mixed in the same field were

included in the Bean + Com group.

* Signal represents type of radiometric correction applied to scene for regression analysis

COST = pixel values were atmospherically corrected reflectance

DN = pixel values were unconnected digital numbers

MERN = pixel values were empirically corrected digital numbers

"NDI = Normalized Difference Index (B4B5)/(B4+B5) reported by McNaimand Protz (1993)

"STI = Soil Tillage Index (B5/B7) by van Oeventer et al. (1997)

'NDTI = Normalized Difference Tillage Index (B5-B7)/(B5+B7) by van Deventer et al. (1997)

' All p-values were < 0.05 except those marked which were £ 0.10
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Table 4. A subset of all fields was used as a calibration data set to determine the best combination of three bands for predicting residue

cover from best subsets regression of measured percent residue cover on satellite signal.

■ Regression coefficients for ETM+ bands •

Residue* Signal8 Constant

Bean + Corn

Bean + Corn

Bean + Corn

Bean

Bean

Bean

Corn

Corn

Corn

DN

MERN

COST

DN

MERN

COST

DN

MERN

COST

233

233

233

101

101

101

128

128

128

0.56

0.55

0.51

0.66

0.60

0.56

0.44

0.43

0.37

49.20

•64.70

11.30

78.80

■36.40

■0.05

33.00

16.90

46.60

1.52

■2.12

■2.24

1.49

•695

2.96

906

2.83

1094

1148

0.83

1.09

0.42

0.63

■325

•0.69

-388

1.50

0.64

■241

■0.78

•0.69

85

•0.70

137

■1.95

-0.96

' The Bean + Com data groupings were not the sum of Bean and Com groups because additional fields that had both com and soybean

residue mixed in the same field were included in the Bean + Corn group

5 Signal represents the type of radiometric processing used to account for atmosphere and sun angle

DN = pixel values were unconnected digital numbers

MERN = pixel values were empirically corrected digital numbers

COST = pixel values were atmospherically corrected reflectance

° Half of the data were withheld for model validation.

substantially improve (> 4 percent) the coef

ficient of determination. An advantage to

using linear regression of bands over band

indices (such as those used in Table 3) was

that in flat and non-shadowed landscapes the

relative influence of individual bands in

the model results remained independent

(Lawrence and Ripple. 1998). Regression

models developed with data collected locally

were typically superior to models developed

elsewhere, thus coefficients of determination

in Table 4 were generally greater or equal to

those in Table 3.

Regression relationships were stronger for

soybean residue than for corn residue or a

combination of soybean and corn residue

(Table 4). It was unclear why soybean residue

induced a more consistent satellite signal

response. Based on coefficients of determi

nation the models developed with digital

number outperformed models developed

with multiple-date empirical radiometric

normalization or atmospherically corrected

pixels. This again indicates that atmospheric

correction did not substantially improve the

results, most likely due to the relatively clear

atmospheric conditions at times of scene

acquisition.

The best regression equations from Table 4

were used to classify the test fields Into five

residue cover categories matching those

used by Tillage Transect Survey personnel

(Table 5). The choice of atmospheric correc

tion had little effect on classification accuracy,

except that classification accuracy for two

categories was better for corn by 6 percent

Table 5. A subset of all fields not used in Table 4 was used to validate relationships. Coefficient of determination and accuracy of classifi

cation for best subsets regression models of Table 4 validated against measured residue cover.

Residue* Signal* n"

5

39

38

34

34

29

40

22

18

19

Number of residue categories

3

- % Fields correctly classified -

60

60

55

54

52

57

43

43

45

2

71

71

67

71

69

73

59

59

65

Bean + Corn

Bean + Corn

Bean + Corn

Bean

Bean

Bean

Corn

Corn

Corn

DN

MERN

COST

DN

MERN

COST

DN

MERN

COST

235

235

235

101

101

101

130

130

130

0.55

0.52

0.46

0.68

0.68

0.62

0.16

0.14

0.2

' The Bean + Com data groupings were not the sum of Bean and Com groups because additional fields that had both com and soybean

residue mixed in the same field were included in the Bean + Com group

* Signal represents the type of radiometric processing used to account for atmosphere and sun angle

DN = pixel values were unconnected digital numbers

MERN = pixel values were empirically corrected digital numbers

COST = pixel values were atmospherically corrected reflectance

" Half of the data were withheld for model calibration

' Categories were same as those used in Table 1.
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using the atmospherically corrected model.

