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12.1 INTRODUCTION

The U.S. Department of Agriculture (USDA) estimated that in 1998 there were over

21 million hectares of irrigated agriculture in the United States and over 271 million

hectares of irrigated agriculture in the world. A growing population throughout the

United States and the world depends directly on irrigated agriculture for both food

and employment. Irrigated agriculture provides higher and more dependable crop

production on a per unit area basis than that of dryland systems, thus reducing the

amount of land converted from natural ecosystems to meet the world's food and

fiber demands. Ironically, this growing dependence on irrigated agriculture has been

accompanied by a growing perception that irrigation is economically unsound, due

to the current low prices for many irrigated crops and the high cost of irrigation

water and services. Irrigation is also perceived to be detrimental to the environment,

due to waterlogging, soil salinity, and percolation of agricultural chemicals into soils

and the underlying water table. Public pressure associated with these perceptions,

along with the growing importance of water trading in recent years, has encouraged

producers to seek better means to manage water resources.

Managers of irrigated lands are seeking an information-based crop management

system that will improve agricultural water use efficiency, enhance crop productivity,

and reduce the potential detrimental impact of irrigated agriculture on the environ

ment. Some innovative farm managers are looking to remote sensing for accurate,

spatially distributed information about crop and soil conditions that can be used to

schedule timing and amount of crop irrigations and plan associated agricultural ac

tivities. Such users view remote sensing as simply another source of information that

differs in accuracy, sampling density, and turnaround time from the available con

ventional sources of information, such as neutron probes for measuring soil mois

ture, soil penetrometers for finding claypan, and petiole samples for determining

plant nitrogen status. That is, remote sensing is seen as part of a continuum of

available tools rather than a discrete departure from conventional information

sources (Swinton and Jones, 1998) (Figure 12.1).
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Figure 12.1 Conceptual model of remote sensing as a continuum of conventional farm

differs from sampling in measurement accuracy, turnaround time, spatial resolution, and

Jones, 1998.)
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The viewpoint that remote sensing is part of a "toolbox" for agricultural man

agement has been fostered further by concurrent advances in related technologies.

These include variable-rate technology (VRT), global positioning systems (GPSs) and

geographic information systems (GISs). Variable-rate technology (VRT) applies

production inputs at rates appropriate to soil and plant conditions within fields.

Variable-rate systems have been demonstrated for several materials, including her

bicide (Mortensen et ah, 1995), fertilizer (Schueller, 1992; Fergusen et ah, 1995),

insecticide (Fleischer et ah, 1997), and seeds. Advances in GPS technology have

provided the moderately priced, accurate positioning system necessary for field im

plementation of VRT (Palmer, 1995). These advances in location technology have

been combined with the ubiquitous use of GISs by farm managers in the most ad

vanced systems for precision farming (Usery et ah, 1995). For example, Hanson et

ah (1995) described a herbicide application system mounted on a tractor with a GPS

guidance system that was linked to a digital weed map, allowing only weed-infested

areas of a field to be sprayed. The weak link in such systems is the availability of

such maps of weeds, insect infestations, crop nutrient deficiencies, and other crop

and soil conditions. Remotely sensed images obtained with aircraft- and satellite-

based sensors have the potential to provide such maps for an entire field, not just

sample sites, within the time and space requirements of crop management applica

tions.

The community sentiment that remote sensing can meet information require

ments for crop and soil management is based largely on results of remote sensing

research conducted over the past 30 years. In the late 1970s and early 1980s, a

great research effort was focused on the use of multispectral images for crop inven

tory and crop production. The Large Area Crop Inventory Experiment (LACIE)

demonstrated the feasibility of utilizing satellite-based multispectral data for esti

mating wheat production (MacDonald and Hall, 1980) based on techniques that

are still in use by crop production forecasters in the USDA Foreign Agricultural

Service. The AgRISTARS program conducted by the USDA, NASA, and NOAA ex

tended this methodology to include other crops and regions and expanded the re

search to encompass larger agricultural issues. The LACIE and AgRISTARS

programs not only produced robust methods for regional crop identification and

condition assessment, but also defined the physics of relations between spectral mea

surements and biophysical properties of crop canopies and soils. It was widely rec

ognized that this basic scientific and technical knowledge had great potential to be

used by farmers for making day-to-day management decisions.

Jackson (1984) evaluated current and future remote sensing systems for use in

farm management. His 20-year vision for an ideal system included a fleet of auton

omous satellites providing frequent high-resolution data with quick turnaround and

delivery to users. This vision may soon become reality with the recent and planned

launches of several commercial satellites that are designed to provide multispectral

images with three-day repeat coverage, 1 to 4 m spatial resolution, and delivery to

users within 15 minutes of the time of acquisition (Moran et ah, 1997b). The syn

ergy of such an imaging system with the scientific algorithms and models developed

over the past 30 years could provide detailed crop and soil information to farm

managers and crop consultants at a finer temporal and spatial scale than ever before.

This watershed of technology and scientific advances has lead to partnerships

between agricultural producers and remote sensing experts to define the information

needs of producers and better direct remote sensing research toward satisfying these
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needs using remote sensing products. A good example of such an initiative is the

Ag20/20 group, where the Ag20/20 acronym represents a "clear vision" of agri

culture. The formation of this group was facilitated by a 1998 Memorandum of

Understanding between USDA and NASA to encourage cooperation between the

groups for the benefit of U.S. agriculture. Members of the National Corn Growers

Association, National Cotton Council, American Soybean Association, and National

Association of Wheat Growers joined with NASA and USDA to form Ag20/20. The

basic goals of Ag20/20 are to develop remote sensing-based crop production and

management tools that will (1) increase U.S. farmers' profit margins, (2) reduce crop

production risks, and (3) minimize environmental impacts associated with agricul

tural production.

The first step in the Ag20/20 program was to define grower information needs

and baselines for information product development. This was accomplished through

a series of meetings in 1999 in which commodity groups were asked to prioritize

their top three information needs for agricultural management. The top priorities

focused on nutrient, pesticide, and water management, while the second tier of

priorities addressed a combination of factors ranging from crop yield, vigor, and

quality to soil characterization and preparation (Table 12.1). Although defined pri

marily for U.S. production of corn, cotton, soybean, and wheat, these information

needs are directly applicable to irrigated agriculture in general, and thus can be

extended to orchards and vineyards. As such, these information needs were used to

organize this chapter.

TABLE 12.1 Grower Information Needs Defined by Ag20/20 Group for Irrigated and Dryland Com,
Cotton, Soybean, and Wheat0

Priorities Common to All Four Crops

irrigation/water information Efficient management and scheduling of irrigation

for optimal crop production

Nutrient application Optimal allocation of fertilizer to maximize

yields and minimize costs

Weed scouting/herbicide application Early detection of weeds to prescribe herbicides

in a spatially variable manner

Insect scouting/insecticide Routine detection of insect-prone areas to

application prescribe insecticides in a spatially variable

manner

Additional Top-Three Priorities

Crop yield Development of tools to (1) increase yield and

(2) predict/forecast yield for marketing

decisions

Soil characterization Extraction of accurate soils information for the

delineation of sound management zones

Vigor/stress detection* Detection of variations in crop health for

variable-rate applications

Grain quality* Characterization of grain-quality factors (oil,
protein, etc.) for appropriate harvest and

market decisions
Next-season preparation Assessment of physical properties of fields after

harvest to support planning or upcoming crop

JAg20/20 members representing growers of each commodity were asked to define their top three

information needs for agricultural management.

*These information needs were not addressed in this chapter.
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Our primary objective in this chapter is to address the use of image-based remote

sensing for irrigated agriculture. In the next section we present an overview of the

physical plant and soil manifestations associated with water stress. Following that,

potential applications of remote sensing and selected remote sensing product de

velopments are reviewed for the information needs prioritized by Ag20/20 (Table

12.1). The chapter concludes with a summary of the current development stage of

remote sensing for irrigated agriculture.

12.2 BACKGROUND

Numerous studies have shown that crop water stress has a direct effect on crop

growth, development, and yield, and ultimately, on farmers' profits. The goal in

managing the stress of crop species is not simply to keep plants alive during periods

of water deficit, but to produce a profitable yield. To achieve this delicate balance

between water use and crop yield, farm managers need an operational means to

quantify plant water deficit and evaluate the effects of stress on a given crop species

at any stage of development. In the following sections we present the plant mani

festations of water stress that can be detected with the thermal-infrared (TIR) wave

lengths and the visible, near-infrared (NIR), shortwave-infrared (SWIR), and

synthetic aperture radar (SAR) wavelengths. The relevant optical properties of crop

leaves and canopies are also included as a reference for discussions in the following

sections.

12.2.1 Crop Water Stress and TIR Wavelengths

A commonly used measure of crop stress is the stress degree index (SDI) proposed

by Hiler and Clark (1971). The SDI is based on a measure of the degree and du

ration of plant water deficit and the plant's susceptibility to a given water deficit:

SDI = 2 (SD, • CS;) (12.1)
n

where SD is the stress day factor, CS the crop susceptibility factor, and n represents

the number of growth periods considered. SD is defined by the plant evaporation

rate (£) and the potential evaporation rate (£p), where

SD = 1 - I- (12.2)

CS represents the susceptibility of a crop to a given magnitude of SD and is a

function of the species and stage of growth of the crop. Hiler and Clark (1971)

suggested that CS be determined through field experiments with variable soil water

conditions so that the natural environment was simulated as closely as possible.

For solution of equation (12.1), values of CS can be obtained for a variety of

crops from a table compiled by Hiler and Clark (1971). However, SD must be

evaluated in situ using meteorological measurements to estimate Ep and specialized
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instrumentation to measure E. The specialized instruments commonly used to mea

sure E (e.g., lysimeters, energy flux sensors, and gas exchange chambers) are gen

erally too complex, labor intensive, or delicate for long-term field deployment, and

the scale of measurement rarely matches the size and shape of agricultural fields.

Thus, there has been interest in the use of remote sensing, in particular plant canopy

temperature, to evaluate the spatial distribution and temporal dynamics of SD.

The link between studies of the physics of evaporation and the measurements of

leaf temperatures was made by Monteith and Szeicz (1962) through their use of

infrared thermometers (IRTs) to measure plant canopy temperatures. Based on en

ergy balance considerations, they derived an expression relating the canopy-air tem

perature difference to net radiation, wind speed, vapor pressure gradient, and

aerodynamic and canopy resistances, where

T _ T = rd(R,, ~ G) 7d + rJQ VPD
(12.3)

PCp A + 7 (1 + rjrj A + y(\ + rjra)

where

Tc = canopy temperature (C or K)

T, = air temperature (C or K)

ra = aerodynamic resistance (s/m)

Rn = net radiant heat flux density (W/m2)

G = soil heat flux density (W/m2)

A = slope of the saturated vapor pressure-temperature relation (kPa/°C)

p = volumetric heat capacity of air (J/°C • nv')

7 = psychrometric constant (kPa/°C)

rc = canopy resistance to vapor transport (s/m)

VPD = vapor pressure deficit of the air (kPa)

Equation 12.3, given in a slightly different form by Monteith and Szeicz (1962),

was the basis for the theoretical development of a crop water stress index (CWSI),

which is discussed in the next section. In the decade following this landmark work,

infrared technology advanced rapidly, leading to the handheld, airborne, and

satellite-based sensors and scanners that are available today (e.g., Figure 12.2).

An example of the distinctive variations in surface temperature in response to

differential water treatments is presented in Figure 12.3 for a cotton field near

Phoenix, Arizona. Boxes were drawn around plots with low-water treatments that

had not been irrigated for six days, while the other plots were irrigated the previous

day. In the low-water plots, 60% of plant-available water was depleted at the time

of measurements. Average air temperature during the time of measurement was

32°C and the vapor pressure deficit was 2.0 kPa. The crop had reached canopy

closure and had entered the boll formation growth stage about seven days earlier.

12.2.2 Crop Water Stress and Visible, NIR, SWIR, and SAR Wavelengths

To avoid the inherent difficulties associated with processing TIR measurements (see

Moran, 2001), studies have focused on the use of other wavelengths to monitor
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crop water stress. In this section we link the stress-induced physiological and ana

tomical changes in plant leaves and canopies to spectral responses in the visible,

NIR, SWIR, and SAR wavelengths.

Turner (1977) provided a good synthesis of the effects of water deficit on crop

plants and the physiological adaptations to transient stress. He identified crop phys

iological adaptations associated with three types of drought resistance, where

drought was defined as a period without significant rainfall (Table 12.2). These

physiological adaptations ranged from changes in canopy architecture to adjustments

in leaf osmotic potential. The following discussion is focused on the physiological

adaptations that might have the greatest effect on spectral reflectance and SAR back-

scatter and the optical properties of plants that would allow stress detection with

remote sensing.

Drought escape is the ability of the plant to complete its life cycle before serious

soil and plant water deficits develop. For example, studies have shown that wheat

can hasten maturity in response to mild water deficits at the critical time between

flowering and maturity (Turner, 1977). Alternatively, when stress occurred between

floral initiation and wheat ear emergence, the number of wheat tillers that produced

ears was less than under well-watered conditions (Turner, 1977). These are exam

ples of the rapid phenological development and developmental plasticity that have

been associated with water stress conditions at critical crop phenologic stages.

Drought tolerance at high tissue water potential is sometimes referred to as

drought avoidance since it allows plants to endure drought periods while maintaining

a high plant water status. One such crop adaptation is the reduction of water loss

through increased stomatal and cuticular resistance. This is expressed in increased

epidermal waxes of leaves and a reduction in general plant productivity. Another

adaptation is to reduce the radiation absorbed by the plant through leaf movement

(e.g., leaf cupping, paraheliotropism, or wilting) or increased leaf pubescence and

waxiness. Drought tolerance is also achieved by reduction of leaf area through de-

TABLE 12.2 Mechanisms of Drought Resistance

Drought escape

Rapid phenological development

Developmental plasticity

Drought tolerance at high water potential

Reduction in water loss

Increase in stomatal and cuticular resistance

Reduction in radiation absorbed

Reduction in leaf area

Maintenance of water uptake

Increased root density and depth

Drought tolerance at low water potential

Maintenance of turgor

Osmotic adjustment

Increase in elasticity

Decrease in cell size

Desiccation tolerance

Protoplasmic tolerance

Source: Adapted from Turner (1977).
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creased leaf expansion, reduced tillering and branching, and leaf shedding. Some

crops maintain a high plant water status by increased root growth, resulting in de

creased top growth and less investment in photosynthetic surface.

Water stress is often expressed by the inability of some crop species to maintain

cell turgor at low water potentials. The elasticity of crops to control cell turgor

varies widely by species. For example, in a field study with maize, sorghum, and

tobacco, Turner (1977) found that sorghum had a lower soil water potential than

tobacco at zero turgor. He also reported that although tobacco and maize had equiv

alent turgors at high leaf water potentials, maize had a lower water potential than

tobacco at zero turgor. These variations in cell turgor under drought conditions can

influence the closure of stomatal apertures, and the rates of photosynthesis, evap

oration, and leaf expansion.

12.2.3 Optical Properties of Plant Leaves

There has been a great deal written on the optical properties of crop leaves in the

visible, NIR, TIR, and SWIR domains (e.g., Bauer, 1985). In the visible domain,

leaf reflectance is affected primarily by leaf pigments such as chlorophyll, xantho-

phyll, carotenoids, and anthocyanins. Thomas and Oerther (1972) found that with

nitrogen deficiency, the visible reflectance increased (due to decreasing chlorophyll

content) and the NIR and SWIR reflectances decreased (due to decreasing number

of cell layers). In the NIR, reflectance depends on the anatomical structure of the

leaves and increases with the number of cell layers and the size of the cells. In the

TIR, there is a direct link between the process of plant water evaporation and the

plant thermal response (i.e., water evaporates and cools the leaves). In the SWIR,

the reflectance is mainly affected by the leaf water content, with strong water ab

sorption bands at 1.45, 1.95, and 2.7 |jun. It is generally reported that leaves under

stress show a decrease in reflectance in the NIR spectrum, a reduced red absorption

in the chlorophyll active band (0.68 |im), and a consequent blue shift of the red-

edge. However, Guyot et al. (1984) found that it was necessary to have an extremely

severe water stress to affect the leaf reflective properties.

Some of the leaf physiological adaptations to stress discussed in previous sections

have an effect on leaf reflectance. For example, increasing leaf pubescence results

in an increased reflectance in the visible and SWIR spectral bands, but has little

effect on NIR reflectance. Gausman (1983) explained that since such hairs are made

of cellulose and are dry, they appear white in the visible spectrum, transparent in

the NIR, and highly reflective in the SWIR, except for absorptions in cellulose bands.

Also, increases in leaf waxiness affect the specular component of leaf reflectance and

can increase leaf reflectance substantially, depending on the incidence angle of the

incoming radiation.

