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Abstract: The PROtotype Biomass and Evaporation (PROBE) model was developed for simulation of

daily plant growth and evaporation (£) rates in natural, vegetated ecosystems (Maas el al., 1992). The

inputs to the model are basic meteorological information and periodic (weekly or bi-weekly) measure

ments of green leaf area index (GLAl) and E. The model uses an interactive approach with two submodels

- a vegetation growth (VG) submodel and soil water balance (SWB) submodel - where the estimate of

GLAl from the VG submodel is used in the SWB submodel to calculate E. In turn, the estimate of E is

used in a rerun of the VG submodel to refine the estimate of GLAL This model was tested based on mete

orological data and measurements of GLAl and E acquired in a cotton (Gossypiwn hirsutum L.) field in

central Arizona. Overall, the modelled and measured values of GLAl and E corresponded well. Results

showed that the time and precision of input data were very important to obtaining accurate estimates of

GLAl and E. The model showed promise for use in scheduling crop irrigations.
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INTRODUCTION

Production of agricultural crops in the arid and semiarid areas of the world is al

most totally dependent on irrigation and, in humid areas, irrigation is increasingly used

to supplement rainfall. Nevertheless, farmers are still searching for ways to determine

the most beneficial time to apply just the right amount of water (termed "irrigation

scheduling"). Accurate irrigation scheduling is in the interests of everyone since over-

watering can result not only in decreased profits for the farmer but also in pollution of

local ground water sources.

One conventional irrigation scheduling method is based on measurements of ref

erence evaporation (£) rates and crop coefficients. Reference E is defined as a rate at
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which water, if available, would be removed from the soil and plant surface of a spe

cific crop called the reference crop and is generally provided to farm managers by lo

cal agricultural meteorological networks. Crop coefficients (Kc) are the ratios of

evaporation of a specific crop to reference evaporation that have been derived from

experimental data. The change in crop coefficient during the crop growing cycle is

called a crop curve. The crop curve and crop reference E are used to monitor daily

evaporative water loss within each cropped field to determine the optimum irrigation

schedule. Though this method provides a means of determining where to irrigate and

how much water to apply, it assumes that the crop is growing at the potential rate and

does not account for such phenomena as within-field differences in soil type, insect

infestations, and nonuniformity in water, pesticide and nutrient applications.

A variety of crop models have come out from the "School of de Wit". One of the

first crop simulation model was ELCROS (Elementary CROp Simulator), (de WIT et

al., 1970), the model was followed by other models which included more than only

meteorological data (FEDDES et al., 1978; de WIT, 1987). ARK1N et al., (1977) and

Hodges (1977) performed the first use of remotely sensed information to crop growth

models.

MAAS et al. (1992) proposed a new method based on a combined remote sens

ing/modelling approach designed to monitor actual (not potential) plant evaporative

water loss. They proposed a plant growth simulation model with a simple soil water

balance equation to simulate both plant biomass production and evaporation. This

model required only the meteorological inputs necessary to compute reference E

(mean daily air temperature, total daily solar radiation, mean relative humidity, daily

mean wind speed) and general information about vegetation. The outputs of the model

were plant biomass, green leaf area index (GLAI), soil moisture and actual E. Periodic

remotely-sensed estimates of GLAI and E were used to supplement the model, thus

increasing accuracy and accounting for such unexpected events as insect. This com

bined approach proved successful for estimation of GLAI and daily E rates from an

alfalfa field near Phoenix Arizona (MORAN et al., 1995).

This report presents results from an application of the PROBE (PROtotype Bio

mass and Evaporation) model to cotton (Gossypium hirsutum L. cv. 'Deltapine 20') at

the Maricopa Agricultural Centre (MAC), 30 miles south of Phoenix Arizona. The

objectives of the study were to 1) refine the model for application to cotton, 2) run the

model over the entire cotton growing season, and 3) compare modelled estimates of

cotton GLAI and E with on-site field measurements. Model simulations were run to 1)

determine the frequency, timing and precision of remotely-sensed measurements

needed to maintain accurate output values, and 2) examine the potential of PROBE for

biomass forecast and irrigation scheduling.
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EXPERIMENT

An experiment entitled Multispectral Airborne Demonstration at Maricopa Agri

cultural Centre (MADMAC) was conducted during the summer growing season in

Arizona 1994 (MORAN et at., 1996). MADMAC was designed to investigate the utility

of remotely sensed data for day-to-day farm management. We acquired images in four

spectral wavelength bands (green, red, near- IR and thermal) periodically during the

cotton growing season (April to October) at MAC using airborne cameras flown at two

altitudes (1200 and 2300 m) above ground level (AGL) for obtaining different size and

scale of test area. Image frames were mosaiced to provide seamless images of MAC

with 2 m spatial resolution for each date of overpass (Tab. I). However, information

from these images was not applied in this article and we used ground measurements

synchronised with the acquisition of remote sensing data.