The accuracy of cover classification dramati

cally Improved when fewer cover categories

were used. Comparison of classification

accuracy of the Tillage Transect Survey and

atmospherically corrected empirical equa

tions for two cover categories (Tables 1 and 5)

indicated that the empirical approach was

7, 4 and 5 percent less accurate than Tillage

Transect Survey accuracy for bean + corn,

bean and corn residues respectively. This

result indicated that a remote sensing

approach to residue cover classification may

be nearly as good as the imperfect Tillage

Transect Survey, with the advantage of being

able to sample every field.

Evaluation of the Crop Residue Index

Multiband model using digital number values.

Generally, soil and residue lines determined

by linear regression on bare or no-till fields

were clearly defined and the residue line was

consistently brighter in feature space than the

soil line. Good separation is highly desirable

for accurate and consistent cover estimates. It

is important to note that variability around

the soil line was typically greater than the

variability around the residue line (Figure 3a).

The variability in the soil line was likely due

to subtle differences in soil color, and soil

roughness. The variability in the residue line

was likely due to residue distribution in the

field i.e. whether they were standing up or

lying down, chopped or whole. Variance in

either of these lines diminished the accuracy

of Crop Residue Index Multiband model

predictions. Outliers (ie. bright soils, and

dark residues) had a strong influence and

pulled the lines closer together In feature

space. These factors partially explained why

cover estimates developed using regression-

based bounding lines were poor (r2 = 0.31)

when digital number values for three scenes

and all crop residues were combined. Crop

Residue Index Multiband accuracy improved

when analysis was performed on corn fields

only (r2 = 0.36) (Figure 3b). but unexpectedly

decreased (r2 = 0.19) when performed on

only soybean fields (Figure 3c).

Evaluation of the Crop Residue Index

Multiband model using multi-date radiomet-

ric correction. Results of the multiple-date

empirical radiometric normalization correc

tion presented in Figure 4 indicated that,

in general, field pixels in the November

scene were brighter than those in the June

scene after correction. This was expected

because the residues in November were less

Figure 3

(a) Feature-space plot of fields representing either bare or no-till conditions in three different

satellite scenes that have not been radiometrically or atmospherically corrected. The residue

line consists of both corn and soybean residues. Fields used to make the residue line had

greater than 90% cover and fields used to make the soil line had less than 10% cover. The

CRIM model applied to these data explained 31% of the variance in residue cover for all fields.

(b) Relationship between measured residue cover and CRIM computed residue cover for corn

fields only, (c) Relationship between measured residue cover and CRIM computed residue cover

for soybean fields only.
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weathered than those in June. As residues

weathered (hey began to decay and darken.

This darkening was compounded as soil

particles adhered to residue surfaces after

precipitation and wind events.

After multiple-dale empirical radiometric

normalization correction soil and residue

bounding lines were developed as a linear fit

through three to five points that by visual

inspection best represented the outer limit for

bare soil and residue covered surfaces. The

purpose of this technique for choosing

bounding lines was to minimize the influence

of outliers in placement of the lines and to

maintain a more physical basis for the Crop

Residue Index Multiband model where only

bare fields and completely covered fields

could be chosen to form the bounding line.

Additionally, in this analysis the soil line was

constructed from sampled bare fields that had

less than five percent residue cover while the

residue line was constructed from fields with

greater than 95 percent residue cover. The

bounding lines for all fields from all three
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Figure 4
Results of the MERN correction for three satellite scenes, (a) Uncorrected pixels were more

scattered than corrected pixels (b). The March 28,2000 scene was used as the reference for the

empirical correction.
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satellite scenes in Figure 5a illustrated that this

choice of bounding line excluded some

points from the region between the lines. To

overcome this limitation, points above the

residue line were assigned 100 percent cover

and points below the soil line were assigned

0 percent residue cover during Crop Residue

Index Multiband estimation of residue cover.

The coefficients of determination for the

Crop Residue Index Multiband model

computed cover vs. measured residue cover

were r2 = 0.18, 0.25 and 0.16 for corn +

bean, bean, and corn residues respectively

(Figure 5b). Multiple-date empirical radio-

metric normalization correction of Crop

Residue Index Multiband classification

improved as the number of residue categories

decreased, and was slightly better at classifying

corn residues than theTillageTransect Survey,

but not as good as the Tillage Transect Survey

for soybean residues in the two-category

system (Tables land 6).

The imperfect performance of the Crop

Residue Index Multiband model was In part

Table 6. Classification accuracy of fields using digital number (DN), empirically corrected

(MERN), or atmospherically corrected (COST) corrected pixels in the CRIM model for

three ETM + scenes.