The optical properties of leaves in the radar spectrum covered by orbiting sensors

are defined by the domination of the dielectric constant of water. The relative di

electric constant of water (and healthy leaves) is about 80 and the dielectric constant

of dry vegetation and soil is on the order of 2 to 3 (Ulaby et al., 1984). Based on

this information, electromagnetic modeling approaches have successfully described

the SAR scattering that would result from the simple shapes that make up a crop

canopy.
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12.2.4 Optical Properties of Plant Canopies

Although knowledge of the optical properties of individual leaves contributes to our

understanding of the processes involved, field studies have shown that spectropho-

tometer studies of single leaves can be very misleading for predicting reflectance

from crops. For example, Guyot et al. (1984) reported that the most important

factor that influences the reflectance of a plant canopy is its geometrical structure,

not its leaf reflectance. He stated that the reflectance in visible and NIR wavelengths

is determined primarily by the green leaf area index (GLAI) and the average leaf

inclination angle. Effects of variations in leaf inclination distribution function (LIDF)

increased with GLAI and were greater in red-NIR subspace than in red-green sub-

space. Jackson and Ezra (1985) concluded that stress-induced changes in visible,

NIR, and SWIR reflectance of a cotton canopy were due largely to canopy geometry

changes rather than leaf physiological/anatomical changes in all but the red spectral

band. Furthermore, Myers et al. (1983) identified seven parameters (in addition to

leaf reflectance) that determined crop canopy reflectance, of which only the first

three could be related directly to crop stress: (1) transmittance of leaves, (2) amount

and arrangement of leaves, (3) characteristics of other components of the vegetation

canopy, (4) characteristics of the background, (5) solar zenith angle, (6) look angle,

and (7) azimuth angle.

Similarly, the TIR emittance of a plant canopy is a function of the temperatures

of both the plant components and the soil. Tc, the canopy temperature, is defined

by Norman et al. (1995) as the TIR temperature in which the "vegetation dominates

the [measurement] field of view minimizing the effect of soil." To is the temperature

of the soil surface. T, is the surface composite temperature, defined by Norman et

al. (1995) as the "aggregate temperature of all objects comprising the surface,"

which was shown by Kustas et al. (1990) to be a function of Tc and Tn, where

1 = fJt + 0 - fc)TA0 (12.4)

and fc represents the fractional cover of the vegetation and all temperatures are in

kelvin. When the surface is covered completely by vegetation, T, = Tc, and when

the surface is bare soil, Ts = To.

As with the optical spectrum, SAR scattering within the crop canopy is a complex

function of the relative positions and spatial densities of the plant constituents and

such soil properties as roughness and moisture. Furthermore, SAR backscatter is a

function of the wavelength, polarization, and incidence angle of the illumination

source. Nonetheless, there is empirical and theoretical evidence that SAR backscarrer

may provide useful information about crop water stress (Moran et al., 1997c; 1998).

At high frequencies (about 13 GHz), field experiments have shown that the radar

signal was particularly sensitive to such plant parameters as GLAI, plant biomass,

and percentage of vegetation cover. At low frequencies (about 5 GHz), many studies

have shown that the radar signal was very sensitive to soil moisture, although this

sensitivity decreased with increasing vegetation cover.
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12.3 REMOTELY SENSED INFORMATION FOR MANAGEMENT

OF IRRIGATED AGRICULTURE

The Ag20/20 consortium of members of corn, cotton, soybean, and wheat com

modity groups identified their highest-priority information needs for agricultural

management (Table 12.1). In the following sections, the potential applications of

remote sensing and the actual remote sensing products related to each information

need are summarized. Although many examples are presented, the type and mag

nitude of the remotely sensed manifestation of crop physiological status presumably

will vary with the type of crop and the attendant cultural practices. Thus, factors

such as whether the crop is an annual or a perennial, a row crop or a woody crop,

whether it displays small or large row spacing, as well as various other factors may

all affect the application and calibration of remotely sensed estimates of a crop's

physiological status.

12.3.1 Irrigation and Water Information

Over the past 30 years, remotely sensed data have been used successfully for deriving

information useful for irrigation scheduling and management. The basic approaches

have focused on parameters related directly to crop water status [e.g., crop water

loss (evaporation), metabolism, conductance, and photosynthesis] and plant mani

festations of chronic crop water stress (e.g., phenologic stage and leaf expansion

and loss).

12.3.1.1 CROP EVAPORATION

An important breakthrough in the use of remote sensing for irrigation management

was development of the Idso-Jackson crop water stress index (CWSI) (Idso et al.,

1981; Jackson et al., 1981). Jackson et al. (1981) derived the theoretical CWSI

(CWSI,) based largely on equation (12.3). Taking the ratio of actual (£ for any rc)

to potential (Ep for rc = rcp) crop evaporation rate gives

E 1A + -v*l
1 7 J - (12.5)

Ep [A + 7d + rJO)

where 7* = 1 + r^/r^ (RPA/°C), with rcp being the canopy resistance at potential

evaporation. Jackson et al. (1981) defined the CWSI,, ranging from 0 (ample water)

to 1 (maximum stress), as

CWSI, = 1 - # = 7A(1+:fj)"7' (12.6)
Ep A + 7(1 + rjra)

To solve equation 12.6, a value of rjra is obtained by rearranging equation 12.3

and assuming that G is negligible for a full-cover canopy, where
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~ [(Tc - T,)(A + y)] - VPD

c - TJ - rA/pCp] (^/}

and rjra is substituted into equation 12.6 to obtain the CWSI,.

Although Jackson et al. (1981) provided a thorough theoretical approach for

computation of CWSI, the concept is more universally applied using a semiempirical

variation proposed by Idso et al. (1981) based on the non-water-stressed baseline.

This baseline is defined by the relation between (Te- Ta) and VPD under nonlimiting

soil moisture conditions (i.e., when the plant water is evaporating at the potential

rate) (Figure 12.2). Such non-water-stressed baselines have been determined for

many different crops, including aquatic crops and grain crops for both preheading

and postheading growth rates (Idso, 1982). The commercial applicability of CWSI

is evidenced by the commercial production of a handheld instrument designed to

measure CWSI, several commercial imaging companies that are providing CWSI to

farmers, and the multitude of examples of application of this theory with airborne

and satellite-based thermal sensors combined with ground-based meteorological in

formation (see reviews by Moran and Jackson, 1991; Norman et al., 1995).

Application of CWSI with satellite- or aircraft-based measurements of surface

temperature is generally restricted to full-canopy conditions, so that the surface

temperature sensed is equal to the canopy temperature. To deal with partial plant

cover conditions, Moran et al. (1994) developed a water deficit index (WDI), which

combined measurements of reflectance with surface temperature measurements (a

composite of both the soil and plant temperatures), as expressed by

WDI = 1 - — = ^ s ~ "*'" ~ V' ~ T^r (12 8)
E (T - T) - IT - T) \l*"°>
^p \'s 'aim \'s 'ah

The WDI is operationally equivalent to the CWSI for full-cover canopies, where

measurement of Ts = Tc. Graphically, WDI is equal to the ratio of distances AC/

AB in the trapezoidal shape presented in Figure 12.4, where WDI = 0.0 for well-

watered conditions and WDI = 1.0 for maximum stress conditions. That is, the left

edge of the vegetation index-temperature (VIT) trapezoid corresponds to (T, - TJ

values for surfaces evaporating at the potential rate; the right edge corresponds to

(Ts - TJ values for surfaces in which no evaporation is occurring. In practice, WDI

utilizes the Penman-Monteith energy balance equation to define the four vertexes

of the VIT trapezoid, which encompasses all possible combinations of a spectral

vegetation index [e.g., soil adjusted vegetation index (SAVI)] and (Ts - TJ for one

crop type on one day (Figure 12.4).

Another promising approach for operational application is the use of remotely

sensed crop coefficients (the ratio of actual crop evaporation to that of a reference

crop) for estimating actual site-specific crop evaporation rates from readily available

meteorological information (e.g., Bausch, 1993). This approach requires only a mea

sure of NDVI and is simply an improvement of an approach already accepted and

in use by farmers to manage crops, where such improvements include increases in

accuracy of the evaporation estimates and, with the use of images, the ability to

map within- and between-field variations.
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12.3.1.2 CROP METABOLISM

Quite distinct from the CWSI and WDI, Burke et al. (1988) developed a concept

of thermal stress in plants that linked the biochemical characteristics of a plant with

its optimal leaf temperature range. The thermal kinetic window (TKW) is the range

of temperatures within which the plant maintains optimal metabolism. For example,

the TKW for cotton growth is 23.5 to 32°C, with an optimum temperature of 28°C,

and biomass production is related directly to the amount of time that canopy tem

peratures are within the TKW (Figure 12.5), provided that insolation, soil moisture,

and nutrients are nonlimiting. The TKWs have been identified for several crop and

forage species (Table 12.3).

In practice, the TKW provides a biological indicator of plant health that could

potentially be used for irrigation management. In a patent application (SN 261510,

filed June 17,1994), the inventors (Upchurch, Wanjura, Burke and Mahan) describe

an irrigation method in which the canopy temperature (Tc) of a target plant is mea

sured repeatedly with an infrared thermometer at a regular time interval (/,-), and Tc

is compared with the optimum plant temperature (Tc). If Tc £ Tc. or if the VPD is

restrictive to plant cooling, irrigation is not indicated. If both Tc > Tc. and VPD are

not restrictive to plant cooling, f, is added to a time register. When the accumulated

time in the time register exceeds the time threshold, evaporative cooling to reach

the optimum is feasible, and a signal to the irrigation unit is generated.

12.3.1.3 CROP CONDUCTANCE AND CANOPY WATER CONTENT

The CWSI, WDI, and TKW are good examples of indexes linking surface temper

ature measurements to crop and soil evaporation rates. There have been far fewer

studies that link surface reflectance directly to SD. Jackson et al. (1983) reported
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Figure 12.S Seasonal canopy temperatures of cotton, where the vertical lines represent the temperature range that

comprises the species-specific thermal kinetic window (TKW) as determined from the changes in the apparent Ka with
temperature. (Data from Burke et ol., 1988.)

that season-long measurements of reflected solar radiation will not detect the onset

of stress and are sensitive to stress only after plant growth has been retarded. Jackson

and Pinter (1986) explained that plant temperatures indicate the degree of stress at

a particular time, whereas reflectance measurements integrate the effects of stress

over time.

Sellers et al. (1992) proposed a theoretical foundation for a relation between the

spectral vegetation index and the relative response of unstressed canopy conductance

(g*) to changes in incident PAR flux (Fo), where VF = dg*/dF0. They reported a

near-linear relation between Vf and the ratio of NIR/red reflectance on a site-by-

site basis. This relation has potential for use in calculating field-scale potential evap

oration rates from surface reflectance measurements, but will not be useful for

discriminating crop stress conditions.

There are few studies linking canopy reflectance with the percent water content

of total canopy biomass, despite the strong relations reported between leaf spectral

TABLE 12.3 Summary of Thermal Kinetic Windows and Optimum Canopy Temperatures for a Variety of Crops and
Garden Plants

Crop

Cotton

Wheat

Cucumber

Bell pepper

Tomato

Petunia

Potato

Soybean

23.5-32.0

17.5-23.0

23.5-39.0

23.0-41.0

20.5-24.5

18.0-28.0

15.0-25.0

15.0-30.0

27.5

20.0

35.0

32.0

22.5

25.0

20.0

25.0
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reflectance (particularly in the SWIR spectrum) and leaf water content (Ripple,

1986; Cohen, 1991a,b). The published literature is somewhat confusing on this

point since some studies correlate canopy spectral reflectance with total plant water

content (g/m2), and others report relations with percent water content and water

content per unit leaf area (g/m2). The total plant water content is primarily a func

tion of plant biomass (Gardner et al., 1985), whereas the percent water content and

water content per unit leaf area are related to plant hydric conditions (Guyot et al.,

1984; Fourty and Baret, 1997). In any case, poor results have been obtained in

studies correlating surface reflectance measured in wide spectral bands with percent

water content and water content per unit leaf area. Both Bowman (1989) and Hunt

and Rock (1989) concluded that the small change in leaf water content associated

with a relatively large change in turgor pressure, stomatal conductance, and pho

tosynthesis required very accurate measurements of reflectance to estimate canopy

water status adequately. Hunt and Rock (1989) stated emphatically that for most

plants "indexes derived from NIR and [SWIR] reflectances cannot be used to re

motely sense water stress." Other studies were less conclusive. For example, Guyot

et al. (1984) reported a moderate correlation between wheat canopy reflectance in

the SWIR domain and the percent water content of the main shoot. However, they

found that the SWIR reflectance was also affected by seasonal variations in percent

vegetation cover, and in some cases, this played the main role in determining SWIR

reflectance.

12.3.1.4 CROP PHOTOSYNTHESIS

Measurements of leaf chlorosis, which cause diminished leaf photosynthetic capac

ity, may be particularly suitable for early water stress detection. A spectral index

that has been closely related to leaf chlorophyll concentration is the red-edge, where

the red edge is the position of maximum rate of change along the vegetation re

flectance spectrum (in units of wavelength). The red-edge occurs between the wave

lengths of 0.69 and 0.76 u.m due to the change in reflectance caused by chlorophyll

absorption in the red spectrum and multiple scattering from leaves in the NIR spec

trum (Filella and Penuelas, 1994) (Figure 12.6). Although the red-edge may be a

good estimator of leaf chlorophyll levels, there is some controversy about its utility

at canopy levels (Demetriades-Shah et al., 1990).

Studies of the red-edge have necessarily required measurements of canopy reflec

tance using high-spectral-resolution (1 to 10 nm) field spectroradiometers covering

the visible and NIR spectrum. Although the use of hyperspectral remote sensing

diverges from this chapter's focus on broad spectral bands, such studies of high-

spectral-resolution reflectance have been useful for defining the best broad spectral

bands (20 to 100 nm) used to discriminate water stress conditions. In a simulation

study of spectral bands that could be most useful for monitoring several crop canopy

characteristics, Fourty and Baret (1997) suggested that 20 nm wavelength bands

could retain the hyperspectral information associated with percent plant water con

tent and still allow adequate signal-to-noise ratio for satellite-based sensors.

For determination of crop water stress, several studies have proposed ratios of

two complementary narrow-wavelength bands where the reflectance in one wave

length was sensitive to water or chlorophyll concentrations, and the reflectance of

another (a "reference") was relatively insensitive to such concentrations. Penuelas
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reflectance of a crop canopy with high- and low-water treatments. (Data from

et al. (1997) developed a water index (WI), defined as the ratio between reflectances

at 0.97 and 0.90 \t.m for measurement of the percent plant water content for

drought assessment. Gao (1996) introduced the normalized difference water index

(NDWI), defined as the difference between reflectances at 0.86 and 1.24 |xm divided

by their sum. In a qualitative demonstration, the NDWI appeared to be sensitive to

the liquid water content of vegetation canopies. Carter and Miller (1994) showed

that the ratio of refleaances at 0.694 and 0.760 jim could be used to detect stress

simultaneously with the crop physiological manifestation. Such indexes, based on

narrow spectral bands, may have limited success with aircraft- and satellite-based

sensors because they may be affected by atmospheric water absorption as well as

plant water absorption.

All three of the above-mentioned spectral indices were found to be sensitive to

measurements of plant stress as well as variations in ground coverage by leaves. To

minimize the effects of ground cover variations and to maximize the assessment of

plant stress condition, both Gao (1996) and Penuelas et al. (1997) suggest that the

WI and NDWI be further normalized using a ratio or multiple regression with a

vegetation index (e.g., NDVI) to correct for changing vegetation cover. This mul-

tispectral approach could circumvent the complexity associated with hyperspectral

sensors by allowing a sensor to be designed with only a few spectral bands at stra

tegic narrow and broad wavelength bands (assuming that wavelength and radiance

calibrations are reliable). On the other hand, these indexes have been tested only

for selected crops and they may be crop specific.

12.3.1.5 CROP PHENOLOGIC STAGE

There is evidence that crop water stress can either hasten (Turner, 1977) or delay

(Idso et al., 1980) crop development, depending on the crop phenologic stage at



12.3 REMOTELY SENSED INFORMATION FOR MANAGEMENT OF IRRIGATED AGRICULTURE 633

the time of water stress. Also, the time and duration of stress are of critical impor

tance to ultimate yield (e.g., if a period of water stress occurs during heading or

during the grain-filling period, the reduction of the grain yield is much greater than

if this same stress condition occurs at some other time). For these reasons, knowl

edge of phenologic stage relative to planting date could provide important infor

mation on crop stress.

Multiple observations of the temporal-spectral characteristics of crops offer

promise for use in estimating the crop development stages at the time of interest.