Table 1. Dates of aircraft overpasses during the MADMAC Experiment and derived estimates of GLAI, E

and crop stage/status on those dates

DOY |

165

187

193

202

214

223

228

235

243

GLAI

0.20

1.61

3.89

3.32

3.33

3.32

3.32

3.32

3.32

7.80

9.03

11.24

6.85

9.30

10.03

11.15

5.01

2.04

Crop Growth Stage and Status

vegetative, 10 % cover

vegetative, 50 % cover

flowers, 85 % cover

flowers, 80 % cover

green bolls, 80 % cover

green bolls, visible leaf wilting

green bolls, some insect infestation

mature bolls, heavy leaf perforator damage

mature bolls, severe leaf perforator damage

MAC, owned and operated by the University of Arizona, is a 770 ha farm located

about 48 km S of Phoenix. A 1.5 ha cotton field (#116) at MAC was chosen for dem

onstration of the PROBE model. This field was centrally located within MAC, allow

ing sufficient fetch for meteorological measurements. However, it was a smaller field

and did not receive the aerial insecticide sprays applied to the larger, more distant

fields; this resulted in some insect damage to the crop, especially near the end of the

season. Nonetheless, the cotton in Field 116 was flood irrigated on a regular basis, like

all other cotton fields in the region. The farm management staff at MAC kept records

of farm management practices such as irrigation amounts and timing, fertiliser and

pesticide applications, cultivation practices, insect infestations, planting/harvest times

and crop phenology. Each week, we measured such plant parameters as GLAI, percent

cover, plant height and biomass of selected cotton fields at MAC. Five plants were

weighed in each sample site and the plant of median weight was taken to the labora

tory for measurement of wet and dry biomass and GLAI. The weight of the wet bio-
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mass was measured immediately, dry biomass weight was measured after 48 hours in

an oven at 68C, and GLAI was measured using a light-sensitive leaf area meter. During

each aircraft overpass, we made an ocular estimate of the percent cover and plant

height of all cotton fields, including Field 116.

A Bowen-ratio device was installed in the centre of Field 116 with instrumenta

tion to measure hourly values of net radiation, soil heat flux (Radiation Energy Bal

ance Systems, Seattle, Wash.; Mode! Q6 for net radiometer and HFT-3 for soil heat

flux plates) and the Bowen ratio (Campbell Scientific, Logan, Utah) throughout the

growing season. There was also an onsite Arizona meteorological station - AZMET

(BROWN, 1989) providing hourly values of solar radiation, wind speed, air tempera

ture, and vapour pressure throughout the year.

THE MODEL

The submodels of the PROBE model have been described in detail by Maas et al.

(1992) and MORAN et al. (1995) and the model "calibration" procedure used to incor

porate the remotely sensed data has been described by MAAS (1993a,b). The descrip

tion of PROBE given here is sufficient for understanding this application and focuses

primarily on the refinements made to convert the model application from alfalfa to

cotton.

The PROBE model is based on the concept that field E is determined by the de

gree to which the E of the vegetation canopy approaches potential E (£» and the de

gree to which the vegetation canopy covers the region. Hence, the PROBE model uses

two submodels - a soil water balance submodel and a vegetation growth submodel - to

estimate the available soil water fraction in the rooting zone (fSH) and the change in

GLAI, respectively. With this information and a basic understanding of the relation

between EIE,, and fn. and GLAI, daily E was computed in PROBE using the following

relationship

E = EPFswFcc (1)

in which Fsw is the ratio EIEP from Fig. 1A (ROSENTHAL et al., 1987) and FGC is the

ratio E/Ep from Fig. IB (RITCHIE, BURNETT, 1971). Ep was computed from routinely-

available meteorological observations (average daily air temperature, average daily

dew point temperature, average daily wind speed and total daily solar irradiance) using

the combination equation described and validated by Van Bavel (1966).

Eq. (1) was formulated to be simple, with the assumption that it would be updated

with periodic E and GLAI measurements. As such, under certain conditions [e.g., when

the field is flooded (Fsw ~ 1.0) and the crop is immature (Fcc < 1.0)], E will necessarily

be estimated to be less than Ep, even though on-site measures of E using conventional

means, such as Bowen ratio, would estimate E = Ep. This is because Eq. (1) is a meas-
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Fig. I. Relations between the ratio ET/ETp and A) available soil water fraction (ASWF) and B) green leaf

index (GLAI)

ure of water loss from the rooting zone and neglects evaporation from the soil surface.

On the other hand, under typical conditions (when the soil surface is dry or when the

crop is near full-cover), Eq. (I) properly represents the dynamics of crop water flux.