Number of Corn + Beans Com Beans

Signal9 categories* n = 484 n = 263 n = 203
% Fields correctly classified by CRIM

DN

DN

DN

MERN

MERN

MERN

COST

COST

COST

5°

3»

2*

5°

3"

2«

5°

30

2'

32

55

69

31

49

66

23

49

61

34

56

69

30

42

64

28

52

69

29

45

55

34

55

72

33

53

71

1 Signal represents the type of radiometric processing used to account for atmosphere

and sun angle

DN = pixel values were uncorrected digital numbers

MERN = pixel values were empirically corrected digital numbers

COST = pixel values were atmospherically corrected reflectance

1 The number of categories between 0 and 100% into which residue cover was grouped for

classification assessment.

" Categories were: 0-15,16-30, 31-50-51-75, 76-100%

<■ Categories were: 0-30,31-75,76-100%

■ Categories were: 0-30,31-100%

attributed to variability in soil background

reflectance as evidenced by scatter of bare

fields around an idealized soil line. Ancillary

information about soil color such as that

available in digital soil surveys may Improve

Crop Residue Index Multiband model classi

fications by eliminating the positional uncer

tainty of a bare soil relative to the soil line.

Evaluation of the Crop Residue Index

Multiband model using reflectance values.

The Crop Residue Index Multiband model

was also tested against crop residue cover

after applying radiometric and atmospheric

correction (Figure 6). Bounding lines were

determined by creating vectors using the

brightest and darkest pixel pairs. Although

the coefficient of determination for the Crop

Residue Index Multiband estimate of corn +

soybean cover versus measured cover was

very low for the November scene (r2 = 0.06),

it is interesting to note that the classification

accuracy was greatest (80 percent) for this

scene in the two-category classification

scheme after an atmospheric correction

(Table 7). The better classification accuracy

In the November scene was likely due to

un-weathered residues having the greatest

contrast with background soils. Even though

the soil and residue lines were further apart in

feature space, giving a sense of greater con

trast, the true vector for an individual field soil

could not be known, thus error was intro

duced into Crop Residue Index Multiband

model estimates of cover.

If the Crop Residue Index Multiband

model predicted residue cover in an unbiased

manner then the linear fit of Crop Residue

Index Multiband estimates vs. measured

cover would follow the 1:1 line with an equal

number of observations on either side of the

line. However, in both cases (Figure 7) the

Crop Residue Index Multiband model over

estimated residue cover in the low range, and

underestimated residue cover In the high

range. Even when different methods of

choosing the residue lines were employed

(i.e. using fields with > 90 percent cover vs.

using only no-till fields), there was no sub

stantial improvement in the accuracy of

the Crop Residue Index Multiband model

estimates. This coupled with the fact that

residue line coefficients of determination

were generally higher than soil line coeffi

cients indicated that variability in the soil

lines for individual fields may have been the

dominant source of error In the Crop

Residue Index Multiband estimates of

residue cover.
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In order to make a direct comparison

between the Crop Residue Index Multlband

model and the Tillage Transect Survey. Crop

Residue Index Multiband residue cover esti

mates were grouped into the residue cover

categories used in the Tillage Transect Survey

{Table 7). Atmospherically corrected pixels

were used because they would provide a

physically based input to a physically based

model. In most classification schemes, the

Crop Residue Index Multiband estimates

were better for the November scene when

the residues were least weathered. As expect

ed, classification accuracy improved as num

ber of categories decreased. Comparison of

Crop Residue Index Multiband classification

accuracy with TillageTransect Survey accuracy

(Tables 1 and 7) showed that Tillage Transect

Survey accuracy was better than Crop

Residue Index Multiband for classification

schemes with greater than two classes.

However, when two-category Crop Residue

Index Multiband estimates were averaged for

the three months sampled in this study they

approached the classification accuracy of the

Tillage Transect Survey. The average classifi

cation accuracy of Crop Residue Index

Multiband was 61, 69, and 71 percent com

pared to Tillage Transect Survey accuracy of

74,70, and 77 percent for bean + corn, corn

and bean residues respectively. The atmos

pherically corrected Crop Residue Index

Multiband model had better classification

accuracy than the Tillage Transect Survey for

the two-category scheme in the month of

November for all groupings of residue. This

result was likely due to the un-weathered

nature of residue In the fall (Wanjura and

Bilbro, 1986).

