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DETERMINING SIGNIFICANCE AND PRECISION OF ESTIMATED PARAMETERS

FOR RUNOFF FROM SEMIARID WATERSHEDS1

H. B. Osborn, L. J. Lane, and R. S. Kagan2

ABSTRACT. Significant parameters for predicting thunderstorm runoff from small semiarid water

sheds are determined using data from the Walnut Gulch watershed in southern Arizona. Based on

these data, thunderstorm rainfall is dominant over watershed parameters for predicting runoff from

multiple linear regression equations. In some cases antecedent moisture added significantly to the

models. A technique is developed for estimating precision of predicted values from multiple linear

regression equations. The technique involves matrix methods in estimating" the variance of mean pre

dicted values from a regression equation. The estimated variance of the mean predicted value is then

used to estimate the variance of an individual predicted value. A computer program is developed to

implement these matrix methods and to form confidence limits on predicted values based on both a

normality assumption and the Chebyshev inequality.

(KEY WORDS: regression analysis; hydrology; parameter; estimation; individual prediction;

precision) ^

INTRODUCTION

Hydrologists in water resources investigations constantly look for significant relationships

between hydrologic variables. At the same time, engineers look for usable design tools. One

reference listing a need for hydrologists and engineers to be involved in water resources invest

igations is a report published by the USDA-SCS [ 1970]. Of particular interest in the South

west is the need for significant relationships to predict runoff on semiarid watersheds. Also, of

vital interest is the precision with which estimated parameters can be predicted from signifi

cant variables in hydrologic models. In this paper parameters that should influence runoff

from semiarid watersheds are investigated for significance. Then the precision of estimates of

runoff is determined, using the significant parameters in regression equations. Data from the

Walnut Gulch Experimental Watershed in southeastern Arizona are used in the analyses.

EXPERIMENTAL WATERSHED

The Southwest Watershed Research Center of the Agricultural Research Service operates

the 58-square-mile Walnut Gulch Experimental Watershed in southeastern Arizona. This

gently rolling rangeland watershed is an ephemeral tributary of the nortlWlowing San Pedro

River (Figure 1). The upper one-third of the watershed is primarily grassland; the lower two-

thirds of the watershed is primarily brush covered. The watershed is typical of much of the

1 Paper No. 71043 of the Water Resources Bulletin (Journal of the American Water Resources Associa
tion). Discussions are open until December I, 1971. Contribution of the Agricultural Research Service. Soil
and Water Conservation Research Division, USDA, in cooperation with the Arizona Agricultural Experi

ment Station, Tucson, Arizona.

Research Hydraulic Engineer, Hydrologjst. and Engineering Technician, respectively. Southwest Water

shed Research Center, Tucson. Arizona 85705.
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grazed rangelands throughout the Southwest. There are 97 weighing-type recording rain gages

and 20 permanent runoff-measuring structures within the 58-square-mile watershed. A more

detailed description of the watershed and instrumentation was given by Rcnard (1970).
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Figure 1. The Walnut Gulch watershed.
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PRECIPITATION

Sellers [I960], Osborn and Reynolds [1963] and others have reported on the nature of
precipitation in the Southwest. There are two rainy seasons. Summer precipitation is charac
terized by high-intensity thunderstorm rainfall of limited areal extent. Atmospheric moisture

for these storms flows into the region from the Gulf of Mexico. The combination of moist air
aloft and convective heating produces air mass thunderstorms that occur more or less random
ly within large regions. Almost all rangeland runoff in the Southwest results from summer
thunderstorms; thus, these storms are of primary interest to hydrologists involved in rangeland

runoff studies in the Southwest.
Winter precipitation, on the other hand, is generally low-intensity rain or snow covering

relatively large areas. Winter precipitation results from Pacific storms which have lost most ol
their moisture before reaching eastern Arizona. More often than not, these storms bring only
cloudiness to southeastern Arizona with no measurable precipitation. •