This concept will be revisited when the modelled estimates of E (Em) are compared to

measured by the Bowen ratio apparatus (EBr) in later sections.

The PROBE model computes changes in soil water and E on a daily time step

using the stepwise process depicted in Fig. 2. Daily values of GLAI for evaluating FGc

were obtained from the vegetation growth submodel. An initial amount of soil water

was specified at the start of the simulation and, with each irrigation, Fsw was reset to

1.0 based on the assumption that the flood irrigation filled the soil profile to field ca

pacity.

The formulation of the vegetation growth submodel is similar to that used in ear

lier agricultural crop growth models (MAAS, 1992; MAAS et al., 1989). Photosyntheti-

cally active radiation (PAR) was assumed to comprise 45 % of the total daily solar ir-

radiance (BROWN, 1969). PAR absorbed by the vegetation canopy (APAR) was com

puted using the relationship

APAR = PAR [l- (2)

where k is the extinction coefficient (CHARLES-EDWARDS et al., 1986). Production of

new biomass (AS) and increase in GLAI (AGLAI) were determined using the relation

ships

and

= APARe.f(Ta)

AGLAI = ABfASL

(3)

(4)
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Weather Data:

Irradiance

Air temperature

Vapor pressure

Wind speed

Vegetation growth submodel Soil water balance submodel
PROBE

Initialize GLAI

Calculate APAR

Calculate new biomass

production

Determine partitioning of

new biomass to leaves

Initialize soil water (SW) I

/ Calculate potential V
evaporation rate (Ep) j

T
Calculate E from Ep

SW = SW-E

Within-Season Calibration

Change initial condition

and/or parameter values

if simulated and observed

GLAI or E are different

Simulated

GLAI and E

Compare Remotely-sensed
GLAI and E

Fig. 2. Sequence of steps in computing E and GLAI within the PROBE soil waler balance (SWB) and ve

getation growth (VG) submodels and the iterative calibration procedure

where the parameter e is the "energy conversion efficiency" (Charles-Edwards et

al., 1986) and/(ro) is a function that reduces the rate of biomass production at subop-

timum air temperatures (7*,,). New leaf area (AGLAI) in the canopy was determined by

partitioning a model-derived fraction ofAB to leaf biomass (leaf partitioning fraction -

fp) and multiplying this quantity by the specific leaf area {Asu the m2 of leaf area per

kg of leaf biomass) of the vegetation. On the day of its formation, new leaf area is as

signed a lifespan in terms of accumulated degree-days that determines haw long it will

live prior to senescence from the vegetation canopy. The submodel maintains a run

ning total of degree-days (computed from average daily air temperature) to determine

what portion of the canopy leaf area is alive or dead on any given day of the simula

tion. If the calculated age of a leaf is greater than the lifespan, then that leaf tissue is

considered to have senesced from the canopy and the dry mass associated with senes

cence is subtracted from the accumulated above ground dry mass.

For this cotton variety, the observed GLAI values for a long period did not de

crease and the default parameter, which controls the leaf lifespan, was specified high.

The leaf-partitioning fraction (fp) which controls the production of new leaf area was

taken to be 0.47, the specific leaf area (ASL) was assumed to be 0.015 m2g''. The ini-
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tial condition for soil water content was estimated to be 150 mm, the extinction coeffi

cient (it) for cotton was 0.45, and the energy conversion efficiency (e) was 1.63 g-MJ"1.

These coefficients were estimated based on tests of the model for potential growth of

this cotton species under conditions at MAC.

An iterative numerical procedure (Maas, 1993b) is built into the PROBE model

to manipulate the initial conditions and/or parameters so that they converge on values

that result in the model simulation fitting the set of remotely sensed estimates (Fig. 2).

Periodic estimates of E were used to calibrate the soil water balance submodel and pe

riodic estimates of GLAI were used to calibrate the vegetation growth submodel. In the

soil water balance submodel, the initial value of soil water and the value of field ca

pacity were manipulated to bring the E simulation into agreement with the corre

sponding observations. In the vegetation growth submodel, the initial value of GLAI,

fp, and the value of the parameter responsible for leaf lifespan were manipulated to

bring the GLAI simulation into agreement with the corresponding observations.

