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Abstract—The application of an airborne electronically steered

thinned array L-band radiometer (ESTAR) for soil moisture

mapping was investigated over the semiarid rangeland Walnut

Gulch Watershed located In southeastern Arizona. During the

experiment, antecedent rainfall and evaporation were very dif

ferent and resulted in a wide range of soil moisture conditions.

The high spatial variability of rainfall events within this region

resulted in moisture conditions with distinct spatial patterns.

Analysis showed a correlation between the decrease in bright

ness temperature after a rainfall and the amount of rain. The

sensor's performance was verified using two approaches. First,

the microwave data were used in conjunction with a microwave

emission model to predict soil moisture. These predictions were

compared to ground observations of soil moisture. A second

verification was possible using an extensive data set collected

the previous year at the same site with a conventional L-band

push broom microwave radiometer (PBMR). Both tests showed

that the ESTAR is capable of providing soil moisture with the

same level of accuracy as existing systems. ESTAR instruments

have the potential to satisfy application data requirements from

spaceborne platforms.

I. Introduction

Anumber of recent investigations designed to study land

surface hydrologic-atmospheric interactions have shown

the potential of L-band passive microwave radiometry for

measuring and monitoring surface soil moisture over large

areas [1]. These studies have focused on the spatial information

provided about soil moisture as well as flux variables that can

be inferred through frequent temporal observation. Satisfying

the data needs of these investigations requires the ability to

map large areas rapidly. With aircraft systems this means

a need for more beam positions over a wider swath on

each flightline. For satellite systems the essential problem is

resolution. Both of these needs are currently being addressed
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through the development and verification of electronically

steered thinned array radiometer (ESTAR) technology [2], [3J.

In this study, the application of an ESTAR L-band radiometer

for soil moisture mapping was investigated.

II. Experiment Description

The ESTAR instrument used in this study is described in [2]

and [3]. It is an L-band radiometer operating at a wavelength

of 21 cm with a capability of providing the equivalent of up

to 8 beam positions within its +/-45° field of view, which

is twice the swath of the push broom microwave radiometer

(PBMR). ESTAR has a nominal ground resolution of 0.2 of the

altitude. For this experiment the ESTAR was installed on the

NASA C-130 aircraft operated by the NASA Ames Research

Center.

The site chosen for this study was a semiarid rangeland,

the Walnut Gulch Watershed, located in southeastern Arizona

which is operated by the USDA-ARS Southwest Watershed

Research Center. This watershed has a relatively long history

of detailed hydrologic measurements and associated analysis

[4] and was the focus of a major interdisciplinary experiment

in the summer of 1990 [5]. As part of that experiment

multitemporal L-band radiometer data were collected using

the PBMR [6] and a single swath system with 2.25 cm and

21 cm radiometers [7]. Extensive ground observations of soil

moisture were collected in 1990 to validate the performance

of these radiometers.

The seven flightlincs flown during 1991 were also used in

the 1990 experiment involving the PBMR [6]. This pattern

resulted in contiguous coverage of an area approximately 5

km by 10 km at a ground resolution of 200 m. The 1991

flights were conducted on August 1 and August 3.

Ground data collection during this experiment consisted of

gravimetric sampling of the surface 5 cm of the soil and the

measurement of the 5 cm soil temperature within one hour

of the aircraft overflights. Some surface temperatures were

obtained with a hand held infrared thermometer. These data

were collected at ten locations distributed over the area as

shown in Fig. 1. Eight of these sites, numbers 1 through 8,

were the same as those used in the 1990 studies [6].

As described in [5], vegetation cover of this watershed

consists of sparse grass and desert shrub in the eastern and

western portions of the study area, respectively.. Wet biomass

values in 1990 were typically 200-300 g/m 2 which should
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Fig. 1. The Walnut Gulch watershed showing the locations of all raingages and met station sampling sites.
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Fig. 2. ESTAR brightness temperature maps for the Walnut Gulch study area in degrees Kelvin; (a) August 1 and (b) August 3.

have minimal effects on the interpretation of the microwave

brightness temperatures [8]. Surface soils are mostly sandy

loams with varying rock fractions. A summary of the soil

physical properties at the various ground sampling sites is

presented in Table I.

III. Brightness Temperature Maps

and Rainfall Mapping Results

Data collected using the ESTAR were processed to produce

brightness temperatures at four beam positions which were

identical to those of the PBMR [6J. The resulting brightness

temperature maps for the two 1991 dates are shown in Fig. 2.

