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In much of southern Arizona, thunderstorm rainfall is the

most important source of water. Thus, estimates of thunder

storm rainfall, or the lack "of it, are important in decisions

concerning water supplies and water resource system design.

Observations have confirmed recent analyses that the extreme

flood events on small (100 square miles and less) semiarid

watersheds in southern Arizona are due to air-mass thunderstorm

riinfall. Although there is no accurate way to forecast

^oasonal rainfall, knowledge of thunderstorm rainfall frequencies

i« essential for evaluating water resource systems. If data

.re available to aid in decisions, they usually are point

•Measurements from a single station. In this paper, analysis

indicates that a single gage is not sufficient to measure

thunderstorm rainfall on the 58-square-mile Walnut Gulch

-atershed.

The occurrence of significant storms during the summer

rainy season is modeled as a Bernoulli random variable with

parameter p; varying within the season. Of interest is the

number of rainy days during the season and during shorter

periods of time within the season.

Equations are presented for the mean and variance of the

number of rainy days, Nr , for two hypotheses concerning"the

variability of the Bernoulli parameters, p^ , during the sea

son. The first hypothesis is that the p^ are constant

. throughout the variable season. In this case, the distribution

of N is compound, and the distributions of the number of

■ event! in fixed subintervals is binomial. Under the second
■, hypothesis, there is strong seasonality with considerable

,■ variation of the p^ . Equations, in terms of means and vari-

* ances under the two hypotheses, are provided to make preliminary

■' tests of those hypotheses. Short records proved inadequate

to decide in favor of either hypothesis.
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A simulated distribution is compared to the normal distri
bution to show what characteristics of the Pi are useful in
choosing the best probability distribution to approximate J
under the second hypothesis. The normal di.tribSlS"shown
to be an excellent approximation to the distribution of the
number of events per season.

Introduction

Since semiarid regions represent natural systems that

needU°a«ea h»g-1Cfand "" und«8°in* cha"8« HI. information is
needed as a basis for a range in choice in future hydroloeic
development of these lands. Such information is needed to
enhance utilisation of the natural resources of the arid and
semiarid lands as these lands are submitted to greater stress
from an increasing population. An integral part of this e
nformation is knowledge of thunderstorm^ r.i5Sl ^U

tics on semiarid watersheds.

In analyses of convective storms in the Southwest, Osbom
and Reynolds [2] found that thunderstorm rainfall is a most
important source of moisture in the Southwest. They character-

SS"""" iflJ i yt;"limited areal extent. In their words, "Such storms cause most
IL a* l00dwfer daBaKe- 5urfnc« "osion, arroyo formation,
and sediment deposition. Theyalso contribute occasionally to
flows into reservoir storage for downstream use. Because of the
importance of such ephemeral stream flows in the intermountain
and high plains areas of the Southwest, knowledge of frequency"
of storms that produce them is important:" (p. 81).

Distribution and significance of thunderstorm rainfall vary
regionally and topographically throughout the Southwest. n
this paper, once the seasonal distribution of convective storms
in Arizona is established [3], the occurrence of significant
storms during the summer rainy season on the Walnut Gulch
Experimental Watershed in southeastern Arizona is modeled as a
Bernoulli random variable with two assumptions about the param
eter. Of interest are the number of occurrences of rainy days
during the season and during shorter periods within the season.

Characteristics of Thunderstorm Rainfall

Annual precipitation in southeastern Arizona ranges from
less than 10 inches in lower valleys to over 25 inchef in some '
mountainous areas. The 68-year mean annual rainfall at
Tombstone, Arizona (near the center of the Walnut Gulch water-

bSn % ? i"^ef l*h v™0" iS ft P™0"""* "asonal distri
bution of rainfall in southeastern Arizona, with precipitation
in the winter characterized by low intensity frontal rainfall
and m the summer by air-mass thunderstorms [3.5],
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Monthly distribution of precipitation for Tombstone,

Arizona is shown in Fig. 1. The average number of days with

10 inch or more of precipitation is shown in Fig. la, while

;,:h« corresponding monthly percentages of the annual total are

Shown in Fig. lb. Roughly half of the days with 0.10 inch
■ore are in July, August, and September, and over 60% of

th« annual precipitation occurs in these three months.

-; ^V-

Thunderstorm rainfall exhibits a pronounced diurnal effect[6]

■aximum activity in the afternoon or early evening,.

Observations of thunderstorms in the Tombstone area indicate

la aoan starting time of about 5 p.m., with about 2/3 of the

storms starting within a 6- to 7-hour period centered about 5 p.m.

The Walnut Gulch Experimental Watershed, as described

Kenard [7], is a 58-square-mile semiarid rangeland area

surrounding Tombstone, Arizona. There are 98 recording rain

4*K«s with various record lengths on or immediately adjacent

:o the experimental watershed. Average annual precipitation

• Hiiessen weighted) over the watershed and the minimum and

la&inum point rainfall for each of the years 1954-1969 (Fig.

