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INTRODUCTION

The variability of precipitation across a range of spatial

and temporal scales, from short-duration high-intensity

down-bursts within a localized storm to the seasonal and

annual variations at a single location and across the globe

is obvious to a casual weather observer. Frequently, in the

planning and management of agricultural and engineering

activities, precipitation information that reflects this

natural variability is needed. Examples include irrigation

design and application, evaluation of agricultural runoff

for soil erosion and water quality, cropping and seeding

patterns, sizing and placement of culverts and dams,

scheduling and selection of agricultural and construction

equipment The demands of the particular use of the

information vary from within-storm intensities to daily

different precision. Generally, the source of such

information is the precipitation data measured and

recorded at a point. Precipitation information for a

particular location may not be adequately known or

available in the specific time-frame required because of

short or nonexistent records of measurements, inaccurate

or inconsistent data, or budgetary constraints.

An alternative approach is to use a precipitation

simulation model which generates sequences of synthetic

precipitation which share the same statistical properties as

the observed time series. Three broad categories of

precipitation simulation models exist in various degrees of
mathematical and statistical complexity which relate to the

type of precipitation simulated. Low-resolution, large-area

precipitation Hnf" can be generated by 3-dimensional

dynamic-numerical general circulation models (GCMs);

rainstorm event occurrence and intensities are simulated

by spatial-temporal models; daily precipitation occurrence

and amount are modeled by a family of fairly simple

stochastic/statistical algorithms. The latter of these are

often part of a larger model called a weather generator,

which simulates other weather related land/atmosphere

variables such as solar radiation, temperature, or soil

moisture. The generated synthetic sequences of precipi

tation are used for a variety of purposes such as: analysis

for water resource engineering applications, climate

change scenarios, and as input to other hydrological or

Encyclopedia of Water Science

DOI: 10.1081/E-EWS 120OIO320

Copyright © 2003 by Marcel Dekker. Inc. All rights reserved.

natural resource models. This differentiates these models

and their results from the class ofmodels which are used in

weather prediction and forecasting. All three categories of

models are valuable tools for scientific research and

agricultural, engineering and hydrological applications.

The selection of any one type should fit the intended

analysis, level of complexity and scale ofrequired results.

Overviews of various precipitation simulation models are

Ref. [1] for GCMs, Ref. [2] for rain storm modeling, and

Ref. [3] for daily precipitation.

MODELS AND APPLICATIONS

General Circulation Models

General circulation models (also referred to as global

climate models and sharing a common acronym, GCM)

use the same fundamental equations of conservation of

mass, energy and momentum as do numerical weather

prediction (NWP) models. These dynamic meteorology

models, and similarly structured regional climate models

(RCM), attempt to numerically solve systems of

simultaneous nonlinear differential equations which,

themselves are intended to represent the complex physical

processes involved in atmospheric dynamics. Whereas

NWPs use observations ofrecent atmospheric dynamics as

boundary conditions for model runs and produce weather

prediction in the short term (1-10 days), GCMs use

arbitrary boundary conditions and alternative atmospheric

parameters to simulate climate for the past, current or

future. One result of GCM simulations is precipitation

over an area, called a grid, which may be on the order of

lO'km2, whereas for an RCM the spatial resolution may

be 10'km2-103km2.
Precipitation is generally simulated in these models by

convective processes resolved from radiation, tempera

ture, pressure, and humidity simulated at various

atmospheric layers within a gridbox. These simulations

of precipitation are useful for evaluating changes in

vegetation and surface water resources under different

possible climate change scenarios. To increase the

resolution of the GCM simulation, downscaling by

statistical techniques or incorporating an RCM into the

GCM achieves finer resolution precipitation output
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applicable to soil moisture and runoff analysis for subgrid

scales. Excellent sources of information about and

applications of the models are available at WEB sites

such as Intergovernmental Panel on Climate Change,'4'

American Institute of Physics,'31 and NASA's Goddard
Institute for Space Studies.161

Spatial-Temporal Rainstorm Models

Stochastic simulation models of rain storm events in space

and time attempt to reproduce the statistical properties ofthe

event across a range of temporal and spatial scales. Two of

the most advanced modeling concepts are: i) stochastic

representation ofthe physical process ofrainstorm temporal

and spatial evolution and ii) scale-invariancc or self-

similarityofthe spatialrainfall field. The stochasticapproach

defines the arrival of the rain cells within a rain storm by a

point cluster process171 represented by one of two common
models, the Neyman-Scott process or the Bartlett-Lewis

process. TheformerusesaPoisson distribution forthecluster

centers, a random number of cells and a distribution of the

distance of cell from the cluster center. The latter assumes a

Poisson processfor arrival ofstorms,and distributions for the

number of cells per storm, intercell intervals, duration and

intensity within a cell. For each characteristic, a statistical

distribution must be assumed and numerous parameters

identified. Alternatively, scale-invariant models181 exploit
the properties of multiplicative random cascades developed

in turbulence theory. Observations of rainfall fields suggest

that there are certain spatial and temporal properties that

behave similarly over a range of scales differing only by a

scale parameter. Thus a hierarchy ofattributes (eg., rainfall

intensity) can be developed such that larger areas of lower

intensityhaveembedded within them smallerareasofbigher

intensity and these in turn have even smaller areas of yet

higher intensities. Applications of these models are design

storms for engineering and water resources and continuous

timehydrologic modeling.