Several approaches have been proposed to provide a spectral crop calendar. Tucker

et al. (1979) showed that crop phenologic stage could be determined using a com

bination of spectral data and accumulated temperature units (growing degree-day).

Badhwar and Henderson (1981) suggested that a given crop has a unique spectral

profile in time and that the fractional area under the greenness profile curve was

closely related to development stages in corn and soybeans. Malila et al. (1980) used

the temporal changes in red and NIR reflectance of a wheat canopy related to crop

development to develop a correlation between crop phenologic stage and canopy

reflectance. That is, during the initial growth stage, NIR reflectance increased and

red reflectance decreased due to corresponding differences in soil and green leaf

reflectances. At heading, heads apparently cast shadows, causing both the NIR and

red reflectance to decrease; and during ripening, the combined reflectance of the

heads, the senescing leaves, and the exposed soil caused the red reflectance to in

crease while the NIR reflectance continued to decline.

There have also been attempts to determine stress effects by monitoring the tem

poral duration of specific phenologic stages. For example, Idso et al. (1980) reported

that for wheat plots stressed for water, senescence appeared to be drawn out over

a longer period of time than for well-watered plots. This was apparently due to an

evolutionary strategy for annual plants to prolong their life span to increase grain

production under stressful conditions. Idso et al. (1980) related the slope of the

vegetation index (VI) over time to the rate of senescence and correlated this slope

with final grain yield for wheat and barley under stressed and nonstressed conditions

(Figure 12.7). In a similar study, Fernandez et al. (1994) found that the hydric stress

of wheat could be determined by the slope of the NDVI along the maturity stage.

12.3.1.6 LEAF EXPANSION AND LOSS

Crop water stress can also manifest itself in reduced leaf expansion and leaf loss. In

such cases, measurements of crop biomass and GLAI can provide information on

the degree, duration and spatial extent of crop stress. Numerous studies have re

ported a strong correlation between red and NIR canopy reflectances and GLAI or

crop biomass (e.g., Tucker, et al. 1979). The spectral data used in such correlations

often take the form of a vegetation index, which is a ratioed or linear combina

tion of reflectances (p) in two or more spectral bands, generally the red (pre(J) and

NIR (pmr)- The most commonly used vegetation indexes are the simple ratio (SR =

Pred/psm) ar»d tne normalized difference vegetation index [NDVI = (pNIR - pred)/

(PNIR + Prcd)l-
Several studies have monitored stress-induced reductions in biomass and GLAI

using remote sensing techniques. Fernandez et al. (1994) reported that water stress

had a greater effect than lack of fertilizer on leaf area of wheat plants. Water-stressed



634 APPLICATION OF IMAGE-BASED REMOTE SENSING

eoo

700

-600

i>500
j 400

c 300

2 +
O 200

100

Y=-208-41360X

r= 0.78

ac . '

*

9 .

m

X ^,

-

-0.006 -0.01 -0.014

Senescence Slope (Vl/day)

-0.018 -0.022

• Produra Wheat x Anza Wheat ■ Briggs Barley
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plants were 20 to 30% shorter than nonstressed plants and had 22 to 27% less dry

biomass. They found a strong correlation between the stress-induced differences in

GLAI and the NDVI, with a reported coefficient of variation of 0.15 between mea

sured and estimated GLAI. Gardner and Blad (1986) studied the effects of moisture

stress on the reflectance of corn and found that reductions in GLAI accounted for

nearly all of the variation in spectral response. Furthermore, when these varying

levels of spectral response were accumulated over time, the sum was strongly related

to grain yield (Walburg et al., 1982).

Mogensen et al. (1996) reported that relative leaf expansion rate was a more

sensitive expression of water stress than SD and could be used for early detection

of crop water stress. Their study had two interesting conclusions related to the

detection of crop water stress for a rape crop. They found that stress early in the

season had more influence on dry plant matter accumulation than did late-season

drought of similar intensity and duration. Further, they were able to monitor crop

stress throughout the season using a relative reflectance index (RRI; the ratio be

tween the reflectance of the water-stressed and fully irrigated crop).

Although these results are encouraging, this approach is limited by the fact that

the reflectance-GLAI relation is exponential, leading to a saturation of the NIR

response at GLAI values of 5 to 6 (Bauer, 1985). A better measure of effects of

water stress on leaf expansion and biomass production might be the amount of solar

radiation intercepted, which is related directly to plant growth. Kumar and Monteith

(1981) showed that the fraction of absorbed photosynthetically active radiation

(fAPAR) was related linearly with NIR/red reflectance and could be used to estimate

the dry matter of sugar beets. More recent work by Pinter (1993) has shown that

this relation between the spectral vegetation index and fAPAR was independent of

variations in solar zenith angle, thus increasing the usefulness of this remote sensing

approach.
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12.3.2 Nutrient Application

Like crop water stress, crop nutrient stress has a direct effect on crop growth, de

velopment, yield, and ultimately on growers' profits. Growers face competing goals

when managing fertilizer application. Nitrogen is frequently the major limiting nu

trient in agricultural soils, and growers must supply enough nitrogen to their crops

while minimizing the loss of nitrogen to the environment. Nitrogen lost to the

environment not only represents an economic loss to the grower but has been shown

to be a serious threat to water quality. Yet the economic penalties associated with

reduced yields from supplying inadequate nitrogen to crops are substantial. Achiev

ing this balance may be further complicated for those nutrients, such as nitrogen,

that are water soluble and highly mobile in the soil profile, especially if the crop is

irrigated. Growers need an operational means to quantify plant nutrient stress and

to evaluate the effects of stress on the crop at each stage in its development. In the

following sections we present the plant manifestations of nutrient stress that can be

detected with measurements in the visible and near-infrared wavelengths. The dis

cussion centers almost exclusively on the optical manifestations of leaf and crop

nitrogen deficiencies, a choice motivated by the level of understanding of the optical

manifestations of nitrogen deficiencies as compared to those of other nutrient de

ficiencies.

12.3.2.1 OPTICAL MANIFESTATIONS OF CROP NUTRIENT VARIABILITY

Leaves deficient in nitrogen absorb less and scatter more visible light, a research

result both well established and understandable given the importance of nitrogen in

photosynthesis biochemistry (e.g., Schepers et al., 1996). At low to moderate con

centrations, leaf nitrogen is found mostly in chlorophyll molecules, the primary light

absorbing molecule in the leaf (Yoder and Pettigrew-Crosby, 1995; Daughtry et al.,

2000). At high nitrogen levels, the relationship between leaf chlorophyll and leaf

nitrogen concentrations may be nonlinear, indicating the presence of nonchlorophyll

nitrogen, probably NO3-N (Daughtry et al., 2000). Thus, the concentration of viable

chlorophyll molecules decreases in tandem with decreases in the concentration of

leaf nitrogen, and as a consequence, the leaf absorption of PAR decreases and scat

tering increases. Measurements of the light-scattering properties of a leaf provide

an indirect indicator of the leaf chlorophyll content, which in turn provides an

indirect indicator of the leaf nitrogen content. Visually, leaves marginally deficient

in nitrogen may appear a lighter, less saturated shade of green. More severely

nitrogen-stressed leaves may appear yellowish green and chlorotic. For deficiencies

of many nutrients other than nitrogen, leaf optical properties, although less well

researched, are generally similar to those of nitrogen-deficient leaves. Leaves defi

cient in these other nutrients tend to absorb incident PAR light less efficiently and

scatter more PAR light. (By definition, scattering + absorption equals 1.0; scattering

equals hemispherical reflectance + hemispherical transmittance. For leaves, spectral

curves representing hemispherical reflectance and hemispherical transmittance gen

erally appear closely similar and are sometimes assumed equal.)

Thus, individual leaves deficient in N, P, K, S, Ca, Mg, Mn, Fe, Zn, and possibly

As, Co, and Ni, generally display increased hemispherical reflectance, increased hem-
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ispherical transmittance, and decreased absorptance in the photosynthetically im

portant visible wavelength region (Al-Abbas et al., 1974; Walburg et al., 1982;

Milton et al., 1989, 1991; Adams et al., 1993; Mariotti et al., 1996; Masoni et al.,

1996). In fact, leaf optical responses to deficits of these nutrients are generally suf

ficiently similar in the PAR region that efforts have been unsuccessful to invert leaf

spectral reflectance and transmittance to both identify the nutrient deficiency and

estimate its magnitude. On the other hand, if the deficiency involves the leaves of

only one plant species and only one nutrient, both known a priori, the magnitude

of the deficiency may be estimated from such optical measurements (Masoni et al.,

1996). Although the optical manifestations of nutrient deficits in leaves are under

stood in general, much research remains to be conducted, especially on the effects

of nonnitrogen nutrients.

Spectra of chlorophyll, measured in vitro, show light absorption to be concen

trated in two narrow bands around 0.44 and 0.68 (im in the blue and red wave

length regions, with lesser amounts of light absorbed at wavelengths between these

two bands. Green leaf spectra, which are dominated by light absorption due to

chlorophyll, display similar light absorption features, although the absorption bands

are characteristically wider in wavelength (Merzlyak et al., 1999). While the primary

optical manifestation of many leaf nutrient deficits is generally an increase in the

leaf reflectance in the visible region, the reflectance changes generally do not occur

equally at all wavelengths in the visible. Instead, these leaf reflectance changes occur

in concert with the optical properties of chlorophyll. As two endpoint cases, con

sider leaves severely deficient in nitrogen and leaves having adequate or excessive

nitrogen. In the first case, when leaf nitrogen, and therefore chlorophyll, concen

trations begin to increase from near zero, the depth of the absorption well at 0.68

u.m increases accordingly, asymptotically approaching 100% absorption of the light

that enters the leaf. (Note that not all of the light incident on the leaf subsequently

enters the leaf; a small amount, generally between 2 and 5%, is reflected by the leaf

surface.) In the second case when leaf nitrogen is adequate, most light entering the

leaf is absorbed at a wavelength of 0.68 u.m, and leaf reflectance and transmittance

display minimal decreases as leaf nitrogen increases. In fact, Gitelson and Merzlyak

(1997, 1998) found leaf reflectance at 0.67 jim is virtually insensitive to chlorophyll

variation. However, at adjacent wavelengths on the two shoulders of the 0.68-u.m

absorption well, increases in leaf nitrogen do manifest increases in the light ab

sorbed. (The resulting movement of the red-edge is described below.) Of particular

interest are the green wavelength region around 0.55 u.m and the NIR region near

0.71 |xm (Gitelson and Merzlyak, 1997). As leaf nitrogen concentration increases

from near zero to adequacy, there is a corresponding increase in leaf absorption

around 0.55 u.m and near 0.71 (im and a corresponding decrease in both leaf re

flectance and transmittance. This reveals the diagnostic potential of optical mea

surements in both wavelength regions over an extremely large range of leaf nitrogen

concentrations (Gitelson and Merzlyak, 1997). Protocols for estimating leaf nitrogen

concentrations often involve measurements at these two wavelengths.

Nutrient deficits in crop canopies have the potential to affect canopy architecture

in addition to the optical properties of not only the leaf but also the stem and flower/

grain head. Canopy architecture and the optical properties of canopy components

are two of the three factors that determine canopy reflectance. Many characteristics

of canopy architecture (e.g., canopy height, plants per unit area, leaf area index,
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aboveground biomass, and the size and location of both the inflorescence and the

canopy grain head) depend on the time integration of the photosynthesis process.

If canopy growth is limited by light but not by water or nutrients, the time integral

of the photosynthetically active radiation absorbed by foliage in the canopy deter

mines the amount of photosynthetic product produced (Monteith, 1977). This, in

turn, affects canopy architectural properties and canopy reflectance. If the canopy

is both nutrient and light limited, lack of key nutrients will tend to decrease, the

amount of PAR absorbed by the leaves (discussed above). The amount of photosyn

thetic product produced by the leaves will tend to decrease and in response, the

canopy as it grows will tend to modify its architecture to accommodate the decreased

availability of photosynthetic products. Manifestations of typical nutrient stresses

generally appear initially as changes in the optical properties of leaves and only later

as changes in the canopy architecture. Thus, the direction and magnitude of these

changes in canopy spectral reflectance depend directly on the duration and severity

of the disruption of the leaves' photosynthesizing apparatus, as well as the crop

development stage when the disruption begins.

Decreased canopy biomass is probably the most common architectural manifes

tation of chronic canopy nutrient stress, provided that the stress occurs during veg

etative growth stages prior to the maximum vegetative stage. Jensen (1990) and

Serrano et al. (2000) point out that under nonlimiting water supply, the nitrogen

status of a crop is the major factor controlling the rate of biomass accumulation.

Thus, the radiance of a nutrient-stressed canopy in the vegetative growth phase tends

to be greater (slight increase in the red, more in the green) in the visible spectral

region and less in the NIR region. Examples of this can be seen in the reflectance

of canopies of corn reported by Walberg et al. (1982) and wheat reported by Filella

et al. (1995).

The consequences of the onset of nutrient stress during the crop reproductive

growth stages tend to be less universal and usually less evident. The reflectance of

nutrient-stressed leaves, just as during vegetative growth, tends to increase and may

affect canopy reflectance. The amount of grain produced tends to decrease, but that

effect does not generally manifest changes in the canopy reflectance. Nutrient stress

may also affect the canopy architecture, as in the case of sunflower, and canopy

reflectance. Nutrient deficits during canopy vegetative growth manifest two primary

effects: an increase in the PAR light scattered by leaves and stems, and a decrease

in canopy biomass. Both effects are usually evident in canopy spectra; however, the

effects of crop nutrient deficits during the reproductive phase are more varied and

crop specific and may not be as evident in canopy spectra.

Canopy architecture and the directions of illumination and observation serve to

modulate the light-scattering properties of the canopy components (i.e., leaves,

stems, flower/grain head, and soil). Canopy architecture does not introduce into the

canopy spectra any spectral features that do not already exist in the spectra of the

canopy components. A feature in the spectra of the leaves in a canopy layer may

not be evident in canopy spectra if the leaves are not observable and/or are not

illuminated because the leaf layer is located at the bottom of the canopy architectural

structure. For example, severely nitrogen-deficient romaine lettuce translocates ni

trogen from the older outer leaves into the expanding leaves in the whorl, which is

often partially obscured by adjacent older foliage. Because of this obfuscation, es

timates based on canopy radiance measurements presumably would underestimate
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canopy nitrogen concentrations. As another example, perhaps the only commonly

observed narrowband absorption in soils is due to iron and is located at approxi

mately 0.9 |xm. Presumably, this absorption feature would more probably be evident

in spectra of a canopy having a low rather than a high biomass.

12.3.2.2 RED-EDGE POSITION FOR DETERMINING CROP NUTRIENT STRESS

The position of the red-edge (an abrupt, almost step increase in the leaf reflectance

in the NIR around 0.72 u.m just outside the visible region) offers a robust metric

for monitoring leaf and canopy nutrient status (Penuelas and Filella, 1998). The

position of the red-edge is defined as the wavelength where the derivative {the slope)

of the reflectance as a function of wavelength is maximum (Horler et al., 1983). As

nutrient deficits increase, the red-edge tends to shift toward shorter visible wave

lengths. The steep increase in reflectance marks the transition between the photo-

synthetically important visible wavelength region where incident light is absorbed

primarily by the leaf, and a second region at longer wavelengths in the NIR where

incident light is scattered primarily by the leaf. In the (visible) wavelength region

0.4 to 0.7 nm, leaves typically absorb between 75 and 95% and reflect 2 to 15%

of the incident light. At wavelengths longer than 0.75 u,m, leaves typically absorb

only 5 to 10% and reflect 40 to 50% of the incident light. Because the red-edge is

the side or shoulder of the chlorophyll absorption well centered near 0.68 u,m, as

absorption increases, the shoulder shifts toward longer wavelengths. When leaf con

centrations of a key nutrient decrease and absorption decreases, causing an increase

in reflectance, the position of the red-edge shifts toward shorter wavelengths. Thus,

the position of the red-edge provides an indication of the amount of light being

absorbed by chlorophyll, which provides an indirect indication of plant nutrition

levels (Filella and Penuelas, 1994). Gitelson et al. (1996) present striking results

estimating chlorophyll concentrations in maple and horse chestnut leaves. The po

sition of the red-edge approaches 0.68 (im in the visible wavelength region as the

concentration of viable chlorophyll approaches zero. Under such conditions, a nor

mally green leaf may appear white or faintly yellow. It must be emphasized that an

observed shift in the red-edge position of the reflectance of a leaf toward shorter

wavelengths indicates only that viable chlorophyll concentrations in the leaf have

decreased. In the absence of a priori knowledge, this could be caused by various

nutrient deficiencies, water deficits, and even extreme temperatures.

