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To effectively design engineering systems, the future operation of the system which usually

involves many uncertainties must be considered. A two-stage stochastic programming

formulation can aid in satisfying this requirement. The first stage of this formulation

represents the design criteria at the present time when a decision must be made. The

second stage represents the future operation or the system response to the design where

other actions (recourse decisions) are to be made after observing the random input. To

solve this type of problem, the Regularized Stochastic Decomposition (RSD) algorithm,

which allows the consideration ofcontinuous random variables, was employed and exten

sions to better handle real engineering problems were investigated. The algorithm is

applied to a regional water supply problem that seeks the optimal design capacities of

water treatment plants, secondary and tertiary wastewater treatment plants, and recharge

facilities while meeting future demands. Results are generated based on different forms of

uncertainties for both linear and nonlinear first-stage objective functions. The advantages

of using stochastic programming in engineering decision making are evaluated.

Keywords: Stochastic programming; decomposition; water supply; planning; operation;

uncertainty

INTRODUCTION

Design and analysis of engineering systems usually involve many un

certainties. Often these uncertainties are neglected because they are
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unknown or their contributions are insignificant. However, if the un

certainties can significantly affect the system behavior, they should be

taken into account. One way to account for uncertainties is to use a

probabilistic representation instead of deterministic estimates of the

uncertain coefficients. Some versions of this type of modelling were intro

duced in the late 1950s by Dantzig [2] and Charnes and Cooper [1].

One of them is chance constrained programming which has been widely

used in engineering practice. Another is multi-stage programming. In fact,

many engineering problems can be formulated as multi-stage programs

such that initial design decisions can be made while considering the

future system operations. In this case, the uncertainties can be accounted

for by assigning a probability distribution to some of the uncertain coeffi

cients. Although this modelling formulation is well known in areas of

operations research, such as capacity expansion or facility location

(Louveaux and Peeters [19]) and energy planning (Louveaux [18], Pereira

and Pinto [22]) it has not been broadly applied to more generally

described engineering problems and water resources applications in

particular (Yeh [31] and Reznicek and Cheng [24] provide a few

references). This is mostly attributed to the fact that most algorithms

developed to date (including those in the references above) are limited

to problems with few random variables that are discretized in order to

effectively apply the solution procedures. An exception is Yakowitz

[30] who considers a hypothetical reservoir planning problem affected

by continuously distributed random variables.

This study considers the algorithm known as Regularized Stochas

tic Decomposition (RSD) (Yakowitz [29]). RSD has previously been

applied to solve some simple test engineering applications (Yakowitz

[29,30]), for the case of random right hand side coefficients only. Like

most of the solution algorithms developed to date (Van Slyke and

Wets [26], Louveaux [18]), RSD is decomposition based. But, unlike

most, it is not limited to discrete, or discretized, random variables. The

present work considers RSD and some enhancements so that it can be

applied to a wider and more practical range of applications. A re

gional water supply planning problem in several forms is considered.

This paper is organized as follows. First, a review of the main

approaches used to solve the two-stage stochastic programs with re

course is presented. Next, the RSD approach is described in detail in

order to understand how the function approximations are made and
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explain the modifications needed. Finally, a regional water supply

problem example is introduced and the results for different types of

uncertainties are shown.

BACKGROUND

Two-stage stochastic LP with recourse problems have a first-stage set

of variables representing decisions that must be made at present.

A set of second-stage variables must also be determined in the future

based on the uncertain future conditions and satisfying restrictions

resulting from the first-stage decisions. A general formulation of the

problem is:

ElS[Q(x,<5)] (1)

Subject to:

xeXcR»> (2)

where:

Q(x,d)) = Minqy (3)

Subject to:

Wy = a>-Tx. (4)

The problem consists of the following components: 1) a first-stage

objective function, ex, with its associated n, first-stage decision vari

ables, x, associated cost vector c, and first-stage constraint set X,

assumed to be convex and bounded; 2) a second stage objective func

tion Q(x,d>), with second-stage variables, yeR"\ with associated n2

cost vector, q, and second-stage constraints for an observation of c5.

Here W is an n2 x m2 matrix; T is an n, xm2 matrix. The random m2

vector, a>, is defined on a probability space (£l,A,P) where Q is a

compact set. The probability distribution function, F&, is associated

with co, and Ea[-~\ is the mathematical expectation with respect to d>.

With these conditions, the total objective function will be a piecewise

linear convex function of x.
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The stochastic program is said to have the property of complete

recourse if the second-stage is feasible for all values of x e X. A prob

lem has a simple recourse property if W=(I, — I) (Wets [27]). This

type of problem is very common in many practical applications and

because of its simple formulation, many algorithms have been exten

sively developed for its solution. The literature reviewed in this section

focuses on the case of fixed recourse, where the matrix W is general

but not stochastic.