Other statistical storm models of simpler structure are

derived empirically. One method is to disaggregate daily

rainfall amounts to witbin-storm intensities for the

duration of a storm. These models have parameters that

are location specific. Another approach is the regionaliza-

tion of probabilities associated with storm interarrival

time, duration, and amount

Daily Precipitation Models

Daily precipitation simulation models are the most

common for use in a variety of agricultural and

engineering applications. These models describe the

occurrence (wet) or nonoccurrence (dry) of precipitation

on a day and subsequently the amount of precipitation

given the day was wet. The occurrence process is modeled

most frequently by a first-order, two-state Markov chain.

Linked to this occurrence process is a statistical

description of precipitation on a wet day, often a gamma

or exponential distribution.191 This family of fairly simple

models of daily precipitation is referred to as chain-

dependant processes. Equations for these models are given

in a companion article in this chapter, "Precipitation

Stochastic Processes," and are not duplicated here. The

models can be parsimonious in the necessary parameters,

are easily parameterized with a sequence ofobserved daily

precipitation (a commonly recorded observation for many

stations) albeit for many years. Seasonal variation of

model parameters can be accomplished by writing them as

Fourier series or by assuming they vary step-wise on a

monthly or seasonal basis. The structure of the model

provides simple generation of multiple realizations of

daily time series. Model output is generally used as input

to hydrologic, natural resource, or agricultural models

requiring daily time step precipitation. The model

parameters are location specific with limited transfer-

ability to neighboring locations that do not share the same

stochastic precipitation structure, e.g., to a location with a

large elevation change. Another limitation of the model is

the underestimation of interannual variability. One

approach to resolve this has been determining the

appropriate order of the Markov chain indicating that for

particular seasons and geographic locations a second-order

or higher conditional dependence may be required,

although not all such variability is explained. Markov

chains of more than two states may explain more of the

variability and a continuum of states may be best.

Other methods to model daily precipitation occurrence

have been advanced, among them: alternating renewal

process, discrete auto-regressive moving average, Markov-

Bemoulli process, dependence on weather type, Markov-

renewal. Some recent weather generator models use

multivariate techniques to simulate precipitation con

ditioned on other weather variables or simultaneously with

other weathervariablesorusingsemiempirical distributions.

Although numerous inter-comparisons have been done, no

single model provides simplicity, ease of parameterization,

and the best fit for all weather types and locations.

An example of a particular precipitation simulation

model is provided. The Markov chain-mixed exponential

model (MCME) is used to simulate daily precipitation for

two stations with different climates in the western United

States. This model is the precipitation algorithm embedded

in the United States Department of Agriculture-Agricul

tural Research Services (USDA-ARS) weather generator,

Generation ofWeatherElements for Multiple Applications

(GEM).1101 This model is an enhanced version ofa series of
weathergenerators developed by the USDA-ARS.1"1 Daily

precipitation model parameters are estimated from an

observed time series of daily data. The optimized
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parameters are used in the model in conjunction with a

random number generator to synthesize a 30-yr period of

dailyprecipitation occurrence and amount. Daily values are

summed to seasonal values and the annual averages and

variances of these are compared to observations. Fig. 1

shows the results for Tombstone, Arizona plotted as a

cumulative distribution function for two 3 month seasons.

United States Department of Agriculture, January,

February and March (JFM) and October, November and

December (OND); Fig. 2 is the same for Eugene, Oregon.

The mean is fairly well preserved for both seasons and both

the amount and number of occurrences at Tombstone, but

the variance is underestimated especially for JFM. The

mean is not aswell preserved at Eugene, and the variance is

underestimated for OND. This is one of the limitations

mentioned previously and it may be due to low-frequency

ocean-atmospheric signals, such as the El Nino-Southern

Oscillation, which have varying influences seasonally and

regionally and which are not adequately identified in the

daily parameters.

CONCLUSION

Precipitation simulation models generate synthesized

sequences of precipitation at a range of spatial and

temporal scales. Three broad categories are general

circulation models, stochastic spatial-temporal rainstorm

models, and daily precipitation models. Model selection

and use should be justified by the desired resolution of
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Fig. 1 Empirical cumulative distribution function (CDF) of simulated and observed precipitation for Tombstone AZ 1961-1990. a)

January, February andMarch (JFM) amount; b) JFM number ofwet days; c) October, November and December (OND) amount; d) OND

number of wet days.
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Fig. 2 Empirical cumulative distribution function (CDF) of simulated and observed precipitation for Eugene OR 1961-1990. a) JFM

amount; b) JFM number of wet days; c) OND amount; d) OND number of wet days.

results and ability to fully estimate the required

parameters. Future developments to precipitation simu

lation models will be downscaling techniques which link

regional and local scales, improved algorithms to more

faithfully represent the stochastic and physical dynamics

of precipitation, and the inclusion of low-frequency

oscillations and spatial distribution of parameters in daily

precipitation models.
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