In simulating evaporation and biomass production using this model, the vegeta

tion growth submodel was accessed first and calibrated using the remotely sensed

GLAI estimates. The resulting set of simulated daily GLAI values were then used in an

iteration of the soil water balance submodel, which was calibrated using the remotely

sensed E estimates. Then, the vegetation growth submodel was rerun to incorporate

estimates of (FSw) in the simulation of GLAI and biomass, where

' = APAREf{Ta)Fsw (5)

and

AGLAf^ABJpAsL (6)

METHODS AND RESULTS

The PROBE model was run for the cotton in Field 116 based on meteorological

data (average daily air temperature, average daily dew point temperature, average daily

wind speed and total daily solar irradiance) obtained from the local AZMET station

(BROWN, 1989). Since spectral data from MADMAC were not available at this time,

we chose to conduct this demonstration of the PROBE model with periodic on-site

estimates of £ and GLAI, rather than remotely sensed estimates. This was a reasonable

approach since the objectives of this analysis were to test the performance of the

model for cotton, and to evaluate the sensitivity of the model to the frequency and

timing of remotely sensed inputs. Thus, values of GLAI and E for supplementing the

PROBE model runs were taken from on-site measurements as described in the next

two sections. Though GLAI and E data were available for nearly every day of the ex

periment, we used only the values corresponding to the days of aircraft overpasses
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(Tab. 1) for input to PROBE. This was done to simulate the frequency and timing of

inputs under normal conditions.

DERIVED GLAI

GLAI measurements were made in several of the large cotton fields during

MADMAC, but not in Field 116. However, for all MAC fields, a drive-by, visual es

timation of plant height and fractional vegetation cover was made during each over

pass listed in Tab. 1. In order to estimate GLAI of Field 116, we derived a relation

between measurements of GLAI and plant cover (CP) for selected MAC cotton fields

(Fig. 3A), where

GLAI = -1.23 + 5.69CP (7)

with r2 = 0.97 and standard error 0.29. Eq. (7) was then used with the periodic visual
estimates of CP in Field 116 to derive values of GLAI for Field 116 (Fig. 3B). All sub

sequent references comparing GLAI of Field 116 with model output actually refer to

5
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5

-123 + 569X

r' = 0 97
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5
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-9 *

0.2 0.4 0.6 0.8

Fractional Plant Cover

160 180 200 220 240
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Fig. 3. A) A relation between GLAI and Fractional

Plant Cover (Cp) derived from measurements made

in several MAC cotton fields, where GLAI = -1.23

+ 5.69C,,, r2 = 0.97 and standard error = 0.29. B)

Values of GLAI (solid dots) estimated for field 116

from estimates of Cp made during the 1994 grow

ing season. C) Values of E measured using the

Bowen ratio instruments in field 116 during 1994.

The solid line represents the continuous daily

measurements and the solid dots represent values

of E on the 9 days corresponding to aircraft over

passes. Arrows indicate flood irrigations on DOYs

147, 174, 180, 192, 200, 210, 217, 223, 228, 235

and 237
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GLAI derived from these visual estimates of cover. As such, it will be termed "derived

GLAP' rather than "measured GLAF.

The cotton grown in Field 116 was infested with cotton leaf perforator (Buccula-

trix thurberiella) just before reaching maturity near DOY 214. The leaf perforator lar

vae consume the succulent cotton leaf tissue between the leaf surfaces, leaving behind

the dried epidermis of one side of tire leaf. Thus, the outside dimension of the leaf

doesn't change much, but the effective GLAI and transpiring tissues can be reduced to

near zero. In Field 116, infestation occurred before CP reached 100 % (DOY 230) and,

by DOY 250, the entire canopy was infected and the crop was decimated. This caused

our derived estimates of GLAI after DOY 230 to be higher than the actual GLAI be

cause our visual estimates of CP were for total vegetation cover not green vegetation

cover.

MEASURED E

Though the planting date of the cotton was day of year (DOY) 102, the Bowen

ratio measurements didn't begin until DOY 165 and then ran continuously through

DOY 246. Flood irrigations were made on DOYs 147, 174, 180, 192, 200, 210, 217,

223, 228, 235, and 237 (see arrows in Fig. 3C). Over the growing season, E increased

with the increase in GLAI and decreased shortly after the last irrigation and GLAI ob

servation (DOY 243). E increased on the day of each irrigation and then declined

steadily until the next irrigation. There were other more subtle trends in the data re

lated to such meteorological conditions as high winds, cloudy skies and high air tem

peratures. Because of the frequent irrigations, evaporation rates were near potential for

most of the growing season.

MODELLED GLAI AND E

The PROBE model was tested under typical data-acquisition conditions. That is,

we used the measured E and derived GLAI values on each overpass day, starting on the

first day of available Bowen ratio data. This resulted in 9 values of E and GLAI for the

days designated in Tab. 1, with a time interval between available E and GLAI inputs

ranging from 5 to 22 days. As described in previous sections and Fig. 2, the model

works in an iterative fashion beginning with an estimation of GLAI refined by inter

mittent inputs of GLAI, assuming E is at potential. Then, GLAI is used as an input to

the soil water balance submodel to compute actual E and, subsequently, the vegetation

submodel is rerun using Eq. (5) and (6). The results of these intermediate steps are

presented in Fig. 4a-4e.