Unlike canopy reflectance, the position of the red-edge has proven relatively in

sensitive to the reflectance of most soils when applied to monitor nutrient deficien

cies in crop canopies. This is because the nadir canopy reflectance at wavelengths

around 0.72 u,m is, approximately, the weighted sum of the soil reflectance and the

foliage reflectance. For wavelengths in the neighborhood of the red-edge, the deriv

ative of the canopy reflectance has a maximum value determined largely by the very

steep slope of the foliage reflectance curve rather than the more gently sloping soil

reflectance curve. This means that the position of the red-edge is determined pri

marily by the spectral properties of the foliage, not those of the soil.

However, changes in such canopy biomass variables as LAI and the amount of

scattered light do affect the position of the red edge of a crop canopy (see Figure

12.8 and work by Horler et al., 1983). This suggests care in using the red-edge

position both to make comparisons between different crops and to make temporal
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Figure 12.8 Change in the red-edge position as a function of UUs and leaf chlorophyll concentration. (From Daughtry et

ol., 2000.)

comparisons of the nutrient status of a crop canopy during its vegetative growth

phase when both canopy biomass and the amount of light scattered in the canopy

increase rapidly. Presumably if biomass and scattering effects are accounted for, the

position of the red-edge of a canopy provides an indication of canopy chlorophyll

status, and indirectly its nutritional status, while being largely unaffected by the

spectral properties of most soils. Dawson (2000) investigated the potential for

estimating canopy chlorophyll content from analysis of data obtained from the

satellite-borne MERIS sensor, with the hope that mapping the red-edge position

over large regions would prove feasible.

Compared to other approaches to monitoring the nutritional status of a crop, the

use of the red-edge position appears to receive consistent attention from the research

community and is perhaps the most popular method at present (Munden et al.,

1994; Peiiuelas et al., 1994; Pinar and Curran, 1996; Blackburn, 1998b; Tsai and

Philpot, 1998; Jago et al., 1999). For example, the canopy chlorophyll content

index (CCCI) (Clarke et al., 2001) detects chlorophyll content based on red-edge

reflectance (720 nm central wavelength, 10 nm bandwidth) compared to near-

infrared reflectance (790 nm central wavelength, 10 nm bandwidth) and normalized

for variation in canopy density, which was estimated using the NDVI. In the CCCI

image presented in Figure 12.9, boxes were drawn around low-nitrogen plots that

had received half of the recommended nitrogen level (112 kg N/ha, compared to

222 kg N/ha in the other plots), and a low CCCI value corresponds to low canopy

chlorophyll content. The CCCI was able to detect the low-nitrogen treatments ear

lier in the season than was a standard vegetation index (e.g., NDVI) and did not



640 APPLICATION OF IMAGE-BASED REMOTE SENSING

0.42

0.46

0.50

0.54

0.58

0.62

0.66

0.70

0.74

Figure 12.9 Canopy chlorophyll content index (CCCI) image of on Arizona cotton field based on red-edge reflectance (720

nm central wavelength, 10 nm bandwidth) acquired September 3, 1999 from a scanning radiometer mounted on a linear-

moving irriation system. See Barnes et al. (2000) for additional experimental details and see CD-ROM for color image.

show sensitivity to decreased canopy density resulting from low-water treatments

also imposed on the field.

12.3.2.3 VEGETATION INDICES FOR DETERMINING NUTRIENT STRESS

Remote sensing methods for monitoring the nutrient status of irrigated crops often

involve the use of a vegetation index (VI). Vegetation indexes have been developed

and investigated for their ability to provide information about the remotely sensed

scene, often by enhancing sensitivity to desirable sources of variation in the scene.

Much of the research has involved two basic types of vegetation index: ratios of

reflectance at two wavelengths [e.g., the simple ratio (SR) vegetation index] and

normalized difference indexes (e.g., NDVI) that are generally differences of reflec

tances divided by the sum of reflectances. SR and NDVI have been tied to levels of

fertilization, chlorophyll concentrations, LAI, and the PAR absorbed (APAR) by a

crop (e.g., Walburg et al., 1982; Daughtry et al., 1992, 2000). General disadvantages

of these indexes are their sensitivity to the reflectance of the soil underlying a crop

canopy and the light-scattering properties of aerosol particles in the atmosphere.
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The soil-adjusted vegetation index (SAVI) (Huete, 1988), the atmospherically resis

tant vegetation index (ARVI) (Kaufman and Tanre, 1992), the global environmental

monitoring index (GEM1) (Pinty and Verstraete, 1992), and modifications to these

Vis (Rondeaux et al., 1996) have been proposed in attempts to retain in the VI the

dependence on plant properties while minimizing variation in the VI attributable to

the effects of the underlying soil, the intervening atmosphere, and both.

Numerous vegetation indexes have been proposed for estimating the concentra

tion of chlorophyll in a leaf or canopy. While a consensus method for estimating

the chlorophyll concentration of leaves is desired within the community, the re

search results for canopies appear less robust and somewhat experiment specific.

The following attempts to present the theoretical underpinnings of selected research

results for Vis of both leaves and canopies.

For vegetation indexes computed as ratios of leaf reflectance, results reported by

Gitelson and Merzlyak (1996, 1997, 1998) illustrate key concepts (Figures 12.10

and 12.11). Not only does the spectral reflectance of a leaf depend on its chlorophyll

content, but in addition, the standard deviation of the leaf reflectance is a pro

nounced function of wavelength. Data in Figures 12.10 and 12.11 show peaks near

0.7 n.m and between 0.55 and 0.6 u.m and minima in the two chlorophyll absorption

bands as well as in the NIR wavelength region in which chlorophyll does not absorb

light. These results and others (see, e.g., Datt, 1999; Daughtry et al., 2000) show
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Figure 12.11 Standard deviation of reflectances for diverse plant species with total chlorophyll content of more than 5

(ig/tm2 (yellowish-green to dark-green leaves). Two maxima characterize these relations: a broad curve over the green

range of the spectrum from 530 to 630 nm and a narrow peak in the red range near 700 nm. Reflectance in the red
chlorophyll a absorption maximum near 670 nm is virtually insensitive to chlorophyll variation. (From Gilekon and Merzlyok,

1997.)

that once the concentration of leaf chlorophyll increases above a relatively low level,

most light incident on the leaf at a wavelength of 0.68 fim is absorbed and com

paratively little is reflected. The results support the concept that increases in leaf

chlorophyll content manifest changes in the leaf reflectance primarily on the shoul

ders of the absorption wells rather than at the center wavelength of the well, except

when leaf chlorophyll concentrations are uncommonly low. The results shown in

Figure 12.12 illustrate the link between leaf chlorophyll concentrations and leaf

reflectance near 0.7 and 0.55 |im. Application of a leaf reflectance model by Baret

et al. (1988) as described in Peiiuelas et al. (1995) shows that a ratio of reflectances

(i.e., the leaf reflectances measured outside the absorption band at a wavelength of

0.75 |xm, divided by the reflectance on the shoulder of the absorption well at a

wavelength of either 0.7 or 0.55 u.m) may be employed in a linear equation to

estimate total chlorophyll (a + b) concentrations in the leaf (Figure 12.13) (Mer-

zlyak et al., 1997; Gitelson and Merzlyak, 1998). For higher leaf chlorophyll con

centrations, the predicting equation changes from linear to exponential. The exact

spectral location of the out-of-band reflectance may not be critical, provided that it

is within the NIR plateau spectral region, a suggestion supported by the leaf cor

relation results of Blackburn (1999). Several other vegetation indices depend on the
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Figure 12.12 Absorption and reflectance versus total chlorophyll content in maple leaves at 550, 676, and 700 nm.

Whereas reflectance and absorption at 676 nm is sensitive to low chlorophyll contents (up to 5 ng/cm'1 and becomes

saturated at moderate contents (for yellowish-green to dork-green leaves), at 550 and 700 nm both variables are sensitive

to chlorophyll content within a wide range of its variation. (From Gitelson and Merzlyak, 1997.)

same theoretical approach. Both Chappelle et al. (1992) and Blackburn (1998a)

offered ratios of reflectances at various wavelengths for estimating concentrations

of chlorophyll a and b and carotenoid pigments. Schepers et al. (1996) found a

quadratic relationship with an r2 value of 0.99 between the nitrogen status of corn

leaves and the ratio of leaf reflectances measured at wavelengths of 0.55 and 0.85

(jLm. The simple ratio (SR) can be expected to be relatively insensitive to all but very

low leaf chlorophyll concentration levels if it is defined using a narrow wavelength

band centered at 0.68 |xm. However, it presumably would be sensitive to a larger

range of chlorophyll concentrations if defined using a broad wavelength band that

includes portions of the reflectance shoulders around 0.7 or 0.6 \un.

For leaves, several normalized difference-type vegetation indexes have been in

vestigated for their ability to estimate leaf chlorophyll concentrations. Like the SR

vegetation index, the NDVI, if defined using a narrow band centered near the chlo

rophyll absorption band near a wavelength of 0.68 p.m, shows sensitivity to atypi-

cally low canopy chlorophyll (Gitelson and Kaufman, 1998). Sensitivity to a much

larger range of leaf chlorophyll concentrations has been demonstrated for the green

NDVI, defined as (NIR - green)/(NIR + green) (Gitelson et al., 1996; Gitelson

and Kaufman, 1998; Gitelson and Merzlyak, 1998). Gitelson et al. (1996) showed

the atmospheric-resistant green index (GARI) and atmospheric-resistant green-red
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index (GRARI) to be much more sensitive to chlorophyll concentrations than either

NDVI or ARVI, but he did not validate them using canopy data.

At the canopy scale, few image-based efforts have been reported with the goal of

developing robust, Vl-based methods for estimating the nitrogen status (chlorophyll

concentration) of a crop canopy. In one recent investigation, GopalaPillai and Tian

(1999) collected digital imagery in three wide wavelength bands (green, red, and

NIR) over nitrogen-stressed corn. Their analysis of the uncalibrated imagery using

clustering, correlation, and the NDVI and SR vegetation indexes found that the VI

provided a better indication of crop nitrogen stress than did the uncalibrated image

gray-level values.

In theory at the canopy scale, estimates of the chlorophyll concentration per unit

ground area depend on two factors: the chlorophyll concentration per unit leaf area

(which leaf-scale vegetation indexes conceivably could provide) and the leaf area

per unit ground area [leaf area index (LAI)] of the canopy (Blackburn, 1998b). Thus,

to provide estimates of canopy chlorophyll concentrations, a canopy scale vegetation

index must vary with changes in leaf scale chlorophyll concentrations and must
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respond to changes in the canopy LAI. However, without experimentation, it is not

clear that one VI can be applied with equally high success to estimate chlorophyll

concentrations in both leaves and canopies.

Canopy reflectance at wavelengths 0.68 u.m, 0.72 u,m, and the NIR plateau ap

pears likely to contain the information needed for estimating canopy chlorophyll

concentrations. Results from several studies have confirmed that canopy reflectance

in the red and NIR plateau is highly correlated with LAI (see Figure 12.14 and work

by Walburg et al., 1982). As Gitelson and Kaufman (1998) note, for chlorophyll

concentrations above a threshold value, leaf reflectance at 0.68 |xm is essentially a

constant, displaying little variability with changes in leaf chlorophyll concentrations.

This explains why canopy LAI may be estimated successfully from vegetation in

dexes defined using canopy reflectances at 0.68 (x,m and NIR plateau wavelengths

(Daughtry et al., 2000; Thenkabail et al., 2000). Near a wavelength of 0.72 |x,m,

the correlation between canopy LAI and canopy reflectance changes from negative

in the red spectral region to positive in the NIR plateau spectral region (Figure

12.14) and is therefore identically zero at one wavelength, here denoted \|c. Canopy

reflectance is unaffected by variations in LAI at this wavelength, which varies slightly

with crops such as cotton, potato, soybean, corn, and sunflower (Figure 12.14). If

we assume that soil reflectance does not affect canopy reflectance, then at the wave

length \,c, canopy reflectances contain information about the concentration of leaf

chlorophyll rather than information about both leaf chlorophyll concentration and

canopy LAI.

The location of \)c depends primarily on the magnitude of the reflectance and

transmittance of canopy components and secondarily, on the amount of light scat

tered between canopy components, which in turn depends on canopy architecture.

Thus, as the chlorophyll concentration of canopy components decreases, the reflec

tance and transmittance of canopy components increases and the position of Xk.

would shift toward the center of the chlorophyll absorption well at a wavelength

near 0.68 (im. If leaf chlorophyll concentrations are uncommonly low, correlation
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Figure 12.14 Correlation coefficients (/) between spectral reflectance in 512 discrete spectral channels and biophysical

variables of five crops for LAI. (From Thenkabail et al., 2000.)
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between canopy reflectance and LAI would probably be positive even at a wave

length of 0.68 u.m and \,c could not be defined. In all probability, the location of

X!c for leaf chlorophyll concentrations more typical of crop canopies would be in

the wavelength range 0.7 to 0.74 u.m, thus facilitating design of measuring instru

ments. In addition to X|c, the correlation between canopy reflectance and canopy

chlorophyll concentrations is often reduced in the green wavelength region (e.g.,

Blackburn, 1998b).

Thus, estimates of canopy reflectance at 0.68 u.m, 0.72 u.m, and a wavelength in

the NIR plateau would appear potentially to contain the information necessary for

estimating both the leaf chlorophyll concentration and the canopy LAI. Further,

using those estimates, an estimate of the canopy chlorophyll concentration could be

obtained. How the influence of the soil reflectance upon canopy reflectances at X,c

could be minimized is not evident if the field of view of the sensor includes vege

tation and soil. However, perhaps a reflectance mixture analysis might prove suc

cessful (Ustin et al., 1993).

12.3.2.4 IMAGING SYSTEMS FOR DETECTING CROP NUTRIENT STRESS

Only a few digital image-based research studies have been reported that estimate

within-field nitrogen/chlorophyll status of agricultural crop canopies. Nevertheless,

the rapidly emerging, relatively low cost digital imaging technology is potentially

more capable of meeting the information needs of site-specific agriculture than are

photography-based approaches. Lamb (2000) reviewed the potential uses of digital

imaging technology in agriculture in southeastern Australia, providing examples

demonstrating its applicability to not only assessing crop nitrogen status but also to

inferring certain soil characteristics, detecting weed infestation, and estimating crop

yields. Munden et al. (1994) and Jago et al. (1999) analyzed hyperspectral CASI

image data collected over winter wheat, estimating canopy chlorophyll concentra

tions from the position of the red-edge. From analysis of uncalibrated digital imagery

collected in green, red, and NIR wavelength bands over nitrogen-stressed corn,

GopalaPillai and Tian (1999) found that the NDVI and SR vegetation indexes pro

vided a better indication of crop nitrogen stress than did the uncalibrated image

gray-level values. LaCapra et al. (1996) applied the techniques of imaging spectro-

scopy (also termed imaging spectrometry and described in a review by Green et al.,

1998) to analysis of hyperspectral airborne visible/infrared imaging spectrometer

(AVIRIS) data (Vane et al., 1993), estimating nitrogen concentrations in rice fields

from regressions involving radiances measured in narrow spectral bands. Band se

lection was based on correlograms of laboratory absorption spectra. More often,

application of the techniques of imaging spectroscopy has yielded estimates of ni

trogen concentrations in forest canopies (Wessman et al., 1988; Zagolski et al.,

1996; Martin and Aber, 1997). Many studies have achieved success in remotely

estimating foliar nitrogen despite a striking lack of consensus on which spectral

bands in the wavelength region 1.0 to 2.5 |i,m to include in the estimation process

(LaCapra et al., 1996).

Remote sensing research during the last 45 years has often taken advantage of

the capability of photographic imagery collected from aircraft to provide a synoptic

view of the within-field spatial variability of an agricultural crop. Some of the more

recent investigations involving nitrogen fertilization include those of Blackmer and
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Schepers (1996) and Blackmer et al. (1996). They related density variations within

airborne imagery collected over fields of corn in reproductive growth and digitized

in the blue, green, and red wavelength regions, to within-field differences in both

the nitrogen status and ultimate grain yield. Blackmer and Schepers (1996) were

able to predict grain yield with an r2 value of 0.93 from analysis of imagery repre

senting a narrow band centered at 0.536 (im. Moragham (1998) used color pho

tographs of a sugar beet canopy taken prior to harvest to identify green,

yellow-green, and yellow areas of the field, suggestive of high-to-low variation in

concentrations of plant chlorophyll and soil nitrogen. Subsequent analysis showed

corresponding variation in the concentration of nitrogen in sugar beet tops, leaves,

and the upper 1.2 m of soil, although nitrate-nitrogen in the sugar beet tops was

partially responsible for the higher nitrate-nitrogen at the green sites. Moragham

(1998) concluded that aerial photography and GPS technology can increase the

precision of soil testing for nitrogen and decrease subsequent nitrogen fertilizer use

if a variable-rate applicator is used.