SIGNIFICANT VARIABLES

Many precipitation and watershed parameters affect runoff. These include volume and
intensity of rainfall, antecedent rainfall and runoff, watershed area, vegetation and soil,
channel slope, and the ability of the channel and watershed to abstract water from surface
runoff Many of these characteristics are not entirely independent. They become variables
when they differ between and during actual storm events. Some parameters seem to be more
important than others and may mask the variation of less important parameters. For example,
thunderstorm rainfall for short durations may vary from 0 to 10 inches per hour both in time
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and space during an individual event on an individual watershed. Since thunderstorms arc of

relatively short duration, infiltration, on a single soil type, might be expected to vary less than

one-tenth as much as rainfall during the storm. Similarly, the actual difference in runoff from

differences in vegetation under instances of extreme rainfall variability may be relatively small

even though grass- and brush-covered watersheds appear very different to the eye. It is impor

tant to understand all the possible variables in watershed runoff, but it is much more impor

tant to determine which ones give meaningful results in rainfall-runoff determinations.

Osborn and Lane [1969] used multiple linear regression to investigate runoff from very

small watersheds (Vi to 11 acres) on Walnut.Gulch for three years of record. Variables in rain

fall explained 70 to 80 percent of the variability in peak discharge. Also, of the many param

eters that were investigated, only antecedent rainfall improved the basic rainfall-runoff

equation significantly, and then only on 1 of the 4 watersheds. Watershed parameters such as

slope and area did not add significantly to the relationship. In other words, rainfall completely

dominated rainfall-runoff relationships, at least within the accuracy of the data and for those

variables that were measured.

In this paper, with 3 added years of record, multiple linear regression (MLR) was again

used to investigate which variables might add significantly to rainfall-runoff relationships. The

analyses were made on the same group of 4 very small watersheds (!£ to 11 acres) and also on

a 6-square-mile watershed within the Walnut Gulch watershed. Similar results were obtained

for the 4 very small watersheds with rainfall the only significant variable. 4

When data from the 4 watersheds were lumped together, the equation with the most

significant input variable was

Q = 2.8 P, $ • 0.53

with R2 = 0.76 (1)

and SEQ = 0.29 cfs/acre,

where Q = peak discharge in cfs/acre.

Pi5 = maximum 15-minutc depth of rainfall in inches,

SEQ = standard error of estimate of Q,

and R2 = coefficient of determination.

When total storm rainfall in inches. i't0(. was added, the equation became

Q = 2.0 Pl5 + 0.53 PIOI - 0.55 (2)

with R: = 0.78

and SEQ = 0.28 cfs/acre. «

Maximum 15-minule rainfall was the dominant input variable, explaining about 76 percent of

the runoff variability. Total storm rainfall was the only other variable that added significantly

to the relationship.

The precision of prediction for runoff from very small watersheds (up to 11 acres in size)

for Walnut Gulch using Eq. (2) is discussed in a later section of this paper.

For the 6-square-mile watershed, the regression equation with the most significant input

variable was

Q = 0.0029 V-0.12 (3)
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with R2 = 0.79

and SEQ = 0.14 cfs/acrc,

where Q = peak discharge in cfs/acre,

and V = acre-feet of rainfall above 0.5-inch depth.

Volume of rainfall above 0.5-inch depth explained about 79 percent of the variability in run

off. When the second significant variable was added the equation became

Q = 0.0030 V +0.19 Ra-0.16 (4)

with R2 = 0.86 '

SEQ = 0.11 cfs/acre,

and Rj = antecedent runoff index.

Antecedent runoff was determined by adding daily estimates of infiltration into the chan

nel alluvium from previous runoff and subtracting estimates ofdaily loss from deep percolation

and evapotranspiration from the channel alluvium. For the 6-squarc-milc watershed, the

antecedent moisture condition of the channel above the station was significant in determining

peak discharge. No other variables added significantly to the relat&nship between rainfall

volume and peak discharge.