GLAI and biomass data presented in Fig. 4A (solid lines) are the results of the

first vegetation simulation based on the vegetation submodel, the intermittent values of

GLAI (squares), and the assumption that E = EP. The modelled best fit showed a slow
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Fig. 4. A) Estimates of GLAl (dot line) and biomass (bold line) based on the first run of the vegetation

submodel (assuming E= Ep); the solid dots represent the input GLAl values. B) The Green Cover Factor

(Fcc) computed by PROBE indicating the increase from 0.0 near the time of emergence to 1.0 near the

time of full vegetation cover (DOY 200). C) Values of E computed with PROBE (bold line), measure

ments of E with the Bowen ratio instruments (dot line) and input values of E (solid dots). D) The Soil

Water Factor (FSW) computed by PROBE, where deviations from 1.0 occurred immediately before irri

gations and at the end of the season. E) Estimates of GLAl (dot line) and biomass bold line based on the

second run of the vegetation submodel, which incorporated values of FSW; solid dots represent the input

GLAl values
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growth pattern, but ever-increasing values of GLAI and biomass as could be expected

for a healthy crop. The FCc increased steadily from 0.0 near the time of emergence to

1.0 on DOY 200, near the time of 80 % vegetation cover (Fig. 4B). The mean absolute

difference (MAD) between the derived and modelled values of GLAI for the 9 over

pass days was on average of 0.32. High MAD values (0.74 and 0.54) occurred early in

the season as the PROBE model attempted to fit the steep rise in GLAI values from

DOY 187 to 202. The highest error (MAD value 1.29 on DOY 193) was possibly due

to error in derived GLAI value, since it was substantially higher than the values on

DOY 202 and thereafter.

The next stage in the PROBE simulation was to compute values of E based on the

soil water submodel, computations of Ep, intermittent values of actual E (n = 9), and

the daily GLAI values simulated by the vegetation submodel. In the early season, crop

cover increased steadily from 0 to about 80 % cover {FGC 1.0 on DOY 200) resulting

in a steady increase in values of E, with minor fluctuations due to irrigations and

weather conditions (Fig. 4C). E started to decline slightly after DOY 217 due to insect

infestation and senescence, and declined rapidly after the last irrigation on DOY 237

and last GLAI observation on DOY 243.

A comparison between the modelled E (Em) and the measured E from the Bowen

ratio instrumentation (EBR) shows the overall discrepancies between these values under

different conditions (Fig. 4C). After the irrigation on DOY 174, there was an increase

of EBr to over 12 mm and an increase of Em to over 7 mm. The Em value appeared to be

underestimated because the PROBE model does not account for the wet soil surface

and adjusts the potential E at that stage for the low vegetation cover (Eq. 1). Further

more, EBR exceeded the value of EP computed by nearby AZMET instrumentation (Ep

10 mm). The same circumstances occurred for the next two irrigations on DOYs 182

and 192. However, for the latter dates, the vegetation cover was 80 % and the Fcc

value was near 1.0, so the differences between Em and EBr were smaller.

From DOY 200 till the last irrigation (DOY 237), FGC was 1.0 and the vegetation

was well watered (Fig. 4D). Fsw was near 1.0 till DOY 245, with some declines at

DOYs 168-173, 189-191 and 208-209. These declines occurred just before the next

irrigation and were caused by drops in evaporation rates. Thus, the differences be

tween Em and EBR over the period DOY 200-259 were caused primarily by the differ

ences between EBR and £>. After the last irrigation on DOY 237, Em decreased gradu

ally and EBr dropped dramatically. The MAD of the measured and modelled values of

E for the 8 measurement days (excluding DOY 243) was 1.57 mm. The MAD for

DOY 243 was large (£m = 6.8 and EBR 2.0 mm, MAD = 4.8 mm) because the inputs to

the model did not reflect the true conditions in the field. That is, the derived GLAI val

ues were erroneously high (as discussed previously), yet the leaf perforator damage

was so great that the EBR value was nearly zero. In response to these conflicting inputs,

the PROBE model estimated E to be lower than for a potential crop, but not as low as

that measured by the Bowen ratio instruments.
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The comparison between the sum of modelled and measured E between irriga

tions is presented in Table 2. Em values were less than EBr from DOY 174-200 (be

cause Fee < 1-0), Em was nearly equal to EBr for the period of lush, healthy growth

(DOY 200-235), and Em was greater than EBR after DOY 237 when leaf perforator

damage was extreme.