The two flights provided data over a wide range of brightness

temperatures, even on a single date (August 3).

Meteorological conditions during the experimental period

resulted in ground moisture values that produced the full

range of brightness temperature observed the previous year

[6]. Prior to the August 1 flight there was a localized rainfall

event on July 30 that was centered between sites 5 and 6. An

isohyetal map for the total event rainfall was produced using

data collected by 85 raingages (see Fig. 1) distributed over the

ISO km2 watershed area and the result is shown in Fig 3(a).

On August 2, prior to the second flight on August 3, there was

a large cellular rainfall event that was centered near sites 1 and

2. The isohyetal map for this event is shown in Fig. 3(b). No

rainfall occurred in the vicinity of site 5 on this date.

The brightness temperature patterns of Fig. 2 match the

rainfall isohyetal patterns presented in Fig. 3 for the antecedent

dates The fact that an L-band radiometer detects whether or
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TABLE I

Walnut Gulch Sampling Site Soil Properties

Site Sand(%) Sill (%) Clay (%)

Specific

Surface

Area

Bulk Rock

Density Volume

(g/cm3) (%)

1

2

3

4

5

6

7

8

9

10

66

69

71

73

69

67

80

72

63

67

24

20

20

22

20

25

14

20

24

23

10

11

9

5

11

8

6

8

13

10

26

30

20

28

54

27

10

21

84

52

1.64

1.83

1.58

1.82

1.61

1.44

1.74

1.47

1.66*

1.66*

42

51

41

61

56

48

22

31

10'

30'

•Estimate based on visual field observations.

not there was rainfall is not surprising. There were, however,

two interesting points observed in the data. The first was

the fact that even 2 days after a rainfall event in a semiarid

environment, the rainfall pattern can still be detected (August

1 ESTAR observations). The second feature of interest is that

on the day following the large rainfall event of August 2 the

sensor is able to discern the difference between areas that

received 25 mm of rainfall and those that had 15 mm. This

feature suggests that there is a great deal of quantitative rainfall

information that can be extracted.

Schmugge el al. [6] examined the relationship between

rainfall amount and brightness temperature in the Walnut

Gulch watershed using the PBMR <jiata collected in 1990.

Using a set of data with uniformly dry antecedent conditions,

Fig. 4. Relationship between rainfall amount and the decrease in brightness

temperature for Walnut Gulch rainfall events in 1990 and 1991.

the decrease in brightness temperature (ATb) at raingage

locations was correlated to the rainfall amount. These results

are shown in Fig. 4. As shown here, an exponential model

describes the relationship well. The r2 value for this function
was 0.68. In [6] it was noted that a functional relationship

between brightness temperature and rainfall did not apply

above 30 mm of rainfall. This result is probably related to

soil limitations on infiltration resulting in runoff being carried

offsite and concentrated in channels.

A similar analysis was performed for the 1991 events. Based

on antecedent rainfall, it was assumed that prior to the events



JACKSON a at: SOIL MOISTURE AND RAINFALL ESTIMATION
839

that the entire watershed would be dry and have a brightness

temperature of 280 K. Using this assumption, the observed

brightness temperature for an area surrounding each raingage

(30 gages on August 1 and 35 on August 3) was subtracted

to obtain ATB. These values are plotted in Fig. 4 versus

the rainfall amounts. As in the case of the 1990 data, an

exponential function describes the relationship well for both

days, r2 = 0.83 for the July 30-August 1 data and r2 = 0.79
on for the August 2-August 3 data. The August 3 data set is

especially interesting because observations over a larger range

of rainfall amounts than in 1990 were available. The differ

ences in the relationships for each date might be attributed

to within storm rainfall intensity distributions and both the

infiltration and the evapotranspiration that occurred between

the rainfall and the microwave observations. These results are

very interesting and warrant further study as additional data

sets become available.

The functions for each date can be applied with the observed

brightness temperatures (after computing ATa as described

above) to map the rainfall distribution. The resulting images

are shown in Fig. 3 which also include the raingage isohyetal

contours. Both methods of estimating the spatial distribution

of rainfall show similar patterns on a given day, however, there

are some differences. The contour lines in Fig. 3 were based

on interpolation using available raingages so obviously there

is a possibility for error. The most important point concerning

these results is that the brightness temperature method yields

the same basic results as those obtained using the raingages

which suggests a potential approach to greatly enhancing our

ability to estimate rainfall over large and remote areas that

typically do not have raingage networks. Using a limited

network a basic functional relationship could be established

and then used with the Tb data. If the characteristics of this

function can be related to event and local features the results

could be extrapolated over very large regions.

