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"'+ Abstract

In much of southern Arizona, thunderstorm rainfall is the
most important source of water. Thus, estimates of thunder-
storm rainfall, or the lack of it, are important in decisions
concerning water supplies and water resource system design.
Observations have confirmed recent analyses that the extreme
flood events on small (100 square miles and less) semiarid
watersheds in southern Arizona are due to air-mass thunderstorm
rainfall. Although there is no accurate way to forecast
veasonal rainfall, knowledge of thunderstorm rainfall frequencies
s« essential for evaluating water resource systems. If data
«re available to aid in decisions, they usually are point
acasurements from a single station. In this paper, analysis
:ndicates that a single gage is not sufficient to measure
thunderstorm rainfall on the 58-square-mile Walnut Gulch
~atershed.

The occurrence of significant storms during the surmer
rainy season is modeled as a Bernoulli random variable with
parameter p; varying within the season. Of interest is the
number of rainy days during the season and during shorter
periods of time within the season.

Equations are presented for the mean and variance of the
number of rainy days, N, , for two hypotheses concerning-the
variability of the Bernoulli parameters, pj , during the sea-
son. The first hypothesis is that the p; are constant

-. . throughout the variable season. In this case, the distribution
"4y of N_ 1is compound, and the distributions of the number of
event! in fixed subintervals is binomial. Under the second

» hypothesis, there is strong seasonality with considerable

: variation of the pj . Equations, in terms of means and vari-

¢ ances under the two hypotheses, are provided to make preliminary
"t tests of those hypotheses. Short records proved inadequate

" ' to decide in favor of either hypothesis.
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A simulated distribution is compared to the normal distri-
butlon to show what characteristics of the Pi are useful in
choosing the best probability distribution to approximate N,
under the second hypothesis. The normal distribution is shown

to be an excellent approximation to the distribution of the
number of events per season. ‘
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Introduction
—— i rron

Since semiarid regions represent natural systems that
tend to be fragile and are undergoing change [1}, information is
needed as a basis for a range in choice in future hydrologic
development of these lands. Such information is needed to
enhance utilization of the natural resources of the arid and
semiarid lands as these lands are submitted to greater stress
from an increasing population. An integral part of this needed

information is knowledge of thunderstorm rainfall characteris-
tics on semiarid watersheds.

In analyses of convective storms in the Southwest, Osborn
and Reynolds [2] found that thunderstorm rainfall is a most
important source of moisture in the Southwest. They character-
ized convective rainfall as intense, short-duration rainfall of
limited areal extent. In their words, "Such storms cause most
of the floodwater damage, surface erosion, arroyo formation,
and sediment deposition. Theyalso contribute occasionally to
flows into reservoir storage for downstream use. Because of the
importance of such ephemeral stream flows in the intermountain
and high plains areas of the Southwest, knowledge of frequency’
of storms that produce thenm is important:" (p. 81).

Distribution and significance of thunderstorm rainfall vary
regionally and topographically throughout the Southwest. In
this paper, once the seasonal distribution of convective storms
in Arizona is established (3], the occurrence of significant
storms during the summer rainy season on the Walnut Gulch
Experimental Natershed in southeastern Arizona is modeled as a
Bernoulli random variable with two assumptions about the paranm-
eter. Of interest are the number of occurrences of rainy days
during the season and during shorter periods within the season.

Characteristics of Thunderstorm Rainfall

Annual precipitation in southeastern Arizona ranges from
less than 10 inches in lower velleys to over 25 inches in some
mountainous areas. The 68-year mean annual rainfall at
Tombstone, Arizona (near the center of the Walnut Gulch water-
shed) is 14.0 inches [4]. There is a pronounced seasonal distri-
bution of rainfall in southeastern Arizona, with precipitation
in the winter characterized by low intensity frontal rainfall
and in the summer by air-mass thunderstorms [3,8].
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: Monthly distribution of precipitation for Tombstone,
‘Arizona is shown in Fig. 1. The average number of days with
1:0.10 inch or more of precipitation is shown in Fig. la, while
J..ho corresponding monthly percentages of the annual total are
‘smown in Fig. 1b. Roughly half of the days with 0.10 inch
;.r more are in July, August, and September, and over 60% of
‘the annual precipitation occurs in these three months.

e Thunderstorm rainfall exhibits a pronounced diurnal effect[6]
{?with maximum activity in the afternoon or early evening.
.s:0bservations of thunderstorms in the Tombstone area indicate

*ia moan starting time of about S p.m., with about 2/3 of the
'storas starting within a 6- to 7-hour period centered about S p.m.