, k) illustrates the variability of point and average precipi-

i: ;ition. Additional references to the variability of thunder
storm rainfall in individual storms for Walnut Gulch are

H.-nard [8] and Osborn, Lane, and Hundley [9] and for a smaller

experimental rangeland area near Tucson, Arizona, are Woolhiser

.ird Schwalen [10] and Fogel and Duckstein [11].

Seasonal Distribution of Thunderstorm Rainfall

Two major problems in modeling thunderstorm rainfall are

' modeling the occurrence of storms on a day within the rainy

•' season and modeling the dynamic thunderstorm processes. The

.•■ first problem is by far simpler.

Of primary importance in defining a summer rainy season

.'are the physical relationships governing commencement of the

, rainy season. Thunderstorm development is affected by a host

of meteorological variables; for example, amount and distribu

tion of moist air aloft, temperature distributions, winds,

.. etc. Sellers [3] describes the typical weather patterns asso-

V .iated with thunderstorm development in Arizona. A singularly

.mportant factor is the establishment of sea level and 500 mb

pressure patterns enabling the moist air flow from the Gulf

, V. of Mexico. Typically, the "correct" pressure patterns are

established in early summer, producing a predominance of

■ •imnderstorm rainfall in July and August (Fig. 1).

Gabriel and Neumann [12] state that the Markov chain model

■',) lor daily rainfall had been suggested as early as 1953 by

;.,. Broiks and Carruthers [13]. Such a model was fitted using 27

of data for Tel Aviv by Gabriel and Neumann, who found
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Fig. 1. Monthly distribution of precipitation for Tombstone,
Arizona (from Green and Sellers, Arizona Climate,
University of Arizona Press, 1964).
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Fig. 2a. Walnut Gulch average annual precipitation over the

watershed 1954-1969 mean = 11.S inches.
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2b. Number of events per season in 100 years synthetic

data for the Walnut Gulch watershed.
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that the variance of the number of events per season must
exceed the mean number of events. The second hypothesis is
that the occurrence rate within the season is variable.
Assertions under this hypothesis are that the occurrence of
storms can be modeled as a Bernoulli random variable with
varying parameter pk . From this assumption, the variance
of the number of events must be less than the mean number of
events [17].

The occurrence of a significant storm (depth equal to or
exceeding 0.2S inch) is modeled as a Bernoulli random variable
While the threshold or critical value of 0.2S inch is arbitrary
there is empirical evidence to support it [18]. Different values
for the threshold constant would affect the statistics, but
this would not be expected to change the hypothesis of a
Bernoulli random variable.

The Bernoulli random variable, X: , is 1 if there is a
significant rain on day i , and 0 otherwise:

x m 1 if significant rain on day i
i 0 otherwise (1)

such that the probability of significant rain on day i is:

P^ = 1) = p. , and t2)

P(Xi - 0) Dq. » l - p.. (3)

If the randam variable N is defined as the number of rainy
Jays during the season, then:

(4)

, where the X*

and n is the number of days in the season. The expected
value of Nr is then the sum of "

are Bernoulli random variables as defined above,

season. The expected-

expectations for the X. .

.. .; . •• E denotes expectation. Furthermore, if we assume no
■■■'^ '■'': 'persistence, then the X£ are independent, and

■}-S: . Var(Nr) . j pq - I p . I p2 .
<"".■. i=l i=l x i=i x

, .••■^•Mvr'-
•■:>*«

■::;-:).S

, r/«where Var denotes variance.

If all the pi are equal to p , then the number of

a binomial distribution with
this case, we have:

:.v^i#.'a>;.:- .;''--vrai"y days (for fixed n) has a bi
^(Jk^lp'^-'''..^:^'parameters n and p [17]. In thi
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and

Var(N ) = J pq = npq

Since p ♦ q = 1 , we must have

Var(Nr) < E(Nr) ,

because Var(N ) » q • E(N ) .

The first hypothesis is that the length of season N
is a random variable but that the parameters Pi are all equal
to p . Under this assumption, for the number of rainy days:

(7)

(8)

O)

(10)

s .

E(Ns) E(X)

and

Var(Nr) = E(Ns) Var(X) {E(X)]

(H)

(12)

A preliminary test of this hypothesis can be made by considering
the ratio of the variance to the mean*.