Dantzig and Madansky [2] introduced the decomposition ap

proach to solve stochastic programs. This approach takes advantage

of the structure of the dual problem. Later, Van Slyke and Wets [26]

extended the approach by developing the L-shaped method to solve

problems with discrete random variables.

Fraunendorfcr and Kail [26] introduced an approach that solves

the problem by successive partitioning schemes using the function's

upper and lower bounds. These bounds, used to approximate the

objective function, were first introduced by Madansky [20]. He used a

discrete random variable d> which attains values at the vertices of the

rectangle bounded by [a,, b,], where a,, b, define the interval bounds

of each component d>{ for / = l,...,m. The stochastic function defined

at the new random variable was an upper bound of the original

function, i.e. £[Q(x, to) ] < E [g(x, <3)]. Other bounding schemes can

be found in Dupacova [4], Gassman and Ziemba [13], Dula [3] and

Frauendorfer [11]. Recently, Edirisinghe and Ziemba [5] developed

upper and lower bounds of the stochastic function using first and

cross moments. They considered the case of bounded random right-

hand side and objective coefficients of the second-stage problem. Later

Edirisinghe and Ziemba [6] developed these bounds in cases of un

bounded domains of the random parameters and proposed and order-

cone decomposition scheme to solve the stochastic problem.

The Stochastic Quasi-Gradicnt Method' SQM' is another approach

for solving two-stage stochastic problems. The method is statistically

based, with roots originating in the work of Robbins and Monroe [23]

and Kicfer and Wolfowitz [IS], who proposed a method for uncon

strained unidimensional optimization. Fabian [10] and Ermoliev [7]

later developed the SQM to solve constrained optimization problems.

A survey of many numerical efforts in this area can be found in

Ermoliev [9]. The method uses statistical estimates for the values of
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the functions and derivatives rather than exact values and is not

hampered by continuous distributions of the random parameter.

Ruszczynski [25] updated the SQM by obtaining the step directions

by minimizing a linear approximation to the objective function plus a

quadratic proximal term. A few difficulties arise with SQM. The func

tion projection P on X, required by the algorithm, is easy only for

problems with simple structure. The choice of an efficient step-size

and algorithmically implementable stopping criterion are still open

questions. Details of the method and proofs are found in Ermoliev

[8,9] and Wets [27].

Higlc and Sen [14] introduced a Stochastic Decomposition (SD)

approach that combines many of the strengths of the decomposition

based algorithms and the stochastic gradient method. SD produces a

piecewisc linear approximation of the objective function then solves

one subproblem and one master program at each iteration. A major

problem with the algorithm is the progressively increasing size of the

master program as a result of the new cut (constraint) added at each

iteration after solving the subproblem. This problem can result in

severe computational effort especially for large problems with many

random parameters.

Yakowitz [28] considered an SD approach with an exact penalty

term in the objective to handle cases in which the recourse problem

appears in the constraint set. Recently, Yakowitz [29] introduced a

quadratic regularizing term in the SD master program that limits the

movement of the solutions to a region where the function estimates

arc assumed to be adequate. This term also allows the size of the

master program to be limited without compromising the convergence

theorems by introducing a cut-dropping scheme similar to that given

in Mifflin [21] and Kiweil [16]. Theoretical developments and/or

proofs of the regularized stochastic decomposition (RSD) algorithm

are not included in the discussion to follow. For details on SD and

RSD, the reader can consult Higlc and Sen [14] and Yakowitz [29],

respectively.

REGULARIZED STOCHASTIC DECOMPOSITION (RSD)

To briefly summarize the RSD algorithm (Yakowitz [29]), a random

realization u> is generated at each iteration k and a master program is
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solved at the current solution xk_v called the current incumbent,

producing a direction dk. Adding dk to the current incumbent xk.1

results in a new point zk called the candidate solution (zk = xk_ t + dk).

The total objective function is computed at zk, xk_t, and other points

to check if the current incumbent solution should be replaced by the

candidate or stay as it was. Termination criteria are then checked to

decide whether to stop or to proceed with new random generations.

The master program M* is formulated as:

(M") Min[0.5 11^11+v4(d,)] (5)

x^t+d.eX (6)

subject to:

vjk(dlk-max{/j[(xlk_1+<y VjeJ* (7)

The function f{ is a linear approximation of the objective function

given in Eq. (1) at (xt_, +dk) and known as a cut or support. The

superscript j defines the iteration at which the cut was first developed

while the subscript k defines the iteration at which the cut was last

updated, usually the current iteration. The set Jk is redefined in each

iteration according to a cut-dropping scheme that acts to limit the size

of the master program. It is defined as:

J* = J*-IU{y4,*} (8)

where Jk~' represents the indices of active constraints (cuts) obtained

from the master program solution at the previous iteration and cha

racterized by having positive Lagrange multipliers. Index yk is the

index of the cut associated with the current incumbent, and k is the

index of the cut associated with the current candidate.