Table 2. Modelled (£,„) and measured (EBr) cumulative evaporation over the days between irrigation

events in MAC Field 116

DOY Em, mm | Ebr, mm

174-180 39.2 62.00

180-192 86.0 111.50

192-200 62.5 69.11

200-210 76.4 54.90

210-217 59.5 55.30

217-223 44.0 39.80

223-228 40.0 45.20

228-235 51.9 51.00

235-237 137 9^40

In the final stage of PROBE, the FSw values calculated by the soil submodel were

input into computation of GLAI and biomass in a rerun of the vegetation submodel

(Eq. 5 and 6). This resulted in an increase of calculated initial GLAI value by the

model and small increase of GLAI values up to DOY 190. On DOY 190, Fsw value

dropped to 0.8 and caused a depression in the GLAI values. The GLAI curve eventually

fit the observation on DOY 214. The decreases in GLAI after DOY 246 and biomass

after DOY 257 were associated with no further irrigations after DOY 237 (Fig. 4E)

and the decrease of Fsw after DOY 245 (Fig. 4D). The decrease in end-of-season bio

mass after implementation of the soil water submodel was nearly 155 g-rrf2. Based on

field observations made weekly at the site, this trend was more realistic than the trend

exhibited in the previous iteration (Fig. 4A). The influence of E rates on the recalcula

tion of GLAI in the vegetation submodel is readily apparent through comparison of

Fig. 4a and 4e.

SENSITIVITY OF MODEL TO FREQUENCY AND TIMING OF GLAI AND E

INPUTS

The PROBE model is dependent on intermittent inputs of GLAI and E from either

in-situ measurements or remote sensing. To save time and money, it is best to mini

mise the required frequency of such inputs while maintaining high accuracy of model

output. Toward this goal, we ran the model with fewer than the 9 available GLAI and

E inputs, and compared the results with the field estimates of GLAI and E. The mean
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absolute differences (MAD) between the n-input estimates of GLAI and E and the field

estimates are summarised in Tab. 3. When the model was run with only one input

value of GLAI and E, the results were poor and the MAD values were as high as 1.59

for GLAI and 4.63 for E. If the one observation of GLAI was early in the season, the

1-input GLAI estimates were underestimated. If the one observation of GLAI was late

in the season, GLAI values were overestimated. For example, using single GLAI and E

observations made late in the season (DOY 223, Fig. 5A) the GLAI simulated curve

(first iteration) goes very close to the observation point on DOY 223, yet overesti

mates GLAI at the beginning of the season. The single E input for DOY 223 was high

and resulted in a seasonal overestimation of E (MAD 1.59). In the next iteration of the

vegetation submodel which included feedback from the soil submodel, GLAI and bio-

mass were still overestimated (MAD 0.76 for GLAI) (Fig. 5B).

Table 3. Comparison of the results for GLAI and cvapotranspiration estimates using a limited number of

input observations. MAD is the mean absolute difference between the n-input modelled and measured

values of E and GLAI

Number

of observations

1

1

2

2

3

3

9

DOY of observation

165

223

165 187

165 223

165 202 223

187 202 223

165 187 193 202 214

223 228 235 243

MAD

GLAI

1.59

0.76

0.78

0.90

0.52

0.47

0.32

MAD

E

mm-day"1

4.63

1.59

2.40

2.86

1.95

1.73

1.57

Results were similar when the model was run with only two input values (Tab. 3).

However, better results were obtained when there were two observations at the begin

ning of the season than for one at the beginning and one late in the season. For exam

ple, with GLAI observations on DOY 165 and 223, the MAD for GLAI was 0.90. GLAI

was underestimated at the beginning of the season, resulting in an underestimation of

E (MAD 2.86). When two GLAI and E values were input from early in the season

(e.g., DOY 165 and 187), the MAD for GLAI was 0.78 and MAD for E was 2.4.

Best results were obtained when the model was run with three inputs. Two exam

ples are given: using inputs from DOYs 165, 202 and 223 and from DOYs 187, 202

and 223. The modelled GLAI curve based on observations from DOYs 165, 202 and

223 underestimated GLAI values from DOY 150 to 217 (Fig. 6A). On DOY 202, the

derived GLAI value was 3.32, the 9-input modelled value was 2.95, and the 3-input

modelled value was 2.60. The maximum GLAI value (on DOY 250) was 3.84 for the

3-input run and 3.41 for the 9-input run (on DOY 246). In this case, because of the
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Fig. 5. A) PROBE model estimates of daily GLAl (bold line) from the first run of vegetation growth (VG)

submodel, based on one input value of GLAl and Eon DOY 223. AJso included are the results based on 9

inputs (dot line). B) PROBE estimates of GLAl from the second iteration of the VG submodel, which in

cluded feedback from the soil water (SW) submodel
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Fig. 6. PROBE model GLAl estimates based on three inputs (bold line) compared with results based on 9

inputs (dot line). Two examples are given: using inputs from A) DOYs 165. 202 and 223 and B) DOYs