PRECISION OF PREDICTION

David and Neyman [1938], Draper and Smith [1966], and others have suggested methods

for determining variances for predicted values from regression equations of the form

Y = C0 + C,X1+C2X2+...CnXn. (5)

These methods employ least squares fitting of the sample data. The methods generally indi

cate the variance of the mean of the predicted value, since the variance of the mean is what is

usually wanted by statisticians. Hydrologists and engineers, however, arc quite often interested

in the variance of an individual predicted value.

A technique for estimating the variance of an individual predicted value from a multiple

linear regression equation has been developed at the Southwest Watershed Research Center,

Agricultural Research Service, Tucson, Arizona. The variance of the mean predicted value is

estimated, using matrix methods described by David and Neyman [1938]. Then the estimated

variance about (he regression line, calculated as the sum of squares of residuals over the

residual degrees of freedom, is used to convert the variance of the mean predicted value to the

variance for a single predicted value. Confidence limits are determined assuming normality as

the best possible condition and the Chebyshev inequality as the worst.

Using matrix notation from Draper and Smith [1966], the mean predicted value, assuming

normality and (he desired confidence limits, is

(6)

where Y = the predicted value

n = number of observations
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s = estimated standard deviation about the regression line, calculated as the

square root of the sum of squares of residuals over the residual degrees of

freedom

t = student's t, with v degrees of freedom

v = n-k-1

k = number of independent variables

Xo = column vector for specific value

C =(X'X)-'

X = matrix of all points

X' = transpose of X

a = significance level.

For a single predicted value, within 95% confidence limits, assuming normality.

Y = Y ± t(v, 0.975) • s • VI + 1/n + X^CX0 (7)

Assuming the Chebyshev inequality, which would hold for any distribution, within the 94%

confidence limits,

A
Y = Y + 4 • s • Vl + l/n + X;CX0 ^ (8)

Using the notation of David and Neyman [1938] Eq. (6) becomes

Y = Y±t(v, VA)- Up (6a)

where U*r is the estimate of the variance of the mean predicted value. Eq. (7) becomes

Y = Y±t(v,lV4)- [SJ+Up]* (7a)

and Eq. (8) becomes

Y = Y±4- [SJ+UF]'/* (8a)

where the assumptions and variables arc as stated above.

A computer program has been prepared to determine the coefficients in Eq. (5) and the

conficence limits as described by Eqs. (7a) and (8a). The program can handle 1,000 observa

tions for 9 independent variables and one dependent variable. Descriptive statistics arc

derived for the input data and statistics are computed to test for significance of the derived

equation. A listing of this program, in Fortran IV, can be obtained from the Southwest Water

shed Research Center, Tucson, Arizona. A flow chart of the method is shown"in the appendix.

Although statistics to test significance of the regression equation are provided, the program

is not designed to determine the proper variables. The program is designed to give a reasonable

estimate of the accuracy of predicted values, assuming the form of the equation is specified.

Again, both normal and Chebyshev confidence limits are calculated, but the choice of the

proper distribution for the residuals is left to the user. The array of residuals is calculated and

then printed for the purpose of testing distributional assumptions.
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RESULTS
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The Walnut Culch Experimental Watershed contains intensive study areas where on-site

runoff and runoff from very small watersheds are measured. Four of these unit source water

sheds, from 0.5 to 11.0 acres in size, were selected to relate peak discharge, Q, to total

precipitation, Ptot, and to the maximum 15-minute depth of precipitation, P,s , for events

where Q was greater than 0.1 cfs/acre. The multiple regression equation developed from 85

runoff events as shown earlier was

Q = 2.0 P1S + 0.53 Ptot - 0.55 (2)

with coefficient of determination RJ = 0.785, and standard error of estimate SEQ - 0.28 cfs/
acre. Eq. (2) was used to predict the peak discharge resulting from rains of 2.0 inches with 15-
minute depths ranging from 0.5 inch (2.0 inches per hour) to 2.0 inches (8.0 inches perhour).
These predictions and their confidence limits based on the normal assumption, and the

Chebyshev inequality, as described in Eqs. (7a) and (8a), respectively, are shown in Figure 2.