. The Walnut Gulch Experimental Watershed, as described
by Renard [7], is a 58-square-mile semiarid rangeland area
““surrounding Tombstone, Arizona. There are 98 recording rain

, dages with various record lengths on or immediately adjacent

' ,to the experimental watershed. Average annual precipitation
‘Thiessen weighted) over the watershed and the minimum and

" aaximum point rainfall for each of the years 1954-1969 (Fig.
w) fllustrates the variability of point and average precipi-

tution, Additional references to the variability of thunder-

.Z\twrn rainfall in individual storms for Walnut Gulch are
*Repard [8) and Osborn, Lane, and Hundley [9) and for a smaller
expcrlmental rangeland area near Tucson, Arizona, are Woolhiser

,_;rd Schwalen [10] and Fogel and Duckstein [11].

1;5qg§onal Distribution of Thunderstorm Rainfall

; Two major problems in modeling thunderstorm rainfall are
..* modeling the occurrence of storms on a day within the rainy
‘" season and modeling the dynamic thunderstorm processes. The
first problem is by far simpler.

- Of primary importance in defining a summer rainy season

‘“are the physical relationships governing commencement of the

.. rainy season. Thunderstorm development is affected by a host
of meteorological variables; for example, amount and distribu-
tion of moist air aloft, temperature distributions, winds,

" etc. Sellers [3] describes the typical weather patterns asso-
ciated with thunderstorm development in Arizona. A singularly
.mportant factor is the establishment of sea level and 500 mb

_ pressure patterns enabling the moist air flow from the Gulf

. of Mexico. Typically, the '"correct” pressure patterns are

“ established in early summer, producing a predominance of

thunderstorm rainfall in July and August (Fig. 1).

i Gabriel and Neumann {12] state that the Markov chain model
"1 for daily rainfall had been suggested as early as 1953 by

', Bronks and Carruthers [13]. Such a model was fitted using 27
;" vears of data for Tel Aviv by Gabriel and Neumann, who found
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University of Arizona Press, 1964) . .
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a seasonal trend in the probabitities.

led the authors to conclude that Tel Aviy rainfall events were
independent of rainfall more than S days pPrevious to the given
day. Analysis by Caskey [14) suppoited the choice of a Markov
chain model for precipitation at Denver,
analysis of rainfall data throughout the United States,
Hershfield [15] computed relationships between conditional
probabilities and unconditi

olds on wet and dry sequences. A Strong relationship was

found between the unconditional probabilities and conditional
probabilities for dry scquences. This correspondence increased
with the threshold values, suggesting that for threshold values
of sufficient magnitude the probabilities are equal. For the
wet sequences, the relationship between the probabilities seemed
to decrease with increasing threshold. The analysis of rainfall
data presented herein assumes the Bernoulli distribution for
daily rainfall derived from an assumption other than the Markov
chain model. Gabriel and Neumann [12) recognized that the deri-
vation of the geometric distributions for wet and dry spells
could arise from other than the Markov chain model. This

Paper presents two alternate hypotheses suggesting such a
derivation,

Analysis of these data

A previous attempt at modeling t

he probability of a thunder-
Storm occurring during the summer rai

parameter is constant but the length of season varies, and that
the Bernoulli parameter varies within the season.