187,202 and 223

well-watered conditions of the growing crop, E values for the end of the season were

the same for both the 3- and 9-input models. For this three input model, the MAD

value for GLAl was 0.52 and for E 1.95. The best 3-input fit to the modelled 9-input

simulation of GLAl was based on inputs from DOYs 187, 202 and 223 (Tab. 3). The

values of GLAl up to DOY 173 were slightly overestimated, but after this time, the

values matched very well (Fig. 6B). The MAD value was 0.47 for GLAl and 1.73 for



Demonstration ofa remote sensing/modelling 83_

E. The overestimation of GLAI at the beginning of the season gave higher biomass

values, which at the maximum (DOY 255) differed from the 9-input value by 105

gm"2. The difference in GLAI value at the maximum, which was at the DOY 246, was

0.12.

SENSITIVITY OF MODEL TO ACCURACY OF OBSERVED GLAI VALUES

The PROBE model output will undoubtedly be affected by the accuracy of the

intermittent inputs of GLAI and E. To test this sensitivity, we computed the standard

deviation (sd) of the GLAI measurements based on our multiple samples from selected

fields for each day and ran the model under two conditions: 1) for inputs of GLAI mi

nus one sd (GLAI - Isd) and 2) for inputs of GLAI plus one sd (GLAI + \sd). For

GLAI- Isd, the GLAI inputs ranged from 0.18 (DOY 165) to 3.49 (DOY 193) with

a value of 2.83 from DOY 202 to 243. In this PROBE run, the Fcc factor was less than

1 for the entire growing season. It resulted in an underestimation of E values, with

a MAD between modelled and measured E of 1.90 mm. The evaporation rate on DOY

170 declined to the value of 2.0 and FSw was 0.7, resulting in a decrease in biomass of

160 g-nT2.
For condition 2 (GLAI + Isd), the GLAI inputs ranged from 0.22 (DOY 165) to

4.3 (DOY 193) with a value of 3.81 from DOY 202 to 243. The vegetation submodel

was influenced by the high GLAI input on DOY 193; thus, the slope of the GLAI curve

was very steep until DOY 193, followed by decline to the value of 3.81 on DOY 202.

In this case, the parameter, which controls the leaf lifespan was reinitialised by the

model to be low. Thus, the modelled biomass declined to zero on DOY 205.

BIOMASS FORECASTING AND IRRIGATION SCHEDULING USING PROBE

The PROBE model may prove useful for biomass forecasting and irrigation

scheduling. To investigate this application, we ran PROBE for a hypothetical date in

the middle of the season for which the user had only early-season information on E

and GLAI and was trying to determine the time of next irrigation. That is, the growing

season was assumed to be from DOY 120-275, the user had only the first two obser

vations of GLAI and E on DOYs 165 and 187, and irrigations hail already been applied

on DOYs 147, 174, 180 and 192. The hypothetical date that this simulation was run

was DOY 193 and the hypothetical farm manager was trying to schedule the next irri

gations.

In scenario one (dot line, Fig. 7A), irrigations were scheduled for DOYs 200, 210,

217, 223, 228, 235 and 237 (as actually applied to Field 116) and the crop grew at the

potential rate (where Fsw = 1.0 throughout the season). In scenario two (dashed line),

the irrigation on DOY 200 was skipped and, in scenario three (bold line), the irriga

tions on DOYs 200 and 210 were skipped. For scenario two, E decreased to below 3.0
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Fig. 7. A) PROBE estimates of GLAI based on 2 inputs of GLAI and E (solid dots) with irrigations on all

nine days (dot line), skipping the irrigation on DOY 200 (dashed line) and skipping the irrigation on

DOYs 200 210 (bold line). B) PROBE biomass estimates for same scenario as Fig. 7A. C) PROBE evapo

ration estimates for same scenario as Fig. 7A

mm just after DOY 200 (Fig. 7B). Fsw dropped from 1.0 to 0.6 and there was a steady

decline in £ until the next irrigation on DOY 210. In this scenario, the GLAI values did

not regain the potential level. On DOY 256, the maximum value of GLAI was lower

[GLAI = 4.42) than for scenario one {GLAI = 4.84). Due to the decrease of Fsw after

DOY 246, biomass decreased by over 100 gm"2 on DOY 260.

In scenario three (skipping irrigations on DOYs 200 and 210), E dropped below 3

mm, (Fig. 7C), resulting in a large drop in Fsw and a large difference in GLAI values

compared to the potential (Fig. 7A). The maximum value of GLAI was 3.8 on DOY

259 and the maximum biomass on DOY 265 was 775 gm"2 (225 gm"2 lower than the
biomass estimated for scenario one).