LIME OF EQUAL

INPUT ANO OUTPUT

RATES

CHEBTSKEV

NORMAL

PREDICTION LINE

NORMAL

CHCBYSHEV

0 5 10 1.5 .
MAXIMUM IS MINUTE OEPTH Of PRECIPITATION (INCHES)

Figure 2. Peak discharge vs maximum 15-minute precipitation for total precipitation
of 2.0 inches with confidence limits on predicted values for Lucky Hills water

shed. Walnut Gulch.

As shown earlier, the regression equation for the 6-square-mile watershed developed from

25 events was

Eq. (4) was used to predict peak discharge resulting from runoff-producing rains (over 0.5-
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inch depth) of 4.0, 6.0, 8.0, and 10.0 acre-feet of rain. These predictions and the confidence

limits based on the normal and Chebyshev assumption are shown in Figure 3.
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Figure 3. Peak discharge vs volume of rainfall above 0.5 inch depth
with confidence limits on predicted values for W-5 watershed.

Walnut Gulch.

In both cases, the normal assumptions might be the "best" that one could expect of the

prediction, and the Chebyshev inequality represents the "worst." The prediction is probably

no better than the normal assumption and no worse than the Chebyshev. Obviously, in many

cases the limits of the Chebyshev assumptions will be so great as to render the predictions

valueless, unless the normal assumption is valid, or at least nearly valid. In a vew cases, of

course, even the normal assumption is not sufficient to justify the prediction.

OTHER USES

Although the program was developed to study rainfall-runoff relationships on the Walnut

Gulch Experimental Watershed, other uses are possible. For example, the method might be

used to predict annual yield as a function of basin characteristics as shown" in Table I. For
nine Geological Survey drainage basins in southeastern Arizona, with corresponding periods of

record, mean annual runoff volume, Qa, in inches, was related to drainage area, A. in square

miles, and to gaging station elevation, E, in feet. The multiple regression equation developed

was

Qa =-0.605-6xlO"s A + 32x10"5E (9)

with coefficient of determination R2 = 0.954, and standard error of estimate, SEQa = 0.073
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inch. Figure 4. shows predicted versus actual mean annual runoff for these nine watersheds.

The 95% confidence limits that would be placed on each prediction are also shown. Since the

dependent variable was mean annual runoff, confidence limits based on a normal assumption

were used, although as stated, confidence limits based on the Chebyshcv inequality arc

included in the printout.

TABLE 1. Characteristics of selected LEGS watersheds in southern Arizona.

Location

Nogales

Continental

Lochiel

Patagonia

Tucson

Solomon

Palomines

Charleston

Redington

USGS

watershed

Id. No.

9480S

94820

94800

94815

94860

94570

94707

94710

94720

Drainage

area

(mi.2)

533.0

1662.0

82.2

209.0

918.0

2192.0

741.0

1219.0

2939.0

Gage station

elevation

(feet MSL)

3702

2836

4620

3828

2284

2960

4188

3954

2941

Period of

record

(yrs.)

28

24

20

28

28

28

-as

I8

Mean annual

runoff volume

(inches)

0.S9

.17

.90

.55

.13

.09

.68

.63

.23

a 10

o
z

<

z
z
<

z
<
LJ

0.8
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§ 0.2
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-0.2
1

LINE OF EQUAL VALUES
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1.2

Figure 4. Predicted vs actual mean annual runoff from nine USCS stations

in soulhern Arizona, showing confidence limits on the individual values.
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SUMMARY

1. A technique was developed to determine the precision of individual predictions from

multiple linear regression equations.

2. In this study precipitation variables were dominant over both antecedent moisture and

watershed characteristics for predicting peak discharge from very small semiarid watersheds.

3. The most significant precipitation variables for predicting peak rate of runoff on very small

(0.5- to 11-acre) watersheds are the maximum I5-minute depth of precipitation and total

depth of rainfall.

4. For larger watersheds, of a few square miles in size, significant variables were rainfall

volume above 0.5-inch depth and an antecedent runoff variable.