In the present analyses, persistence is assumed to exist,

but is difficult to measure and model. The following statement
was included in U.S. Weather Bureau Tech

y for persistence in weather, major
storms sre rare svents that, in a sense, may be regarded as
exceptions to persistence. Therefore, while it is physically
possible for outstanding storms to repeat at intervals of some-
thing like 4 to § days, there is relatively little probability
of the occurrence of such a series" {p. 52). Therefore, in
these analyses, the existence of persistence is recognized but

not modeled directly. The first hypothesis is that the
occurrence rate within the season is

has begun. The length of the season
preponderance of events near the midd

several years of data are analyzed. Assertions under this
hypothesis are: 1) that the occurrence of storms can be
modeled as a Bernoullj variable with constant parameter p
throughout the Season; 2) that the number of rainy days per
Season for fixed season length is a binomial random variable;
3) that the number of rainy days for a variable length of sea-
son is compound; and 4) with these distributional assumptions

is variable, producing a
le of the season when

88

onal probabilities for various thresh-:
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that the variance of the number of events per season must
exceed the mean number of events. The second hypothesis is
that the occurrence rate within the season is variable.
Assertions under this hypothesis are that the occurrence of
storms can be modeled as a Bernoulli random variable with
varying parameter Py . From this assumption, the variance
of the number of events must be less than the mean number of
events [17].

The occurrence of a significant storm (depth equal to or
excceding 0.25 inch) is modeled as a Bernoulli random variable.
While the threshold or critical value of 0.25 inch is arbitrary,

for the threshold constant would affect the statistics, but

this would not be expected to change the hypothesis of a
Bernoulli random variable.

The Bernoulli random variable, Xj » is 1 if there is a
significant rain on day i , and 0 otherwise:

X. = 1 if significant rain on day i

i 0 otherwise e

such that the probability of significant rain on day i {is:
P(Xi = 1) = P; » and (2)
P(Xi *= 0) = q; = 1 - Pi* (3)

Lf the randem variable N_ is defined as the number of rainy
days during the season, tﬁen:

N, = igx X; s (4)

where the X; are Bernoulli random variables as defined above,
and n is tﬁe number of days in the season. The expected-
", value of N. 1is then the sum of the expectations for the X;

n
E(N) = I Py, (5)
i=]

where E denotes expectation. Furthermore, if we assume no
lpersistence, then the Xi are independent, and

[N}

} Do -1
Var(N) = P:q. = p. - P . (6)
O T R U U
Var denotes variance.
If all the P; are equal to p , then the number of
- rainy days (for fixed n) has a binomial distribution with
.7 parameters n and p [17]. In this case, we have:

there is empirical evidence to support it {18]. Different values
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END = [ p=np . M
i=1

and

n
var(N ) _Zl PqQ = npq . (8)
ie

Since p + q =1, we must have
E(N) ©

because Var(Nr) aq° E(Nr) . (10

The first hypothesis is that the length of season, Ng ,
is a random variable but that the parameters p; are all equai

A

Var(Nr)

to p . Under this assumption, for the number of rainy days:
E(N,) = E(N)) E(X) (1
and
Var(N)) = E(N) Var(X) + Var(v)) (E(x))? . (12)

A preliminary test of this hypothesis can be made by consideringz
the ratio of the variance to the mean:

Var(N)/E(N) = (1-p) + plVar(N)/E(N)] (13)

where the variables are as explained above.

If we let n -+ » and all Py = 0 in such a way that
np + u , then Eq. 4 specifies a Poisson distribution with

E(Nr) =u , (14
and

Var(Nr) =u . (s) ¢

Feller [17] proves this by showing that

. the limiting form of
the generating function for Ny specifi

es a Poisson distributic

The last case we consider is for finite n eand unequal
Pi - In this case Eqs. S and 6 apply. As stated earlier, the
variance as calculated by EqQ. 6 is maximum when all the p; are
equal. Thus, we know that for the Py not all equal:
Var(N.) < npq < E(N)

where p 1is the "average" of the P; that is,

(16) .

n
Pl pm . a7
i=1

If the P; are all equal, then they can be thought of as
being uniformly distributed within the season. The first



hypothesis is that the occurrence rate within the season is
constant once the season has begun, but that the length of the
season is variable, producing a preponderance of events near
the middle of the season in the aggregate curve, The second

- hypothesis is that the occurrence rate within the individual
seasons is variable and the beginning of the seasons, may be
variable. If we can neglect the variability in the beginning
of the seasons, then Eqs. 11, 12, and 13 apply under the first
hypothesis, and under the second hypothesis Eqs. §, 6, and 16

apply. Moreover, Eqs. 13 and 16 provide a preliminary test
of the two hypotheses,