Use of color infrared film allows measurement of the visible green and red wave

length regions in which film response is related to biomass and leaf chlorophyll

concentrations, as well as the NIR region out to a wavelength of approximately 0.8

u,m, where the film again responds to the amount of canopy biomass. Plant et al.

(2000) found a significant correlation between ultimate lint yield and the time in

tegral of the NDVI determined from digitized aerial color infrared photographs of

replicated cotton plots exhibiting varying levels of water and nitrogen stress suffi

cient to affect yield. Analysis of within-field nutrient variability using aerial photog

raphy exploits its advantages (virtually instantaneous measurement of the visible and

near-infrared wavelength regions, synoptic view, and high spatial resolution), while

not depending on calibration, which can be problematic with film, especially if the

film is from different manufacturing lots. Although film calibration is potentially an

important issue in temporal studies, Plant et al. chose not to calibrate after com

parison showed a linear relationship between calibrated and uncalibrated values of

NDVI. They argue that their approach allows valid comparison of NDVI values

representing different locations photographed at one time, and they recognize that

comparisons of NDVI between dates are invalid. In their results obtained by time

integration of the NDVI values, a comparison of trends, but not specific values, is

valid.

At least one tractor-mounted system has been patented for monitoring crop ni

trogen status using a multispectral imaging system (Dickson et al., 2000). Data pro

vided by such a system could be used as input to variable-rate fertilizer application

systems, thereby providing the capability to correct any crop nitrogen deficiencies

observed by the multispectral imaging system. In the preferred embodiment de

scribed in the patent, if mounted on a tractor, the system images an area approxi

mately 6.1 by 4.6 m in three wavelength regions (green, red, and NIR). The system

proceeds to calculate the NDVI of each pixel, derive histograms of NDVI for the

image, and select a threshold value that best separates vegetation and non-

vegetation. Next, it selects those pixels classified as vegetation, computes the green

band reflectance of each vegetation pixel, and estimates the nitrogen level in the

vegetation based on the green reflectance values. The patent also describes several

other alternative methods of estimating vegetation nitrogen status.
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Stone et al. (1996) and Taylor et al. (1998) describe non-imaging tractor-mounted

systems developed for detecting and correcting crop nitrogen stress from multispec-

tal radiometric measurements. In some cases, these systems allowed fertilizer inputs

to be reduced by 60%.

12.3.3 Weed Scouting and Herbicide Application

The impact of weeds on reduced crop yields has been recognized for many years.

Crop stress because of weed interference has been attributed to many factors, in

cluding allelopathy and competition for sunlight, soil water, and nutrients (Sikkema

and Dekker, 1987). Currently, information about weed density and distribution is

difficult to obtain, due to time and labor of rigorous scouting, the complexity of

interpreting scouting information, the assumption that weeds are constant and uni

form throughout a field, and the lack of equipment to manage weed variability

easily. Consequently, uniform applications of herbicide are determined for a field

based on last year's weed problems or information obtained from scouting field

edges. Such broadcast herbicide applications have been successful in controlling

weeds and improving profits when weeds are randomly or uniformly distributed in

the field. However, in most cases, weeds are highly aggregated in a field (e.g., John

son et al., 1995a; Cardina et al., 1996).

Studies have shown that drainage, topography, soil type, and microclimate play

important roles in weed distribution and weed competition with crops at specific

sites, resulting in significant variation in weed densities across individual fields (e.g.,

Wiles et al., 1992). As a result, site-specific weed management could be valuable,

and in fact, studies have shown that this management strategy has reduced herbicide

use by 40 to 60% without affecting crop yield (Brown and Steckler, 1995; Johnson

et al., 1995a).

The potential savings associated with site-specific weed management have stim

ulated the development of high-technology systems for managing weed variability.

A good example is the Map 'N Zap System, which utilizes a map of weed patches

to generate a traversal pattern representing the planned path of the tractor through

the field (Nuspl et al., 1996). For weed patches 60 to 100 m in length, Map 'N

Zap tells the injection system the type and amount of chemicals to be injected and

sprayed.

Remote sensing has been proposed as a component of integrated systems for

management of weeds. Brown and Steckler (1995) described a system that combined

image-derived weed maps with a GIS-based decision model to determine optimum

herbicide mix and application rates for no-till corn and resulted in reductions of

herbicide use by more than 40%. In an economic analysis, Wiles and Schweizer

(1999) found that the most expensive component of such integrated systems is cre

ating the maps of the weed population in a field. They suggested that valuable

information about the distribution of a weed population in a field may be obtained

from remote sensing.

The remote sensing methods for providing early and late season information for

high-technology weed management systems are different, as described in the follow

ing subsections. This difference is due primarily to the fact that herbicides are ap

plied both prior to planting and postemergence, and postemergence applications are
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generally based on weed population maps produced no later than eight weeks after

planting.

12.3.3.1 EARLY-SEASON WEED DETECTION

The information requirement for preplant or early-season herbicide application is

simply determination of the presence or absence of plants. In some cases, this is also

the requirement for management of weeds growing between crop rows at early crop

growth stages (e.g., Pollet et al., 1999). Remote sensing systems designed for such

weed detection generally use the reflectance differences between relatively wide

spectral bands in the visible and NIR spectra to make the distinction between plants

and soil or rock. Such a simple sensor has been used to measure the status of the

crop, and at the same time to detect and evaluate the degree of weed leaf area

between the rows by image analysis (Heisel and Christensen, 1999). Medlin et al.

(2000) found that remote sensing could detect weed infestations of 10 plants/m2 or

more with at least 90% accuracy. This level of accuracy could be very beneficial for

directing weed scouting practices and for determining the area occupied by weeds.

Many of these simple systems are tractor- or aircraft-based, to achieve the desired

spatial and temporal resolution. Despite reported successes, most studies have also

reported difficulty in discriminating the effects of soil variability on the reflectance

properties of soils, crops, and weeds (Medlin et al., 2000). Measurements become

even more difficult to interpret due to variations in solar intensity and sun-sensor-

surface geometry. The latter problem has been partially circumvented in some

tractor-based systems through scene illumination with a controlled light source, such

as a broadband 100-W halogen lamp (Feyaerts et al., 1999).

12.3.3.2 LATE-SEASON WEED DETECTION

Management of post-emergence herbicide applications poses more difficulty because

it requires discrimination between weeds and crops. This is generally accomplished
by using the difference between spectral signatures of crops and specific weeds or

by acquiring images at specific times during the season when weed coloring is par

ticularly distinctive (i.e., during flowering) or weed patches are comparatively large,

dense, and/or tall. The accuracy of such approaches generally increased during late-

season growth stages, due to increased ground cover of weed species. Remote sens

ing systems for discriminating crop-weed spectral signatures or monitoring weed

color are usually filtered to multiple, and relatively narrow, spectral bands in the

visible and NIR spectra.

There is evidence that it is possible to make a distinction between crops and

weeds based on small differences in the spectral signatures, particularly with high-

spatial-resolution imagery (e.g., Feyaerts et al., 1999; Pollet et al., 1999). The suc

cess of this approach is variable, depending on the weed and crop species and

phenologic stage. The greatest success has been achieved when the weed species

dominated the crop or the weed was flowering and the color differences were

greatest (Brown et al., 1994). Thornton et al. (1990) were able to discriminate weed

patches at the flowering stage in a winter cereal field from their color on aerial

photos. Christensen et al. (1999) showed that weed leaf area measured with an

image analysis technique could be used to map and stratify weed sampling.

Other successful approaches have focused on the separation of cereal crops and

dicotyledon weeds using video imagery (e.g., Zhang and Chaisattapagon, 1995).
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Brown et al. (1994) used a multispectral still video camera from a low-flying (500

to 700 m) aircraft and a ground-based vehicle (10 m aboveground) to detect patches

in a cornfield of seven common dicot and monocot weed species. They found that

the species could be fairly well discriminated by their spectral characteristics of

reflectance at four wavelength bands, but weed and crop features were strongly

variable with growth stage.

Perez et al. (2000) proposed a combined image analysis in which spectral reflec

tance was used to discriminate between vegetation and background, and shape anal

ysis techniques were applied to distinguish between crop and weeds. The results

were compared with an interpreter-based classification, providing an acceptable suc

cess rate. They suggested that these results would be most useful in a stratified

manual weed survey of the field.

As an alternative to measurements of surface reflectance, some studies have in

vestigated the use of TIR measurements to monitor the crop water deficiency and

stomatal closure associated with the competition between weeds and crops for soil

water. Sikkema and Dekker (1987) found that daily infrared thermometric moni

toring of soybean leaf temperature could be used to identify critical periods of weed-

induced stress. However, soybean growth and potential yield in the weedy plots had

already been affected before high leaf temperatures were first noticed. Therefore,

the use of this technique had more value in monitoring the timing of such stress

periods than as an advance warning tool.

12.3.3.3 COMBINED APPROACHES FOR WEED DETECTION

Most approaches presented earlier for mapping and monitoring weeds have been

based solely on spectral information. In fact, there is great potential to combine

spectral images with ancillary information to improve results. There is general agree

ment that spatially heterogeneous weed populations are rather stationary over time,

although weed emergence varies between years (Gerhards et al., 1996). Christensen

et al. (1999) suggested using historical weed maps to divide the field into weed

zones, where manual weed surveying could be carried out. In fact, since perennial

weeds tend to remain in the same location each year, there is even the possibility

of using the previous year's weed map for pre-plant control decisions (Brown and

Steckler, 1995).

The results of most spectral analyses is a map of the total leaf area of weeds;

however, the total weed leaf area may not reflect the impact of the weeds when the

species have different growth rates or growth habits. If maps of weed species could

be derived from information about total weed leaf area, these maps could be com

bined with decision models to optimize the herbicide selection and dose for a mix

ture of weed species. A weed management model for patch spraying was described

by Heisel et al. (1996), using a map of weed species to determine competition

between crop and weed mixtures, herbicide performance, and economic optimiza

tion of herbicide dose. The general weed management (GWM) model uses weed

species and density as input parameters and a list of herbicide options based on

predicted net return to generate an estimate of application efficacy (Broulik et al.,

1999).
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12.3.4 Insect Scouting and Insecticide Application

Due to the spatial resolution of current air- or spaceborne imaging systems, it is

unlikely that one could use remote sensing to directly observe insects and other pest

organisms affecting plants as part of an operational crop monitoring program.

Rather, use of remote sensing in this regard usually involves one of the following

activities: (1) observing the extent of damage to crops caused by insects or other

pests to facilitate the assessment of yield, (2) observing plant canopy conditions in

fields that might be conducive to the development of infestations by insects or other

crop pests, or (3) observing the early stages of infestations by insects or other crop

pests in fields for the purpose of initiating control measures.

The production of crops under irrigated conditions tends to result in a field

environment that favors the proliferation of insects and other pests that damage

crops. To date, most of the research in these areas has involved major field crops

such as grains and cotton. Techniques developed in these studies, however, are

applicable to a wide variety of agricultural crops, including tree crops, vines, and

vegetables.

The use of remote sensing observations of pest-related crop damage to facilitate

yield assessment is an after-the-fact application of this technology. It occurs when

measures to control pests have been neglected or are inadequate, or when the use

of control measures was not considered economical. Use of remote sensing in as

sessing crop yield is discussed in detail in a separate section.

12.3.4.1 MANIFESTATIONS AND MANAGEMENT OF INSECT INFESTATIONS

A reasonable strategy for controlling insects and other crop pests in fields is to

anticipate their presence based on the occurrence of conditions in the plant canopy

that represent a favorable habitat for these organisms. This concept can be illustrated

by the following examples:

• It has been observed that the tarnished plant bug (Lygus lineolaris) is attracted

to areas within cotton fields that contain the most lush, vigorous plant growth.

Researchers from NASA, USDA, and several universities used airborne multi-

spectral imagery to map these areas within cotton fields in Louisiana to indicate

where infestations of this insect should occur. Areas with lush, vigorous plant

growth were indicated by relatively high values of NDVI derived from the

remote sensing image data. These portions of the cotton fields were more ex

tensively scouted for the occurrence of this pest, and the maps derived from

the remote sensing imagery were used to direct spatially variable insecticide

applications (Willers et al., 1999, 2000).

• In cotton fields in the Rio Grande Valley of Texas, overwintering of the boll

weevil (Anthonomus grandis) is controlled by plowing stalks and unopened bolls

into the soil following harvest in the fall. Regulations dictate that all cotton

fields in this region must be "plowed down" by a specified date, since fields

that escape this management practice represent favorable habitats for overwin

tering of this pest. Researchers from USDA demonstrated the use of airborne

multispectral videography and SPOT satellite imagery to monitor farmer com

pliance with this regulation. Cotton fields that had not been plowed down could
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be discriminated from those that had using false-color composite imagery from

these remote sensing systems (Richardson et al., 1993).

An important benefit of this approach is to direct ground-based crop scouting

activities to fields or portions of fields where insects or other pests are most likely

to be found. Since ground-based scouting is time consuming and labor intensive,

reduction in the overall effort through directed scouting could reduce the cost to

farmers for this necessary operation.

If an infestation of insects or other crop pests could be detected while its areal

extent was limited to a small fraction of the field, only that portion of the field

might be sprayed with pesticide. Such a spatially variable strategy of "spot treat

ment" could have a number of advantages over conventional field spraying, includ

ing reducing the total amount of pesticide applied to the environment and

maintaining populations of beneficial insects and arthropods outside the infested

portion of the field. For this strategy to be effective, infestations typically need to

be detected in their earliest stages of development. Accomplishing this through re

mote sensing would probably require frequent high-resolution imagery, such as that

currently obtained using aircraft-based systems.

Pest organisms can affect crop plants in various ways. Insects such as the boll

weevil attack only the fruiting organs, leaving the foliage of the plant unaffected.

Since the remote sensing signal from crop plants is dominated by foliage effects,

remote sensing would be relatively ineffective in detecting early infestations of pests

of this type. However, many pest organisms do affect the foliage of crop plants,

either by consuming leaf tissue directly or by sucking sap from the plant, resulting

in loss of leaf turgor (and possibly increase in leaf temperature) or leaf necrosis and

senescence. In some cases, pests such as the glassy-winged sharpshooter (Homal-

odisca coagulata) can introduce diseases into crop plants, resulting in leaf and plant

mortality. Remote sensing can potentially be effective in detecting infestations of

insects or other pests that affect crop foliage.

12.3.4.2 REMOTE SENSING FOR DETECTION OF INSECT INFESTATION

In situations where early infestations are accompanied by leaf senescence or mor

tality, remotely sensed measures of plant canopy density such as N1R reflectance or

NDVI can be effective in their detection. Decline and mortality of grape vines in

California caused by the root-feeding pest Phylloxera vitifoliae has been monitored

using NDVI derived from airborne imagery (Johnson et al., 1995b; Lobitz et al.,

1996). Everitt et al. (1996) demonstrated the effectiveness of airborne NIR videog-

raphy in locating areas within cotton fields defoliated by harvester ants. Another

example (Wrona et al., 1998) is presented in Figure 12.15. The inset in this figure

shows a small area of defoliation in a cotton field (marked with a white flag) ap

proximately 1 m in diameter caused by an infestation of spider mites (Jetranychus

spp.). These features, commonly called hotspots, represent the early stages of infes

tation of a field. Figure 12.15 also contains a false-color composite image (green,

red, and NIR spectral bands) of the field containing this feature. This image was

obtained using an airborne digital camera system at an altitude of 1524 m (5000

ft), with a resulting surface resolution of approximately 1 m. In this example, the

hotspot was easily detected using remote sensing. Unfortunately, there are many
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Figure 12.15 False-color airborne muliispectral image of a cotton field containing a spider mite hotspot. Inset shows the

holspol (marked with a white flag) in the field. See CD-ROM for color image.

other features in this image that have the same general appearance as the hotspot,

and field scouting verified that for most of them the associated reduction in canopy

density was not due to insects. In this case, discrimination of one feature as an insect

infestation was suggested by comparing this image with a corresponding image ob

tained a week earlier, in which the feature representing the hotspot was conspicu

ously absent. This example points out the utility of multitemporal analysis of remote

sensing data for detecting transient features such as insect infestations, but it also

emphasizes the associated need for frequent observations.