APPENDIX

Method

Using an extension of the Markov Theorem, David and Neyman [1938] showed that the

variance in the predicted mean could be estimated by

and the linear regression equation could be denoted by

v -^
"prcd a

where n = number of observations

s = number of independent variables plus one

and A, Ao, A, and A« are determinants involving the sum of variable crossproducts.

Notation (in order of appearance in the flow chart)

n number of observations

r number of independent variables

s r+ I

A n by s matrix containing the observations of the independent variables. For every

member aj- of matrix A, the i and j indicates observation and variable respectively and j

goes from 2 to s. -*

a j i = 1 for all i • J-

Y 1 by n matrix containing the dependent variable observations. For a member yi of Y,

the i indicates the observation.

C s by s matrix containing the sums of the crossproducts of the independent variables. For

a member g:k of matrix G,

H 1 by s matrix containing the sums of the crossproducts between the dependent and

independent variables. For every member hj of tnaxtrix H,
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Mow Chart of Program MARKO-2

\READ: /
INPUT /

PARAMETERS/

NO

read

n observations

l-ORS-l INDEPENDENT]

VARIABLES AND

ONE DEPENDENT

VARIABLE

1

STORE THESE DATA

IN ARRAYS A

AND Y. RESPECTING LY

CALCULATE BASIC

STATISTICS ON

INPUT DATA

CALCULATE:

VV"dHc

r

CALCULATE:

DETERMINANTS

USING SUBROUTINE

DET

CALCULATE:

FEQi

USING SUBROUTINE

MINOR

CALCULATE:

BASIC STATISTICS

PRINT:

LINEAR REGRESSION

EQUATION IN STANDARC

AND MATRIX FORM

IF

OPTION 2

IS SPECIFIED

IN THE INPUT

PARAMETERS

READ:

SPECIFIC

VALUES OF

X

PRINT:

ANALYSIS OF

INPUT DATA

FORM A,

PRINT:

EQUATION OF

VARIANCE <Ur)

IN THE FORM

L'2 = C • A,

L

ASSUME THE

INPUT DATA

ARE THE SPECIFIC

VALUES OF X

PLUG INTO

LINEAR REGRESSION

EQUATION AND

THE EQUATION

OF VARIANCE

COMPUTE STATISTICS

^ ON THESE VALUES.

^INCLUDING NORMAL

j AND CHEBYCHEV
CONIIDENCEINTERVALS

PRINT:

RESULTS OF STATISTICS.

REGRESSION AND

VARIANCE EQUATIONS
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also, by definition

A determinant of |G|

i.e., A = G

A s by s determinant:
o J

h! 8ll 812 ■ Sis

h2 821

"s 8s l 8SS

FEQ(K) coefficients of the linear regression equation where FEQ(K) corresponds to the

formal variable name bK and

FEQ(K) = lE 2 AjK Hj
and b, =1 J \

Ajj minor of the determinant A, i* column and j1" row with the corr&t sign.

A, s by s determinant:

A. =

bi 811 B12 8i3- 8sl

b2 821

b3 831

Ao s by s determinant:

bs 8sl

0 b,

b| gll

b2 821

812

bs 8sl

REFERENCE CITED

8ss

bs

81s

Sss

David, F. N. and J. Ncyman. 1938. Extension of the Markov Theorem on least squares. Statistical Research

Memoirs 2:105-116. ... ,,,i » c Am
Draper, N. R. and H. Smith. 1966. Applied regression analysis. John Wiley & Son. 407 pp.
Osborn. H. B. and W. N. Reynolds. 1963. Convective storm patterns in the southwestern United States.

Osborn H. B. and L. Lane. 1969. Precipitation-runoff relationships for very small semiarid rangeland
watersheds. Water Resources Research 5(2):4l9-425. •„<■„, ,*■>

Renard K G. 1970. The hydrology of semiarid rangeland watersheds. USDA Pub. ARS41-162.
Sellers, W. D. ed. I960. Arizona climate. Tucson, Ariz.: University of Arizona Press.
USDA-SCS 1970. Report of research needs for soil and water conservation. U.b. Dept. ot Agr., at-a.