Results and Data

On the Walnut Gulch watershed, 47 recording rain gages
have continuous records from 1960 to 1970. The number of
significant storms (0.25 inch or greater) per summer rainy .
season was tabulated for several rain gage networks. The first
network had all 47 gages, the next had 8 gages evenly spaced
over the 57-square-mile watershed, and the last "network" con-
sisted of a single gage chosen at random. Data from these
networks are shown in Table 1. Notice that the means and
variances for the areal measurements should be larger than for
point measurements since they sample in time and in space.
That is, the events in space are not completely dependent, so
that their variances are constructed in an additive manner.
The fact that the mean number of rainy days is much smaller
for the single gage network than for the 47-gage network sup-
ports the observations that a single or "key" gage is not
adequate for thunderstorm rainfall measurement on Walnut
Gulch [19].

Table 1. Statistics on the number of rainy days (0.25 inch or
greater) per season, Walnut Gulch, 1960-1970.

Number of rainy days per season

Network Number of Gages Mean Variance
1 47+ 35.0 47.6 k
2 8° 27.2 29.8
3 1% 10.5 7.47

*Nearly uniform over the watershed area ;
**Chosen at random, RG-27

As a preliminary test of the alternate hypotheses on the L
variability of the Bernoulli parameters, ratios of the variance
to the mean number of rainy days were computed as shown in
Table 2. Again, hypothesis 1 assumes a variable season length
with constant p . These ratios are calculated using Eq. 13, h
For the second hypothesis, an upper limit to the ratios is
calculated using Eq. 10. The last column in Table 2 shows the




ratios for the observed data. Except for the 1-gage network,
these ratios do not support one hypothesis over the other.

Table 2. Ratios of the variance to the mean for the number of
rainy days per season,

Ratio of Variance to Mean§=

Number of Hypothesis-1  Hypothesis-2 Observed
Network gages constant p variable p* data

PR -

1 47 2.26 0.77 1.36 :
2 8 2.98 0.82 1.10
3 1 1.27 0.93 0.71

“Upper limit for this ratio, actual values would be 1655 than
shown,

An empirically derived curve starting with Py = 0.0 on
May 15, a maximum of py; = 0.51 on July 25, and P154 = 0.0
on October 15 was derived from 10 years of data on Walnut
Gulch. This curve, which specifies the variable Bernoulli
parameters throughout the season, was used to generate synthetiz
rainfall data on Walnut Gulch. The expected number of events
from this curve of probabilities is 32.4 (using Eq. S) with a
variance of 19.9 calculated using Eq. 6. Using the curve of
probabilities, 100 years of synthetic data were produced for
Walnut Gulch. Although the mean value differs from that shown
for the 47-gage network in Table 1, these synthetic data were
used to judge the normal approximation to the number of events
per season. This approximation to the synthetic data is shown
in Fig. 2b. As indicated by the central limit theorem, if
the variable parameter Bernoulli model is acceptable, the
pormal distribution is an excellent approximation to the number
of events per season.

Summary and Conclusions :

Alternate hypotheses are proposed for modeling the E
occurrence of thunderstorm rainfall during a summer rainy ;
season in southeastern Arizona. Physical considerations seea .
to favor the variable parameter Bernoulli variable, but means !
and variances calculated from short records do not favor one i
hypothesis over the other. i

Mean values for the number of rainy days per season for
11 years of record on the 58-square-mile Walnut Gulch water- ’i
shed increase with the number of gages in the network. This
evidence supports previous conclusions that the "key-gage"
theory is incorrect for air-mass thunderstorm rainfall in
southeastern Arizona.
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If the variable parameter Bernoulli model is acceptable
4' for air-mass thunderstorm rainfall in southeastern Arizona,

then the normal distribution can be used to approximate the

distribution of the number of events per season.
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Further studies are underway to define better the point-
. area relationship for thunderstorm rainfall on Walnut Gulch
and to compare these results to other point and watershed

- rainfall data in the Southwest.
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