It has been observed that some crop pests not only physically damage the leaf

canopy but also cause a change in the spectral reflectance characteristics of the

affected foliage. Pinter (1994) reported from greenhouse studies that honeydew de

posited on cotton leaves by feeding silverleaf whiteflies (Bemisia tabaci) profoundly

affected the reflectance characteristics of the leaves. These effects resulted not only

from the dried coating of honeydew on the leaves but also from the growth of sooty

mold {Aspergillus spp.) supported by the coating. Aphids (Aphididae) can cause a

similar honeydew deposition on leaves. An example is presented in Figure 12.16

(unpublished data of S. Maas), which shows leaf reflectance spectra obtained using

a portable spectroradiometer and integrating sphere for cotton leaves with various

degrees of honeydew accumulation and mold growth. The curves in this figure in

dicate that the magnitude of diffuse leaf reflectance in the visible and NIR spectral

bands decreases with increasing amounts of honeydew deposition and mold growth

(as indicated by the corresponding leaf photographs). This effect was most promi

nent in the NIR spectral band.

Remote sensing observations involving the effects of pest infestations on leaf

reflectance have been described by a number of researchers. Effects of honeydew

and sooty mold on leaves was reported in airborne video imagery of cotton fields

in South Texas infested with whitefly (Everitt et al., 1996; Summy et al., 1997).
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Figure 12.16 Reflectance spectra for cotton leaves with varying amounts of honeydew and sooty mold on their surface

associated with aphid feeding. Leaf A is unaffected, leaf B has moderate deposits of haneydew and mold, and leaf C has

heavy deposits of honeydew and mold. See CD-ROM for color image.

Everitt et al. (1994) reported similar effects in airborne video imagery of citrus trees

infested with citrus blackfly (Aleurocanthus tvoglumi). Riedell et al. (2000) reported

that the reflectance of wheat leaves in the spectral bands associated with light ab

sorption by chlorophyll correlated significantly with damage caused by greenbugs

(Schizaphis graminum) and Russian wheat aphids (Diurapbis noxia). Sudbrink et al.

(2000) reported differences in visible and NIR reflectance between a healthy cotton

canopy and one infested with two-spotted spider mite (Tetranychus urticae), and

that mite hotspots were visible in airborne multispectral video imagery of affected

cotton fields.

Maas (1998) used the NIR leaf reflectance data in Figure 12.16 in a computer

simulation of the reflectance of a cotton field containing a small area of aphid in

festation. In this case, the area of infestation was not readily discernible in the

simulated image of the field until the contrast among brightness levels within the

image was increased through computerized enhancement. Image processing can be

a powerful tool in analyzing remote sensing imagery to identify possible pest infes

tations, as it allows subtle differences in canopy reflectance, which might normally

escape the naked eye, to be magnified and made more obvious.

A number of approaches involving image processing have been reported. Exam

ples of the some of the more sophisticated approaches include:

1. Fitzgerald et al. (1999a) used a bit-error filter in the image processing software

ENVI (RSI, 1999) to enhance NIR airborne imagery of cotton fields to identify
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infestations of spider mites. This filter uses an adaptive algorithm to replace the

digital value of a pixel in an image with the average values of neighboring pixels.

By choosing the proper threshold value, features in the image with a particular

brightness characteristic can be isolated from the rest of the image. In this study,

this filtering technique was used to discriminate features in the imagery associated

with mite infestations from other features, including areas of the fields containing

plants experiencing water stress.

2. Fitzgerald et al. (1999b) applied principal components analysis (PCA) and

supervised classification to airborne imagery of cotton fields acquired in the green,

red, and NIR spectral bands. In this procedure, a set of two three-band (green, red,

and NIR) images acquired on different dates during the growing season was trans

formed using the PCA procedure in ENV1 (RSI, 1999) into six principal component

images that enhanced various features (e.g., water stress, soil brightness) in the image

data. Training sets representing four classes (healthy plant canopy, mite-infested

plant canopy, water stressed plant canopy, and bare soil) were selected within the

principal component images based on field scouting. Based on these training sets,

all the image data were separated into the four classes. The procedure was applied

to five other pairs of three-band images acquired during the study and was generally

successful at discriminating between the four classes in each pair (an example is

shown in Figure 12.17).

3. Fitzgerald et al. (2000a,b) applied PCA and supervised classification to indi

vidual three-band (green, red, and NIR) airborne images of cotton fields to separate

the image data into three classes: healthy plant canopy, mite-affected plant canopy,

and bare soil. Change detection was then performed on pairs of classified images

acquired on different dates to identify areas within the cotton fields that changed

from one class to another between two dates. This procedure was able to reveal the

temporal progression of mite infestation across the fields during the growing season

in the remote sensing imagery.

12.3.4.3 COMBINING REMOTE SENSING AND MIXTURE MODELING FOR DETECTING

INSECT INFESTATION

Image processing procedures such as those described above make use of the spectral

data contained in the remote sensing imagery itself. Since soil and plant character-

Healthy Canopy

Bare Soil

Water-stressed Canopy

Mite-affected Canopy

Figure 12.17 Partitioning of the surface orea of two cotton fields into four classes to help identify spider mite infestations,

based on the analysis of airborne multispectrol imagery. See CD-ROM for color image. (From Fitzgerald et ol., 1999b.)
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istics may be more-or-less specific to the situation being studied, it may be difficult

to achieve comparably accurate results when the procedures are applied to data

acquired at different locations or times. As described earlier in this section, green

house and field studies involving spectroradiometric measurements indicate that

some pest infestations affect the reflectance characteristics of plant leaves in specific

ways. If these "spectral signatures" were consistent over space and time, it might

be possible through image processing to identify their presence in multispectral or

hyperspectral remote sensing imagery.

A complicating factor in this approach is that for agricultural targets, the bright

ness of each pixel in a remote sensing image is almost always the result of the

combined reflectances of different types of surfaces (healthy leaves, infested leaves,

bare soil, shadows, etc.) contained within the area of the pixel. Even with high-

resolution imagery of crop canopies acquired from aircraft, it is unlikely that the

reflectance of any pixel would represent a "pure" spectral signature of any surface

type. Thus, practically all pixels in crop imagery are "mixed pixels." However, if

the spectral signatures of the various types of surfaces within the imaged area are

known, mathematical procedures can be used to "unmix" the observed remote sens

ing data to estimate the relative amounts of each surface type within each pixel.

The simplest and most straightforward version of this approach is linear spectral

unmixing (LSU), in which it is assumed that the contribution of each spectral char

acteristic is in linear proportion to its relative abundance. This procedure has been

incorporated into commercial image processing software such as ENVI (RSI, 1999).

The user supplies spectral signatures for each of the surface types (called endmem

bers in this analysis) known to be within the area of the observed multiband remote

sensing imagery. The number of spectral bands must be greater than or equal to the

number of endmembers. The procedure is most successful when the spectral sig

natures of the endmembers are spectrally dissimilar and the observed spectral bands

are relatively narrow and distributed across a wide spectral range. For this reason,

LSU is particularly suited to analysis of hyperspectral image data, where the user

can select imagery from among many narrow spectral bands.

Linear spectral unmixing has been applied extensively to geological studies, where

libraries of the spectral signatures of many minerals are available. To date, LSU has

found limited application to remote sensing studies involving insects or other crop

pests. Part of the problem has been the difficulty in obtaining spectral signatures in

the field. Portable spectroradiometers like those used to collect the data in Figure

12.16 are labor intensive and time consuming to use in the field. The user must be

careful to ensure that the spectroradiometer is properly pointed to measure the

desired surface, which in the case of pest-related studies may be only a small infested

portion of a leaf. Use of an integrating sphere to measure leaf reflectance provides

data only under diffuse illumination conditions and cannot directly measure the

effects of nondiffuse illumination (specular reflection) or shadows on apparent leaf

reflectance within a plant canopy. In recent years, the development of the liquid-

crystal tunable filter (LCTF) has made the collection of spectral signatures in the

field simpler (see Figure 12.18). An LCTF can be attached to a standard mono

chrome digital camera to step rapidly through a sequence of narrow spectral bands,

allowing an image to be acquired for each band. These images can then be analyzed

using standard image processing software to extract spectral data for objects (or

portions of objects) appearing in the imagery. In practice, it is difficult to coregister
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Figure 12.18 Use of a liquid-crystal tunoble filter (LCTF) to collect hyperspectral imagery within a cotton field for

determining spectral endmembers. Ihe system, mounted on a high-clearance vehide, is shown at the top, while exomples of

images of soil and foliage obtained at two different wavelengths are shown at the bottom. See CD-ROM for color image.
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bands using this type of system in the field, due to canopy movement in air currents

during the measurement.

Use of spectral signatures obtained using an LCTF in performing a linear spectral

unmixing of AVIRIS imagery of cotton fields in California was described by Fitz

gerald (2000). The procedure was successful in accurately partitioning the image

into three endmembers: healthy plant canopy, mite-affected plant canopy, and bare

soil. This approach is uniquely different from the image processing examples de

scribed earlier, as the source of the spectral signatures (LCTF field measurements)

for the three endmembers was independent of the remote sensing image data ana

lyzed using this information.

It is often easy to observe an apparent problem in an agricultural field with basic

kinds of remote sensing (like aerial photography) and to use that information to

direct a scout into the field to determine the nature of the problem. The current

challenge is identification of observed features in remote sensing data to specific

crop pests. Results of previous studies suggest that consistent early detection and

unambiguous identification of pest effects in remote sensing imagery might ulti

mately rely on an understanding of how insects and other crop pests specifically

affect the remotely sensed characteristics of crops, facilitated in practice by frequent

acquisition of high-resolution remote sensing data across a wide range of spectral

bands and sophisticated image processing.

12.3.5 Crop Yield

The ability to infer crop yield from remote sensing data has been a goal of agricul

tural research since the days of planning for the first Landsat. Since operational

remote sensing systems typically do not have the spatial resolution to count oranges

on trees or heads of lettuce in the field, researchers have sought other methods for

assessing crop yields from remote sensing data. These methods generally fall into

one of the following two categories: (1) reliance on an empirical equation directly

relating yield and remote sensing measurements, developed from the results of ear

lier field studies; and (2) reliance on an established mathematical procedure (possibly

an empirical equation or a simulation model) to estimate some characteristic of the

crop canopy (such as leaf area index) from remote sensing measurements, which

used in turn is in a crop growth model to estimate yield.

12.3.5.1 CORRELATION BETWEEN YIELD AND REMOTE SENSING DATA

Remote sensing researchers have for years observed variations in plant canopy den

sity and condition in high-resolution imagery of agricultural fields and have sus

pected possible correlations between canopy growth and yield. The recent

availability of detailed crop yield maps (Figure 12.19) from yield monitors on har

vesting equipment now allows agricultural researchers the opportunity to investigate

such correlations in detail. Vellidis et al. (1999) used color and infrared aerial pho

tography to partition the areas of cotton fields into three classes (high, medium, and

low yield) that corresponded favorably with data obtained from a yield monitor.

They concluded that the highest correlation between their remote sensing data and

yield occurred before the cotton canopy covered the soil surface completely. Yang
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Figure 12.19 Comparison of (a) a cotton yield mop obtained at harvest to (A) an aerial infrared image of the field

acquired at midseason. Areas in the yield map with very low yield appear to be associated with corresponding areas in the

infrared image with reduced ground cover due to insect damage. See CO-ROM for color image.

et al. (1999) found that digitized infrared aerial photographs could be used to par

tition the area of a grain sorghum field into two to four classes that were similar to

patterns observed in yield monitor data obtained for the field. For the case with

three classes, analysis appeared to indicate a relationship between class average grain

yield and class average image digital count data. Similarly, Fitzgerald et al. (1999c)

used high-resolution airborne digital multispectral imagery to partition the area of

a sugar beet field into three classes that corresponded favorably with relative vari

ations in root yield across the field, as determined with a yield monitor. For several

dates during the growing season, Thomasson et al. (2000) determined the spatial

correlation between Landsat 5 Thematic Mapper (TM) digital count data and yield

monitor data for a cotton field. They observed that the highest correlation involved

TM band 4 (NIR) and occurred for an image acquired in late June, approximately

3.5 months before harvest.

These studies suggest that spatial correlations exist between yield and remote

sensing data for a number of crops. They also suggest that the significance of these

correlations varies over the growing season. Using weekly observations from an

airborne digital imaging system, Maas et al. (1999) studied the change in the spatial

correlation between yield monitor data and NIR reflectance over the growing season

for two irrigated cotton fields. The relationship between yield and reflectance for

each image pixel location in one of the fields is shown in Figure 12.20 for three

dates during the growing season. Also shown in this figure are the least-squares linear

regressions between the yield and reflectance data. The amount of scatter in the

points about the regression lines is typical of data derived from yield monitors and

high-resolution remote sensing. The change in the statistical significance of this re

gression over the growing season is shown for this field in Figure \2.2\a. The

strongest positive correlation between yield and reflectance occurred around mid-
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Figure 12.20 Cotton yield at harvest plotted on a pixel-by-pixel basis versus corresponding near-infrared reflectance from

imagery acquired on three dates during the growing season: (o) July 14; [b] August 25; (r) September 16. Solid line passing

through each cluster of points represents the least-squares linear regression between yield and reflectance. (From Maas et al.,

1999.)

season (day 220 to 240), during the period of rapid growth of the cotton bolls. A

significant negative correlation between yield and reflectance occurred late in the

growing season, prior to defoliation of the crop. This probably resulted from the

fact that late in the growing season, cotton plants that bear few mature bolls tend

to produce an increased amount of foliage. Results for the second field in this study

are presented in Figure 12.216. For this field, daily irrigation was suspended during

two one-week periods during the growing season. The first period, called the early

stress period, started on day 202. The second period, the late stress period, started

on day 223. Both stress treatments resulted in observable reductions in NIR reflec

tance that persisted for approximately two weeks. However, as indicated in the

figure, a significant correlation between yield and reflectance occurred only for the
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Figure 12.21 Value of the ^statistic times the sign of the slope of the linear regression between yield and near-infrared

reflectance plotted versus image acquisition date for two cotton fields. Dashed horizontal lines represent the limiting volue of

the fatalistic at the 95% confidence level; ordinate values between the pair of horizontal doshed lines in each graph are not

significantly different from zero. (From Maas et al., 1999.)
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late stress treatment. Of the two treatments, the early stress treatment occurred

before the period of rapid boll growth, so the water stress that produced observable

effects on the plant canopy did not result in an appreciable reduction in yield.

These results illustrate one of the difficulties in accurately assessing crop yield

directly from remote sensing observations. For most crops, a remote sensing obser

vation represents a discrete measurement in time of the state of the crop leaf canopy.

Yield observed at the end of the growing season represents an integration of repro

ductive growth related to the development of the crop leaf canopy over the course

of the entire growing season. Due to their timing during the growing season relative

to the course of reproductive growth, stress events that might affect the leaf canopy

might not appreciably affect yield, as demonstrated by the previous example. Many

crop species also have the capacity to compensate for stress-related reductions in

potential yield early in the growing season (i.e., wheat plants can compensate for a

reduction in the number of panicles early in the growing season by increasing the

number of grains produced per panicle later in the growing season).

A second difficulty exists in assessing crop yield directly from remote sensing

observations. For most field crops, the plant canopy does not completely cover the

soil surface for at least part of the growing season. During this period, remote

sensing observations implicitly contain effects related to soil reflectance character

istics (soil background effects). Soil reflectance characteristics are determined by the

mineralogical composition of the soil, the amount of organic matter in the soil, the

structure of the soil surface, and the amount and type of litter on the soil surface.

Thus, remote sensing measurements made at two locations with similar plant canopy

characteristics might be different due to differences in soil background effects be

tween the two locations. There have been several attempts to reduce soil background

effects in multispectral remote sensing observations through the use of vegetation

indexes specifically designed to account for soil reflectance characteristics (e.g., Rich

ardson and Wiegand, 1977; Huete, 1988; Major et al., 1990).

Finally, there is a third difficulty. Remote sensing observations implicitly contain

effects related to view angle and scene illumination. For nadir-viewing satellite re

mote sensing systems, view-angle effects would typically be important only for tar

gets near the edges of regional-scale images. For satellite systems with off-nadir

viewing capabilities, such as SPOT and Ikonos, a field can be imaged on different

dates with markedly different view angles. Consider the following example: A field

containing row crops with incomplete ground cover might be imaged by a satellite

system with a nadir view angle. This image would contain both plant canopy and

soil reflectance effects. A day or so later, the same field might be imaged by the

same satellite system with an off-nadir view angle. This image could contain fewer

soil reflectance effects than the previous image (even though the canopy ground

cover had not changed appreciably) as a result of the difference in perspective be

tween the two images.

Difficulties involving view angle become more severe as the observation altitude

decreases. View angle and scene illumination effects interact to produce bidirectional

reflectance effects (e.g., Jackson et al., 1990). Scene illumination effects are deter

mined by the position of the sun relative to the plant canopy and are related to the

latitude, date, and time of day of the observation. Scene illumination effects can be

important even for nadir-viewing remote sensing systems. Consider the following

example: A field containing crop rows oriented north-south might be imaged by a
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remote sensing system with a nadir view angle at approximately local solar noon.