IV. Soil Moisture Estimation and Mapping Results

As stated at the outset, the primary goal of this experiment

was the verification of the ESTAR instrument as a soil moisture

sensor. The primary verification was provided by comparing

the observed surface soil moisture with the values predicted

using a previously established relationship [7] and the ob

served brightness temperatures at those sites. As described

in [7] the predicted relationships are based on analyses of

data collected in controlled condition experiments for a similar

but not identical soil. This relationship is referred to as the

BARC model since it was based on data collected over a ten

year period at the Beltsville Agricultural Research Center. The

differences are primarily related to the rock fraction which is

higher for the Walnut Gulch area. The only study that has

considered this parameter is one reported in [9]. In that study,

it was suggested that changing the rock fraction could have two

offsetting effects on the soil moisture-brightness temperature

relationship. One effect would result from the fact that the

dielectric properties of rocks are different from those of an

equivalent volume of soil. The other effect results from (he
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STANDARD ERROR
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Fig. 5. Observed and predicted relationships of soil moisture and ESTAR

brightness temperature. BARC model based on (9).

OBSERVATIONS

O PBMR 19S0

O ESTAR 1901

200 220 240 260 280 300

BRIGHTNESS TEMPERATURE (K)

Fig. 6. Observed and predicted relationships of soil moisture and 1990

PBMR and 1991 ESTAR brightness temperature. PBMR model is a linear

regression fit to the 1990 data.

fact that rock volume is correlated to the presence of surface

rocks [5]. This results in increased surface roughness.

The a priori relationship from [7] and [9] is plotted in Fig. 5

along with the observed brightness temperature and soil mois

ture data from the 10 sampling sites in 1991. Using this model

the standard error of estimate for the ESTAR observations was

estimated as 2.9% soil moisture. This compares to a value

of 2.5% obtained in [9] and leads to the conclusion that the

ESTAR can be used to accurately estimate soil moisture.

The ESTAR data were also compared to the PBMR data

collected in 1990. As described in [6], this was an extensive

data set that covered a wide range of moisture conditions.

Using the PBMR data, a linear regression equation was devel

oped for the prediction of soil moisture from the brightness

temperature. This curve and the PBMR data are shown in

Fig. 6. The slope of this model is sightly different than the

BARC model [9] and its standard error of estimate is 2.5%.

When used to predict soil moisture from the ESTAR brightness

temperatures, the error was determined to be 2.6% which was

a marginal improvement over the BARC model.

Based upon the above, the BARC model was chosen for

application because it provided a mostly a priori method.
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Fig.7.SurfacesoilmoisturemapsfortheWalnutGulchwatershedpredictedusingbrightnesstemperatureandBARCmodel;(a)August1and(b)August3.

Usingthismodelandthebrightnesstemperaturemaps,asoil

moisturemapwasproducedforeachdate.Theseresultsare

showninFig.7.

V.Summary

TheESTARL-bandradiometerwasevaluatedforsoil

moisturemappingapplicationsoverthesemiaridrangeland

WalnutGulchWatershedlocatedinsoutheasternArizona.

Antecedentrainfallandevaporationforthedataflightswere

verydifferentandresultedinawiderangeofsoilmoisture

conditionswithdistinctspatialpatterns.Relationshipsbetween

rainfallandbrightnesstemperaturewereobservedthatfurther

supportedresultsobtainedinotherstudies.Theseresults

showthepotentialofusinganL-bandradiometertoaugment

sparseraingagenetworks.Microwavebrightnesstemperature

datawereusedinconjunctionwithanapriorimicrowave

emissionmodeltopredictsoilmoistureandcomparedto
groundobservationsofsoilmoisture.Asecondverification

wasconductedusinganextensivedatasetcollectedthe

previousyearatthesamesitewiththePBMRradiometer.

BothtestsshowedthattheESTARiscapableofproviding

soilmoisturewiththesamelevelofaccuracyasexisting

systems.ESTARhasthepotenitalofsatisfyingapplication

datarequirementsandspacecraftlimitations.Theseresults

showthatitiscapableofprovidingthenecessarydatafor

soilmoistureapplications.
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