DISCUSSION AND CONCLUSIONS

The design of the PROBE model with interactive soil and vegetation submodels

results in several advantages for crop growth simulation. First, the input of E into the

second run of the vegetation growth model resulted in much improved estimates of

GLAI and biomass. Second, the model has potential for such applications as irrigation

scheduling, since it gives the user both information on water loss to date and on po

tential crop growth based on future irrigations. Finally, the iterative tuning of model
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parameters based on periodic inputs of GLAI and E allows the model to be both simple

(requiring few inputs) and accurate. Since there is evidence that both GLAI and E can

be estimated with remotely sensed data (MORAN et al.t 1995), there is also potential

for the PROBE model to be applied over large areas in a Geographic Information

System (GIS).

The work presented here investigated the frequency, timing and precision of

model inputs required maintaining output accuracy. Results showed that accurate es

timates of daily E, GLAI and biomass could be obtained with only three inputs of

GLAI and E during the cotton growing season. However, the timing of these three

measurements was crucial. Based on our analysis, the optimal times for model inputs

of GLAI and E would be early in the season (e.g., between DOY 165 or 187), near the

time of maximum flowering (e.g., DOY 202), and near the time of maximum green

bolls (e.g., DOY 223). The latter two times are critical because the dates of maximum

flowering and maximum green bolls have some influence on the future cotton yield.

The PROBE estimates of daily GLAI, biomass and E were very sensitive to the

precision of the periodic GLAI and E measurements that were used as input. A varia

tion of one standard deviation in GLAI values resulted in an average underestimation

of £ values by 1.9 mm. Errors of this magnitude are unacceptable for use in scheduling

crop irrigations.

Overall, the modelled and measured values of E corresponded well, particularly

when the crop fully covered the ground. The largest differences between Em and EBr

values were not necessarily due to weaknesses in the model, but rather to discrepan

cies between the definitions of Em and EBR and discrepancies between EBr and the

AZMET-derived values of potential E (EP). By definition in Eq. (1), Em can't equal £>

before the crop reaches full vegetative cover because FGc will be less than 1.0; thus,

there will be occasions (e.g., when the field is flooded and the crop is immature) when

EBr will equal Ep, and Em could be close to zero. Furthermore, it was common for the

EBr estimates to exceed EP computed from the AZMET meteorological data, resulting

in discrepancies between EBr and Em even when the vegetation fully covered the soil

surface.

A weakness in PROBE became apparent at the end of the cotton season when the

leaf perforator infestation was particularly devastating. The model assumed controlled

leaf senescence based on input information regarding the GLAI and E measurements

and the last date of irrigation. Toward the end of the cotton growth in Field 116, the

derived estimates of GLAI was still high and the field was recently irrigated, but the

EBr measurement indicated that the plants had stopped transpiring due primarily to in

sect damage. With this conflicting information, PROBE estimates of Em were too high

for the end of the season. The model logic could be refined to account for such cata

strophic conditions.
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STRESZCZENEE

Modelowanie wzrostu roslin i terminu nawodnieri z zastosowaniem teledetekeji

Slowa kluczowe: model PROBE, ewaporacja, GLAI, bilans wody w glebie, prognozo-

wanie wzrostu roslin

PROtotypowy model Biomasy i Ewapotranspiracji (PROBE) zostat utworzony do

symulacji dziennego przyrostu biomasy (B) i ewapotranspiracji (£) dla naturalnych

roslinnych ekosystemow (MASS et al., 1992). Danymi wejsciowymi do modelu sa,

podstawowe dane meteorologiczne i okresowe dane wskaznika powierzehni zielonej

lisci (GLAI) oraz ewapotranspiracji E. Danymi wyjsciowymi sa, codzienne wartosci

GLAI, E, biomasa i wilgotnosc gleby. Model sklada si§ z dwoch submodeli. Pierwszy

dotyczy wzrostu roslin, drugi - bilansu wodnego gleby, w ktorym symulowana war

tosc GLAI z submodelu pierwszego wprywa na obliczenie ewapotranspiracji w sub

modelu drugim. Nast^pnie symulowana wartosc E wprywa na ostateczna. symulacj?

GLAI. W wyniku pracy model zostal skalibrowany dla bawehny dla calego okresu

wzrostu uprawy, a nast^pnie modelowane wartosci GLAI i E zostary porownane

zwartosciami uzyskanymi z badan terenowych. W wyniku symulacji modelu zostala

okreslona doktadnosc wyznaczenia GLAI i E w zaleznosci od cz?stotliwosci, okresu

i precyzji wynikow GLAI i E uzyskanych teledetekcyjnie. Zostala zbadana przydatnosc

tego modelu do prognozy wielkosci biomasy i terminu nawodnieii.
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