In this case, the amount of shadow cast by the crop rows on the intervening soil

surface would be minimal. A few hours later, the same field might be imaged by the

same remote sensing system in the same manner, but in this case there might be a

considerable amount of shadow cast by the crop rows on the intervening soil surface.

The average brightness of the field in the second image would be less than the

average brightness of the field in the first image, due simply to the presence of more

shadow in the second image.

Although differences in scene brightness related to solar altitude and atmospheric

clarity can be accounted for through calibration of remote sensing data using re

flectance standards (Moran et al., 1997a), there are no simple procedures for re

moving complex view angle and shadow effects.

The difficulties described above affect the potential accuracy of empirical equa

tions, directly relating yield and remote sensing measurements, because the effects

of crop growth stage, soil background, view angle, and scene illumination are im

plicitly present in the data used to develop the empirical equations. Thus, whereas

a significant correlation may be determined within a given data set between crop

yield and remote sensing measurements, this relationship will not be unique across

locations, dates, and times. Effects like these probably cause the differences noted

among empirical relationships developed for a given crop from data sets from mul

tiple sites (Wiegand et al., 1990, 1992; Richardson et al., 1992). These difficulties

limit the practical application of empirically derived equations to yield assessment.

Some researchers have sought to improve the accuracy of empirical yield assess

ment techniques by using successive remote sensing observations to delineate

(through interpolation) a remotely sensed surrogate for the seasonal growth curve

of the crop canopy. By integrating the area under a portion of this curve representing

the portion of the growing season important to yield determination, this procedure

attempts to produce a number proportional to the magnitude of the reproductive

growth of the crop. This is commonly called the area under the curve approach to

yield assessment. Thus, Pinter et al. (1981) reported that summing remotely sensed

NDVI values from the flowering to mature stages of growth could be used to predict

the grain yield of spring wheat. This procedure has been applied to estimating re

gional wheat yields using AVHRR observations (Doraiswamy and Cook, 1995). Sev

eral researchers (Bartholome, 1988; Rasmussen, 1992; Smith et al., 1995a) have

reported that accumulated vegetation indexes appear to be a better predictor of crop

yields than is a single remote sensing observation.

12.3.5.2 COMBINING REMOTE SENSING WITH CROP GROWTH MODELING FOR

YIELD PREDICTION

The elaboration of seasonal growth that results in yield is achieved explicitly by crop

growth simulation models. As opposed to remote sensing observations, which are

discrete-time events, a growth simulation represents a continuous description of the

response of a crop to its environment. Although crop simulation models are based

on physiological principles, one must keep in mind that models are only approxi

mations of the actual biological systems that they represent. This fact leads to three

operational weaknesses of applying crop growth simulation models:
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1. Physiological processes (e.g., photosynthesis, respiration) that determine yield

typically appear in models as parameterized representations, so that the ac

curacy of the growth simulation depend on the particular values ascribed to

the parameters in these representations.

2. It is unlikely that the initial or starting conditions for the mathematical rep

resentation of crop growth will be known with great certainty for any given

Held situation.

3. It is unlikely that any given model can adequately incorporate responses to

every environmental factor and its possible interactions with other factors that

might affect yield for all Held situations.

Because remote sensing observations are representative of the actual growth con

ditions occurring in a field, it was recognized some time ago (Wiegand et al., 1977,

1979; Arkin et al., 1979) that remotely sensed information might be used to improve

the accuracy of crop growth simulation models. Early attempts at incorporating

remotely sensed information into crop models were reviewed by Maas (1992, pp.

1-3).

Maas (1988a) described and compared four different methods of incorporating

remotely sensed information into crop models. Of these methods, reinitialization

and reparameterization of the model based on infrequent remote sensing observa

tions were the most effective. Reinitialization involves specifying the values of model

initial conditions based on comparing the model simulation of a leaf canopy char

acteristic (such as leaf area index or ground cover) to corresponding estimates of

this characteristic determined from remote sensing observations obtained during the

growing season. Reparameterization is similar, except that model parameter values

rather than initial condition are the object of the procedure. Both reinitialization

and reparameterization can be used in the same model. An iterative numerical pro

cedure is used to ensure that parameter and/or initial condition values are selected,

so that following convergence, the model simulation agrees with what is observed

in the field. Since the data for adjusting parameter and/or initial conditions are

observed during the growing season for which the simulation is being made, this

procedure has been called within-season calibration of models. This process has been

described in detail by Maas (1988a, 1992, 1993a) and is shown diagrammatically

in Figure 12.22.

Within-season calibration acts to ameliorate the three operational weaknesses

listed above for crop growth simulation models. This procedure results in the ob

jective selection of parameter and/or initial condition values that lead to agreement

between the model simulation and observed field conditions. Through what has been

called the folding-in phenomenon, the effects of environmental factors that are not

explicitly incorporated into the model formulation will be implicitly incorporated

into the model simulation when the values of existing parameters and/or initial

conditions are adjusted by the within-season calibration procedure.

Maas (1988b) demonstrated that model reinitialization based on satellite-derived

estimates of leaf area index improved the average yield estimate for 37 grain sor

ghum fields in South Texas from a 30% underestimate to a 2% overestimate of the

observed value. Reinitialization and reparameterization of a model using Landsat

data resulted in an average yield estimate within 5% of the observed value for 115

spring wheat fields in North Dakota (Maas, 1991). Similar calibration of a model
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Figure 12.22 Within-season model calibration procedure.

using ground-based canopy reflectance measurements resulted in an average yield

estimate within 6% of the observed value for 52 winter wheat research plots at

three locations in the U.S. Great Plains (Maas, 1993b).

In these examples, leaf area index values were estimated from remote sensing

data using empirically derived relationships. Doraiswamy et al. (2000) has recently

reported on the use of the SAIL radiative transfer model to estimate leaf area index

values from remote sensing data and the use of these values in a within-season

calibration of a version of the EPIC model to determine regional crop yields. This

combination of approaches minimizes reliance on empirical procedures, thus in

creasing its general applicability across locations, dates, and times. Maas (2000) has

described the inclusion of a program module into crop growth models to explicitly

simulate scene reflectance based on modeled plant canopy architecture, known leaf

and soil reflectance characteristics, and ambient illumination conditions. This would

allow direct comparison of simulated scene reflectance with remote sensing obser

vations to facilitate the within-season calibration of the models (see Jacquemond et

al., 2000).
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An additional advantage of the use of crop growth models in assessing yield is

that they can be used to predict yield objectively prior to the end of the growing

season. This can be accomplished using the following procedure. During the grow

ing season, the crop model can be run from the start of the season to the current

date using observed weather data, and can be calibrated using available remote sens

ing observations as described above. For the remainder of the growing season,

computer-generated (synthetic) weather data (e.g., Richardson, 1981; Richardson

and Wright, 1984; Hanson et al., 1994) can be used to complete the model simu

lation of crop growth and yield. Due to the uncertainty of future weather conditions,

the model should be run using a large number of different years of synthetic weather

data. The model will produce a yield prediction for each year of synthetic weather

data. The distribution of these predicted yields can then be analyzed statistically to

produce a probabilistic prediction of yield for the current year. This probabilistic

prediction will be the probability (or chance) that the yield at harvest will be within

a certain range, or will be greater or less than a certain value. The certainty of this

prediction should increase over the course of the growing season as the model sim

ulations of crop growth become based more on observed weather conditions and

remote sensing data and less on synthetic weather data.

Traditionally, crop growth models have been designed to simulate an "average"

plant within a given area such as a field. Thus, they cannot directly provide infor

mation on the spatial variability of crop growth and yield within the given area. By

converting remote sensing imagery into spatial arrays of crop canopy characteristics

(such as leaf area index or ground cover) for use in within-season calibration, crop

models can be used to explicitly generate spatial distributions of yield within a given

area of interest, such as a field. Alternatively, remote sensing imagery can be used

to partition areas such as fields into portions (commonly called production zones)

with similar characteristics for which the models can be run. The unique temporal

qualities of models and spatial qualities of remote sensing make the combination of

these technologies particularly attractive to modern agricultural applications such as

precision farming.

12.3.6 Soil Characterization

In irrigated agriculture, the level of many input requirements is dependent on soil

characteristics such as water-holding capacity, organic matter content, and salinity

levels. Knowledge of water-holding capacity is critical to good irrigation manage

ment, organic matter content affects the rate of application of fertilizers and pesti

cides, and soil salinity levels can have large impacts on crop yield. Because soil

properties are very important to management decisions and the soil often determines

the yield potential of a given area, soil mapping was one of the first applications of

remotely sensed data for agriculture (Bushnell, 1932). Aerial photographs have been

used as a mapping aid in most soil surveys in the United States since the late 1950s.

The new tools of variable-rate application and global positioning systems have gen

erated a need for high-spatial-resolution soil maps. Often, these maps are created

from samples collected on a fixed grid, with statistical interpolation between sample

points (Nielsen et al., 1995); however, the expense of collecting and analyzing the

number of samples can sometimes become economically prohibitive (Ferguson et
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al., 1996). Therefore, even more emphasis is now being placed on the use of re

motely sensed data to quantify differences in soil physical properties.

Quantitative relationships have been developed between reflectance data and soil

properties using prepared soil samples under controlled conditions. Post et al.

(2000) found that broadband soil albedo (0.3 to 2.8 u.m) could be predicted accu

rately from reflectance measurements in the NIR, blue, and green spectral regions.

Stoner and Baumgardner (1981) examined 485 uniformly moist soil samples in the

laboratory and determined that five characteristic reflectance spectra (0.52 to 2.32

u.m) were present that could be related to differences in organic matter content,

iron content, and texture. Other soil properties have been inferred from reflectance

measurements under laboratory conditions such as moisture, organic carbon, and

total nitrogen (Dalai and Henry, 1986; Shonk et al., 1991), as well as other chemical

properties (Ben-Dor and Banin, 1994).

Even though strong correlations between reflectance data and soil properties have

been found in a laboratory setting, extracting similar information from imagery of

tilled fields can be more challenging. First, if a soil properties map for use in agri

cultural management decisions is derived from reflectance or emitted thermal data,

an implicit assumption is that the soil properties at the surface correlate to changes

throughout the root zone. Second, changes in surface tillage condition (e.g., bedded

vs. flat, fine disking vs. coarse plow), rain compaction, moisture, and plant residue

all may induce changes in apparent soil reflectance that approach or exceed spectral

responses, due to physical soil properties such as texture and organic matter (Barnes

and Baker, 2000; Courault et al., 1993). For example, Matthias et al. (2000) found

the broadband albedo (0.3 to 2.8 u,m) of a moldboard-plowed soil surface was

reduced by 27% compared to the same soil passed through a 2-mm sieve and

smoothed with a straightedge. Wet soils can have a decrease in visible and NIR

reflectance by as much as 25% from a dry condition, and these changes are not

always consistent between wavelengths (Bedidi et al.,1992). Despite these limita

tions, bare soil imagery has been used successfully to characterize soil properties,

particularly when the analysis is conducted over a limited geographic area and the

areas considered have similar surface conditions. Examples of the use of remotely

sensed data for soil characterization from the literature are discussed in the following

paragraphs for soil properties that are particularly important to irrigated agriculture.

12.3.6.1 SOIL TEXTURE AND WATER-HOLDING CAPACITY

Farm managers and consultants often use a soil water balance to determine irrigation

schedules. A key input to the water balance equation is the amount of water that

can be stored in the soil's root zone. The water-holding capacity of a soil is closely

related to the soil's particle size distribution, and thus various models have been

developed to relate soil water holding capacity from soil textural information (e.g.,

Schaap et al., 1998; Arya et al., 1999). Reflectance measurements over tilled fields

have been used with varying levels of success to develop predictive equations for

the fraction of sand, silt, and/or clay at the soil surface (Suliman and Post, 1988;

Coleman et al., 1991). An example relationship between NIR imagery and sand

content is presented in Figure 12.23 for data collected in an agricultural field near

Shafter, California. The soil brightness map derived from a NIR image of a field is

shown at the top of the figure, and a soil texture map interpolated from grid sam-
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Figure 12.23 (a) Soil brightness map derived from NIR data and [b) soil texture map created from interpolated grid

samples (bottom) for an agricultural field near Shaffer, California. See CD-ROM for color image.

pling for the same field is shown at the bottom. These maps have been scaled sim

ilarly so that the resulting values range from 0 to 255, and then assigned the same

pseudocolors. Figure 12.24 shows the correlation between soil texture (sand con

tent) and remotely sensed soil brightness. This correlation could be used to derive

a detailed soil surface texture map from a NIR image when calibrated from a limited

number of samples. Dependable relationships such as the one in this example are

only possible when imagery is acquired over fields with uniform tillage conditions

(Barnes and Baker, 2000). To minimize the effects of soil properties other than

texture (e.g., soil moisture, organic matter, minerals other than quartz), Salisbury

and D'Aria (1992) used a combination of visible, NIR, and TIR data. The increased

availability of hyperspectral data, particularly in the SWIR spectral region around

2.3 |im, has introduced the potential to discriminate between different types of

clays, such as kaolinite and smecite (Chabrillat et al., 1997; Drake et al., 1999).

This has agricultural significance, as clay mineralogy has a large impact on the soil's

ability to store and hold nutrients, and its physical reaction to tillage operations.

Increased spectral resolution may also improve the ability to detect differences be

tween closely related soil types. For example, Palacios-Orueta and Ustin (1996)

found that multivariate analysis techniques applied to AVIRIS data provide the abil

ity to identify differences between soil mapping units that were from the same soil

series.

Patterns in soil surface color and crop development have also been associated

with the water-holding capacity of the soil (Milfred and Kiefer, 1976; Wildman,

1982). Wildman (1982) found that patterns in aerial photographs of grape vines



668 APPLICATION OF IMAGE-BASED REMOTE SENSING

1
5

uu

90 -

80 "

70 "

60 "

50

♦ Observed

" " ' " Regression

♦ _ - -

i

Percent Sand = 0.146 Digital Count + 51.1

R2 = 0.60

i i i i

120 140 200160 180

NIR Digital Count

Figure 12.24 Percent sand versus IIIR digital count for dato from the images in Figure 12.23.

220

could be related to differences in soil texture, which in turn affected the soil water-

holding capacity. Some caution must be exercised in interpreting cropping patterns

in this manner, as the lack of irrigation uniformity can sometimes add a source of

crop growth variability beyond that of soil properties (Adamsen et al., 2000).

12.3.6.2 SOIL ORGANIC MATTER

Soil organic matter content is an important consideration in many procedures to

determine the rate at which various agricultural inputs are applied. For example,

the application rate of some herbicides increases with increasing organic matter,

whereas nitrogen requirements can decrease with increasing organic matter (Sudduth

et al., 1997). Soil organic matter has been related to reflectance data collected over

agricultural fields in several studies (e.g., Coleman et al., 1991; Henderson et al.,

1992; Chen et al., 2000). Henderson et al. (1992) examined the correlation between

soil organic matter content and reflectance between 0.4 and 2.5 am at 0.01-u.m

intervals. They found that visible wavelengths (0.425 to 0.695 am) had a strong

correlation with soil organic matter (an r value of at least -0.991) for soils with

the same parent material; however, the relationship was very sensitive to Fe and

Mn oxides for soils from different parent materials. Use of middle-infrared bands

improved predictions of organic carbon content when the soils were from different

parent materials. As the visible spectrum can be correlated with organic matter in

soils of the same parent material, it may be possible to predict within-field variations

in organic matter from locally derived relationships and true color imagery (Chen

et al., 2000). In circumstances where differences in iron content may influence the



12.3 REMOTELY SENSED INFORMATION FOR MANAGEMENT OF IRRIGATED AGRICULTURE 669

accuracy of organic matter prediction from spectral data, Palacios-Orueta and Ustin

(1998) found that principal component analysis of AVIRIS data could be used to

extract information on both properties.

12.3.6.3 SOIL SALINITY

An increase in soil salinity can be detrimental to crop growth and yield; however,

management practices are available to allow saline soils to maintain productivity

(Hoffman et al., 1990). Remotely sensed data have been used to identify salt-affected

soils so that appropriate management actions can be taken (Verma et al., 1994;

Wiegand et al., 1994). Many salt-affected soils can be identified by a white salt crust

that forms on the soil surface; thus these soils tend to have higher visible and NIR

reflectance (Rao et al., 1995). This spectral response cannot always be used to iden

tify saline soils, as in some geographic locations, soils with high sand contents will

have visible and NIR spectral properties similar to salt-crusted soils (Verma et al.,

1994). The ability to discriminate salt-affected soils has been improved through the

inclusion of thermal data (Verma et al., 1994) and L-band microwave data (Sreenivas

et al., 1995). Kluitenberg and Biggar (1992) found that thermal data could detect

differences in canopy temperature that were induced by different soil salinity levels

when the field was recently irrigated. Dependable differentiation of salinity problems

was less effective as time from the last irrigation increased. Patterns in vegetation

development over fields with known salinity problems can also be used to map soil

salinity levels through the use of vegetation indexes (Wiegand et al., 1994). The

accuracy of estimates of saline areas based on vegetative spectral response may be

limited when there are other factors affecting the crop's development (Wiegand et

al., 1997). To minimize confounding factors due to crop stress other than salinity,

Mikati and Neale (1997) used a model that first classified crop areas into stressed

and nonstressed areas using visible and NIR infrared data. The model then used

thermal data to distinguish between nutrient and salinity stress, as nutrient stress

does not affect canopy temperature as strongly as does salinity.