Var(Np)/E(Nr) ♦ p[Var(Ns)/E(Ns)] (13)

where the variables are as explained above.
If we let n * . and all Pi * o in such a way that

np •♦ u , then Eq. 4 specifies a Poisson distribution with

and

Var(Nr) ■ u .
(IS)

Feller [17] proves this by showing that the limiting fora of
the generating function for Nr specifies a Poisson distribute

The last case we consider is for finite n and unequal
Pi . In this case Eqs. S and 6 apply. As stated earlier, the
variance as calculated by Eq. 6 is maximum when all the p2 are
equal. Thus, we know that for the Pj not all equal: *

Var(N ) < npq < E(N ) ,
r r

where p is the "average" of the p. ; that is,

P "( I Pi (17)

If the p. are all equal, then they can be thought of as
being unifornly distributed within the season. The first
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p that the occurrence rate within the season is
constant once the season has begun, but that the length of the

ll"0^A v"ia!>le. producing a preponderance of events near
the middle of the season in the aggregate curve. The second
hypothesxs is that the occurrence rate within the individual
seasons is variable and the beginning of the seasons oay be
variable. If we can neglect the variability in the beginning
of the seasons then Eqs. 11, 12, and 13 apply under the first
hypothesis, and under the second hypothesis Eqs. S, 6, and 16
apply. Moreover, Eqs. 13 and 16 provide a preliminary test
of the two hypotheses.

Results and Data

On the Walnut Gulch watershed, 47 recording rain gages
have continuous records from 1960 to 1970. The number of
significant storms (0.2S inch or greater) per summer rainy
season was tabulated for several rain gage networks. The first
network had all 47 gages, the next had 8 gages evenly spaced
oyer the S7-square-mile watershed, and the last "network" con-
sisted of a single gage chosen at random. Data from these
networks are shown in Table 1. Notice that the means and
variances for the areal measurements should be larger than for
point measurements since they sample in time and in space

That is, the events in space are not completely~dependent, so
that their variances are constructed in an additive manner
The fact that the mean number of rainy days is much smaller
for the single gage network than for the 47-gage network sup
ports the observations that a single or "key" gage is not
adequate for thunderstorm rainfall measurement on Walnut
Gulch [19].

Table 1. Statistics on the number of rainy days (0.2S inch or
greater) per season, Walnut Gulch, 1960-1970.

?SS Network Number of Gages
Number of rainy days per season

Mean Variance

1

2

3

47« 35.0

27.2

10.5

47.6

29.8

7.47

•Nearly uniform over the watershed area
••Chosen at random, RG-27

As a preliminary test of the alternate hypotheses on the
variability of the Bernoulli parameters, ratios of the variance
to the mean number of rainy days were computed as shown in
Table 2. Again, hypothesis 1 assumes a variable season length
with constant p . These ratios are calculated using Eq 13
For the second hypothesis, an upper limit to the ratios is
calculated using Jiq. 10. The last column in Table 2 shows the



ratios for the observed data. Except for the l-gaRe network
these ratios do not support one hypothesis over the other. '

Table 2. Ratios of the variance to the mean for the number of
rainy days per season.

i

Ratio of Variance to Mean j

Number of Hypothesis-1 Hypothesis-2 Observed <
Network gages constant p variable p* data J

J 47 2.26 0.77 1.36 •
2 8 2.98 0.82 l.io
3 1 1.27 0.93 0.71

•Upper limit for this ratio, actual values would be less than
shown.
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An empirically derived curve starting with p. - o.O on
May IS, a maximum of p72 « 0.S1 on July 25, and p1S4 =0.0
on October IS was derived from 10 years of data on Walnut
Gulch. This curve, which specifies the variable Bernoulli
parameters throughout the season, was used to generate syntheti

rainfall data on Walnut Gulch. The expected number of events
from this curve of probabilities is 32.4 (using Eq. S) with a
variance of 19.9 calculated using Eq. 6. Using the curve of
probabilities, 100 years of synthetic data were produced for
Walnut Gulch. Although the mean value differs from that shown

for the 47-gage network in Table 1, these synthetic data were
used to judge the normal approximation to the number of events
per season. This approximation to the synthetic data is shown
in Fig. 2b. As indicated by the central limit theorem, if
the variable parameter Bernoulli model is acceptable, the
normal distribution is an excellent approximation to the number
of events per season.

Summary and Conclusions

Alternate hypotheses are proposed for modeling the
occurrence of thunderstorm rainfall during a summer rainy

season in southeastern Arizona. Physical considerations seem
to favor the variable parameter Bernoulli variable, but means
and variances calculated from short records do not favor one
hypothesis over the other.

Mean values for the number of rainy days per season for
II years of record on the 58-square-raile Walnut Gulch water
shed increase with the number of gages in the network. This
evidence supports previous conclusions that the "key-gage"
theory is incorrect for air-mass thunderstorm rainfall in
southeastern Arizona.

«»■;»?
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the variable parameter Bernoulli model is acceptable
-mass thunderstorm rainfall in southeastern Arizona,

the normal distribution can be used to approximate the
distribution of the number of events per season.

Further studies are underway to define better the point-
area relationship for thunderstorm rainfall on Walnut Gulch
and to compare these results to other point and watershed
rainfall data in the Southwest.
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