Summary and Conclusion

The Tillage Transect Survey currently used

for estimating crop residue cover over large

geographic areas is plagued by numerous

problems. Different personnel in each county

conduct the survey; observers are Inherently

biased; and it represents only a small sample of

fields in each county. For these and other

reasons the Tillage Transect Survey has been

shown to classify percentage residue cover

correctly only 45 to 50 percent of the time as

it is currently implemented. This study

showed that classification accuracy would

Improve if fewer residue cover categories

were used. This study also showed it was dif

ficult to discriminate small differences in

residue cover near the 30 percent category

boundary used to differentiate conservation

Figure 5
(a) MERN corrected feature space plot of corn and soybean residue fields for three scenes with

bounding lines determined via regression. Fields used to make the residue line had greater

than 95% cover while fields used to make the soil line had less than 5% cover, (b) Relationship

between measured residue cover and CRIM computed residue cover.
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tillage from non-conservation tillage prac

tices. Human observers may not achieve two

category classification accuracy much above

58 percent because fields near the category

boundary combined with oblique viewing

angles obscure bare soil.

Various methods of predicting residue

cover using reflectance measurements from

Landsat ETM+ satellite scenes had accuracies

as good as or better than the Tillage Transect

Survey estimates when fields were grouped

into only two cover categories. Since many

applications require knowing the extent of

conservation and conventional tillage (two

categories, < 30 percent or > 30 percent

cover), it is likely that remote sensing
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Figure 6
All corn and soybean residue fields from lune and November campaigns plotted in atmospheri

cally corrected (COST) feature space with bounding lines determined by the brightest and

darkest pixel pairs.
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techniques using Landsat imagery have the

potential for being more efficient and eco

nomical than the Tillage Transect Survey.

Furthermore, remote sensing techniques have

the advantage of providing a uniform

methodology that has less operative bias than

the Tillage Transect Survey technique and

covers large areas completely rather than

small sub-samples of fields along transects.

Simple linear regression of digital number

on percentage residue cover provided a good

method of discriminating crop residues in

varied landscapes of south-central Minnesota.

Although the ease of operability was appeal

ing for using this approach, there were pitfalls.

These relationships must be made by time-

consuming ground verification and may only

be valid for an individual scene. Converting

digital number values to reflectance allows

the relationship to be extended in time, but

not In space.

The Crop Residue Index Multlband

Figure 7
(a) Relationship between measured corn residue cover and CRIM computed residue cover for

lune and November 2001 scenes, (b) Relationship between measured soybean residue cover

and CRIM computed residue cover for lune and November 2001 scenes.
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model had good potential for residue cover

classification, and could be used with either

digital number or reflectance pixel values.

There are advantages and disadvantages to

each. Digital number values or empirically

corrected values are easily obtained from

satellite imagery with minimal processing.

However, because digital number values are

not atmospherically corrected. Crop Residue

Index Multiband results may only be valid

for an individual scene meaning new soil

and residue lines for Crop Residue Index

Multiband calculations would be required for

each new satellite scene. While not difficult,

this would require field verification of no-till

and completely bare fields. Digital number

values for these locations could serve as a

means to construct soil and residue lines that

are unique to the atmospheric and radiomet-

ric conditions of that particular scene. The

advantage of using reflectance values in the

Crop Residue Index Multiband model is that

once soil and residue lines for a given geo

graphic region were defined, they could be

used with any scene obtained in the future

without the necessity of carrying out more

field work. The disadvantage is that radio-

metric and atmospheric corrections are more

difficult and require a higher level of process

ing. Results from this study indicated that

the method for selecting the residue line,

regression analysis or the 'brightest pixel pair'

may not be important due to die consistent

reflectance response of completely residue

covered fields. However, the best method for

selecting the soil line is the 'darkest pixel pair'

because this method eliminated variance in

the soil reflectance due to Inherent variability

in soil properties across the landscape.

In this study, there was no significant

improvement in classification accuracy result

ing from choice of atmospheric correction.

This indicated atmospheric correction may

be unimportant if scenes were collected at

times of atmospherically clear conditions.

However, cloud interference will remain a

vexing problem. Too often cloudy condi

tions occur coincident with satellite overpass.
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Table 7. Classification accuracy by month of year for fields using COST corrected pixels in the CRIM model for three

Number of

Categories9

5°

3*

2'

Mar

22

51

58

' Bean + Corn

Jun

15

33

45

Nov

32

62

80

Mar Jun Nov

— % Fields correctly classified by CRIM -

21 33

56 54

65 64

30

47

79

Mar

25

39

68

ElM+ scenes.

Jun

38

65

65

Nov

38

55

79

* The number of categories between 0 and 100% into which residue cover was grouped for classification assessment.

° Categories were: 0-15,16-30, 31-50-51-75, 76-100%

» Categories were: 0-30. 31-75,76-100%

' Categories were: 0-30,31-100%
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