12.3.6.4 OTHER APPROACHES TO CHARACTERIZE SOIL PROPERTIES IN

IRRIGATED AGRICULTURE

Rather than relying on a specific spectral response to a particular soil property, the

concept of directed soil sampling has been developed (Pocknee et al., 1996). The

idea is first to acquire imagery of a bare soil field and then rake soil samples from

areas in the image with distinct spectral features. Correlations or classification

schemes are then developed between the spectral classes or reflectance levels and

soil properties of interest. Pocknee et al. (1996) found that this method worked

well for mapping soil phosphorus, but performed poorly for soil pH. Directed soil

sampling can often provide soil maps of similar or better accuracy to those derived

from interpolation techniques such as kriging or distance-weighted interpolation

with fewer soil samples (Thompson and Robert, 1995; Barnes and Baker, 2000). A

similar approach can be used over fields with a crop present by collecting soil sam

ples and plant material for analysis over areas with similar spectral classes (Yang and

Anderson, 1996).

Other opportunities are emerging that could potentially improve the ability to

characterize soil properties from remotely sensed data. Progress made to estimate

plant litter levels from remotely sensed data (e.g., Nagler et al., 2000) is one example
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of additional data processing that may ultimately result in better estimates of soil

properties. With more robust estimates of litter, this source of variation can be

eliminated from scenes of fallow fields, increasing the correlation between the re

maining reflectance variations in the scene with soil properties. Sudduth et al. (1997)

review various ground-based sensor systems that have been used to rapidly assess

spatial variability in selected soil properties. These systems include electromagnetic

induction measurements (correlated to soil texture, moisture content, salinity, top-

soil depth), contact soil electrode probes mounted on agricultural implements (soil

salinity and pH), and the use of fiber optics attached to tillage implements to acquire

subsurface soil spectra. Integration of these data with imagery and other ancillary

data could ultimately lead to algorithms that are more dependable and require less

local calibration for soil characterization. Sommer et al. (1998) provide examples

of different frameworks used to integrate multispectral imagery with various ancil

lary data sources.

12.3.7 Next-Season Preparation

Strong relationships have been demonstrated between terrain and biogeophysical

processes and characteristics. Soil properties, land cover types, and surface topog

raphy combine to drive the physical processes controlling infiltration, excess rainfall

generation, and runoff, which in turn directly affect soil moisture and influence the

spatial variability of crop production. These processes also affect water quality and

sediment discharge through the erosion of surface soil and removal of fertilizers and

pesticides. Effective next-season preparation relies on the assessment of a field's

physical processes to promote improved planning for the upcoming season, and

terrain models offer promise in the improved representation of the physical char

acteristics of the field.

A significant growth area in the field of precision agriculture is the linkage of

predictive models for hydrology, soil moisture, and erosion with farming practices

to improve management and yield. Such models require detailed spatially distributed

information, information that may be attained remotely on an annual basis to update

and improve such models' predictive capabilities. High-resolution terrain mapping

can also be used to assess surface changes that have occurred since the previous

measurement and identify problem areas for runoff, erosion, and soil moisture.

In the interval between harvest and planting, a digital elevation model (DEM)

may be created for the purpose of isolating areas that have undergone significant

change since the last observation. Planning and preparation for the next season can

be better suited for erosion control practices through the application of predictive

models. Models such as the revised universal soil loss equation (RUSLE) (Renard et

al., 1997), the kinematic runoff and erosion model (KINEROS) (Smith et al.,

1995b), and the Water Erosion Prediction Project (WEPP) (Lane et al., 1992) rec

ognize the strong relationship among soil slope, runoff, and erosion. The control

and reduction of surface runoff is important in irrigated agriculture to optimize the

application of water to both limit off-site impacts and control soil moisture. Infil

tration processes are inextricably linked to runoff and soil moisture, and the assess

ment of surface topography and use of physically based models can aid in
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next-season preparation to maximize the relationship between irrigation application

and soil moisture.

The integration of terrain modeling with preseason field preparation can improve

annual yield, reduce off-site impacts, and be of monetary benefit due to the im

provement in long-term stability of the field and reduced costs associated with ero

sion and the misapplication of water, nutrients, and pesticides. However, the

effective use of terrain models for field preparation necessitates a highly accurate

representation of topography since even relatively small errors can lead to wide

variations in change detection and prediction of field response to management prac

tices. Commonly available digital elevation models (DEMs) such as the U.S. Geo

logical Survey 7.5-minute topographic maps are inadequate for field preparation

both spatially, since they have a 30-m resolution with up to 1/2 contour vertical

error (USGS, 2000), and temporally, since they are formed from outdated photog

raphy.

Recent innovations in the use of interferometric synthetic aperture radar (IFSAR)

and laser-induced detection and ranging (lidar) have offered avenues toward the

rapid and accurate creation of DEMs for intercrop landscape assessment. These

evolving tools rely on active remote sensing platforms to form a detailed depiction

of land surface by sending a signal from the platform (either airborne or satellite)

and decoding the complex signal that returns to the sensor. Lidar has the capacity

to resolve finer details of the land surface than does IFSAR, but IFSAR is more

suitable for mapping large, spatially complex areas. Custom DEMs are often made

using stereo photography, and such techniques can be highly accurate. However,

both IFSAR and lidar are more rapidly acquired and offer higher vertical accuracies

than do traditional stereo photographic techniques.

12.3.7.1 INTERFEROMETRIC SYNTHETIC APERTURE RADAR FOR CREATING DEMS

Terrain mapping with synthetic aperture radar involves decoding the complex in

teraction of multiple images taken from either an airplane or a satellite platform.

Interferometric mapping is used to create DEMs, wherein images are taken of the

same location either at different times or from different locations. The resultant

images "interfere" with one another to create a three-dimensional portrait of the

target area. In single-pass interferometry, two sensors are mounted on a single plat

form (i.e., an airplane) and both sensors target the same location. In repeat-pass

interferometry, the same sensor is passed over the target location after a given period

of time. In the first case the baseline separation that allows for the images to be

interfered is spatial, whereas in repeat-pass interferometry, the baseline separation

is temporal.

Imaging radar has been used to estimate surface height since at least the early

1970s (Graham, 1974). A detailed technical discussion of IFSAR is beyond the scope

of this review; for more information the reader is referred to Rany (1999). A sche

matic representing the case of single-pass interferometry is shown as Figure 12.25.

In this example, an airplane is outfitted with two radar sensors that continually emit

pulses perpendicular to the flight track. In this arrangement the spatial baseline is

known; thus measurement of the azimuthal angle, range, and elevation angle allow

for the absolute determination of the vertical distance to the object. With detailed
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sensor 2

sensor

Figure 12.25 Single-pass interferometric SAR system. Two sensors target the same object on the ground perpendicular to

the flight path. The spatial baseline (A) between the sensors and the geometric configuration [i.e., sensor height (W), imaging

angles [a, and a,) are known]. Given the path lengths of r, and r, as well as phase differences in the signals, the solution

for the target height (A) can be determined.

knowledge of the imaging platform's flying height provided by differential global

positioning systems, the image area can be geo-rectified to Earth's surface.

Commercially available satellite and airborne IFSAR products offer a range in cell

resolution and sensor type. Table 12.4 details the specifications of selected com

mercially available IFSAR platforms. Note the high spatial resolution offered by

many of these systems. The spatial resolution and vertical accuracies of IFSAR plat

forms lend themselves well to surface observations. For example, accuracies of 1 m

in flat regions have been found by Madsen et al. (1995) using TOPSAR data; Gabriel

et al. (1989) used Seasat data to produce DEMs with 10 m resolution to detect
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TABU 12.4

IFSAR

System

TOPSAR

INSAR

STAR-3i

SRTM

SEASAT

ERS-1

JERS-1

Examples of Commerdall

Platfomf

Airborne

Airborne

Airborne

Shuttle

Satellite

Satellite

Satellite

ly Available IFSAR Systems

Frequency

5.3

5.3

10

5.6, 10

1.275

5.3

1.275

look

Angles

{leg)

30-55

30-55

3-60

52

20-26

21-26

35

Baseline

length

(m)

2.5

2.8

1

60

4500

1115

4500

■The airborne platforms are single-pass systems, whereas the satellite platforms are repeat-pass.

changes on the order of 1 cm. Izenberg et al. (1996) were able to use SIR-C and

TOPSAR data to detect small changes in elevation resulting from flood-caused ero

sion and deposition on agricultural fields.

12.3.7.2 LIGHT DETECTION AND RANGING FOR CREATING DEMS

Laser-induced detection and ranging (lidar) is, like IFSAR, an active remote sensing

system. A laser rangefinder mounted on an aircraft emits a continual stream of pulses

to record a swath of data (Krabill et al., 1984). Since the speed of the laser pulse

and the angle of orientation are known, the time of return is used to calculate the

distance from the aircraft to the ground. Laser pulses, being of extremely high fre

quency, are reflected by objects targeted on the ground and penetrate vegetation

and soil considerably less than do the longer-wavelength SAR signals.

Similar to IFSAR, it is critical that the absolute location of a laser rangefinder be

known to generate an accurate depiction of Earth's surface. Toward that end, the

aircraft is outfitted with a differential global positioning system and complex inertial

reference systems to measure the location and orientation of the sensor platform.

These measurements are integrated into the postprocessing of the laser return data

to develop a georeferenced portrayal of the targeted terrain. Elevation estimates

from airborne laser altimeters can be highly accurate, with correspondingly detailed

resolution. Ritchie et al. (1993) reported absolute vertical accuracies of 0.05 m with

0.015 to 0.02-m spatial resolution; Marks and Bates (2000) used a lidar DEM with

3 m spatial resolution with 0.01 to 0.015 m of vertical accuracy in floodplain map

ping for hydrologic modeling.

Limitations in the efficacy of IFSAR and lidar for terrain modeling are present,

and some caveats regarding their use are warranted. First, since SAR images are

coherent, the phase of the signal is retained and used in the determination of top

ographic height. Difficulties arise in devolving phase information in regions of rap

idly changing relief such as escarpments. In this case the two sensors may receive

signals with phase differences greater than 2-rr, due to the steep slope, exceeding the

detectable differences in phase and necessitating phase-unraveling algorithms. Sec

ond, both IFSAR and lidar accuracies are reduced by vegetation, since leaves,

branches, and stems can either partially or totally reflect their signals, causing con

fusion and introducing error to the elevation estimate. Third, laser and radar signals
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penetrate the soil surface to a depth dependent on their wavelength, soil type and

structure, and soil moisture. Fortunately, the impacts of each of these factors are

reduced when they employed in agricultural next-season preparation. Low slopes

and relatively homogeneous soils typify agricultural fields, and soil moisture may be

controlled in advance of a DEM mission to reduce confounding effects.

Both IFSAR and lidar applications are considered emerging technologies in the

field of irrigated agriculture. As precision farming practices evolve, the integration

of detailed spatial data with physically based predictive models and improved farm

ing practices may serve to improve yield and the long-term sustainability of farm

lands. High-resolution DEMs from these remote sensing platforms may be used in

next-season preparation to detail changes in the land surface resulting from the

preceding period's farming practices. They may also be tied to predictive models to

optimize irrigation practices with respect to soil moisture and investigate improved

farming practices to mitigate the effects of runoff and erosion.

12.4 CONCLUSIONS

This chapter offers numerous remote sensing products in response to seven of the

nine information needs identified by corn, cotton, soybean, and wheat growers (Ta

ble 12.1). The most mature products, models, and sensor systems are available for

monitoring and predicting crop yield and crop water status. A measure of success

in these areas is the commercial development of the CWSI and TKW concept and

the implementation of remote sensing approaches for operational international crop

yield assessment by the U.S. Foreign Agricultural Service. These successes are the

result of focused remote sensing research on crop water stress and crop yield based

on field studies conducted for many decades, especially through the LACIE, Ag-

RISTARS, and NASA-funded Landsat research.

Opportunities for deriving crop nutrient status and weed infestation from remote

sensing have recently increased with the development of new hyperspectral and

narrowband multispectral imaging sensors. Many of the approaches for detecting

nitrogen deficiencies are based on the absorption of light in narrow wavebands

associated with leaf chlorophyll content. Image-based analysis techniques capable of

quantifying the location and magnitude of within-field nutrient deficiencies are

under very active investigation. Similarly, weed infestations are often based on de

tecting differences in the spectral signatures of crops and weeds, requiring a hyper-

spectral measurement. However, at present there are no robust, widely available,

consensus-driven methodologies for remotely sensing nitrogen deficiencies or weed

infestations in crop canopies imaged at any scale.

The production of fine-resolution DEMs with high vertical accuracies has become

operational in the last decade with the development of airborne imaging IFSAR and

lidar systems. The recent NASA Shuttle Radar Topography Mission (SRTM) dem

onstrated the technical feasibility of large-scale imaging radar for topography. In the

year 2000, approximately 80% of Earth's land mass was mapped in just over 11

days with a spatial resolution of 30 m and a 10-m maximum relative height accuracy

(NASA, 2001) to meet Interferometric Terrain Height Data (IHTD)-2 specifications.

Such coverage and accuracy should be useful as supplemental information for the
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management of large agricultural areas and underscores the emerging technical ca

pabilities associated with IFSAR.

It has been more difficult to derive information about soil properties from spectral

data because remote sensors provide only a surface measurement, and changes in

the soil surface condition and vegetation cover mask spectral responses due to soil

properties. However, success has been achieved under controlled conditions or over

limited geographic areas. Remote sensing for monitoring insect infestations has been

limited largely to after-the-fact insect damage assessment, but recent development

and launches of multispectral sensors with fine resolution have stimulated efforts to

observe the early stages of pest infestations and areas with potential for pest infes

tation in time for control measures.

For each management information need identified in Table 12.1, there are ex

amples of products that can be derived from imaging systems with wide visible,

NIR, and TIR spectral bands. The Landsat-like spectral bands have been the work

horse for agricultural remote sensing for the past 25 years and will probably con

tinue in that role with the recent successful launch of the Landsat 7 Enhanced

Thematic Mapper (ETM+). However, exciting new technologies for providing crop

condition information were also reported in this chapter, including biochemical

analysis for monitoring crop water stress, shape analysis for weed detection, linear

spectral unmixing for insect detection, combined remote sensing/modeling ap

proaches for crop yield, red-edge analysis for determining crop nutrient and water

status, data fusion of optical and radar measurements to map soil properties, and

use of IFSAR and lidar for digital terrain modeling. The technologies of the future

will probably include sensors to measure natural and genetically induced fluores

cence related to crop vigor (e.g., Chappelle et al., 1984; Liu et al., 1997), more

focus on multispectral data fusion and multidomain indices (e.g., Clarke et al.,

2001), and increased use of remotely sensed data as an integral part of agricultural

decision support systems (e.g., Sommer et al., 1998).

Approaches reported here based on surface reflectance and temperature suffered

from common limitations, including image degradation due to variations in atmos

pheric optical depth, clouds, sun-sensor-surface geometry, and sensor and platform

limitations (e.g., coarse spectral and spatial resolutions, slow image turnaround

times, and infrequent repeat coverage). Because of these, many studies have been

conducted with handheld sensors at the field-plot scale. On the other hand, advances

in sensor design and image processing have addressed, and in some cases overcome,

these limitations. Such advances include image postprocessing models, designed to

minimize effects of sensor geometry and atmospheric variations, platform improve

ments to improve image turnaround and repeat coverage, and sensors designed for

the highest possible spectral and spatial resolutions and coverage. In contrast, ap

proaches for deriving DEM products from active radar and laser signals have cir

cumvented most of the above-mentioned problems associated with optical sensors.

Furthermore, DEMs can be produced between growing seasons, thus avoiding the

frustrations of inadequate image turnaround and repeat coverage.

The sensor and platform technology to provide spectral imagery suitable for

nearly all the applications presented in this chapter is currently available and largely

tested in orbiting systems, but a single system dedicated to agricultural management

does not exist (Moran, 2000). When the system specifications for an orbiting agri-
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cultural sensor are defined and the sensor is built and launched, the real information

needs of farm managers can be met by remote sensing.
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