The following discussion of how the cuts are generated is a sum

mary of the development in Yakowitz [29].

A cut at any point x is defined in terms of the linear coefficients a

and p as:

(9)
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To obtain expressions for a. and /J, the dual of the second-stage

stochastic subproblem is required. The subproblem (S*), at the current

candidate is:

(S*) Q(zk, u>k) = Min qy (10)

subject to

Wy = a>k-Tzk (11)

The dual to this problem (DS*) is:

(DS*) Q(zk, ak) = Max n(wk - Tzk) (12)

subject to

{n:nw<g} (13)

At any iteration k, an estimate of the objective function at any point x

is given by:

*(«,-Tx) (14)

Equating Eq. (14) with Eq. (9), the expressions for a and /J are

obtained:

Eq. (14) indicates that at a certain x, all n's for all previously generated

random observations are required, which implies solving the sub-

problem (DS), k times at iteration k. This is avoided by the stochastic

decomposition approach by exploiting some properties of the con

straint set, n, to avoid much of that burden. Assuming II is a non

empty closed convex polyhedral set and noting its independence of the
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random vector d>, let set V denote the set of all extreme points

(vertices) of the set II. Vk is a subset of V and represent the vertices

that have been found up to the current iteration k. At each iteration k,

the subproblem {DSk) needs to be solved once using the last generated

realization to get one nkk that is used to update Vk. The other n\ for

t = 1,2, ...,k— 1 are then obtained from the set Vk using the following

simple argmax operation:

nfeargmax [n{to, — Tzk):ne Vk~\ (17)

The cuts that were previously generated, will lack information

gained from subsequent sampling of the random variable to. There

fore, the coefficients of these cuts are updated in each iteration by the

current dual solution according to the following formula justified in

Yakowitz [29]:

.• k-\ . 1 .

(19)

Since a particular solution may remain as the current incumbent for

many iterations, its associated cut, which was first developed in iter

ation yk_ „ may give a looser estimate of the objective function than is

possible in the current iteration k. So, a re-estimation of that cut is

necessary to guarantee that the function estimate at an incumbent

solution converges (with a probability of 1) to the actual value. The

re-estimation is done by computing new cut coefficients (a, /?) at the

current incumbent using the current set of subproblem dual vectors,

Vk. This step is required if either of the following two conditions is

satisfied at any iteration:

/*(**-i)-/M**-i)>0. or (20)

*-*!-, = t0 (21)
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where/J(xt_,) is the objective estimate at the current incumbent using

the cut derived at the current candidate. Eq. (21) means that r0 iter

ations (denned as an input parameter) have passed since iteration,

!*_,, in which the cut associated with the incumbent xk_t, was last

evaluated.

A test should be made at each iteration to decide if the new candi

date zk should replace the incumbent solution xk. Satisfying this condi

tion means that a sufficient fraction of reduction in the objective value

is attained using the new candidate. If this acceptance condition is

satisfied, then zk replaces xk. Otherwise, xk_{ remaines as xk. This

condition is defined as follows:

(22)

where \x is a fixed parameter such that 0 < \i < 1. The right hand side

represents the anticipated amount of descent of the objective function

in moving from xk_1 to zk, while the left hand side represents that

descent after updating (i.e. updating the cuts with last generated reali

zation at iteration k).

A sub-sequence of the incumbent solutions, {xk}, produced by the

algorithm was shown to accumulate at an optimal solution of the two-

stage problem [29].

Termination Criteria

Several termination rules can be used for this type of problem. Three

rules, however, are used in the present algorithm.

1. The number of vertices found in Vk is observed. The algorithm

should terminate if that number does not change within a pre

scribed number of iterations, KP.

2. The stability of the objective function is monitored using an expo

nentially smoothed average, tjk. Given a tolerance value e, the

algorithm should terminate if the following condition is satisfied:

&SzSU, ,23,
J k
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Choosing an appropriate value of >/0 with A6(0,1), t]k is defined as:

. . (24)
_, otherwise

K* is a set of indices which defines a sub-sequence of iterations

along which the incumbent solutions are accumulating at the opti

mal solution. This sub-sequence is needed when the incumbent

solution changes infinitely often. It is defined as:

where 5k defines the monotonic sequence {Sk}^=, that converges to

zero with probability 1. Define n2 <//, < 1 and starting with suffi

ciently large So, Sk is given according to:

min [<54_,, ||dj] otherwise

3. Check the stability of descent (the regularizing term) dk> pk<c. A

statistic pk is defined similar to tfk by:

\X\\dk\\+(l-X)Pk_1, tikeK

\pk.l otherwise

The above three criteria are used together in the algorithm with the

highest priority given to first criterion which must be satisfied before

any termination caused by the other two criteria.

The RSD Algorithm

The main steps of the solution method can be summarized as follows:

0. Define all required parameters, such as KP,c,fil,fi2,t]0, and p0.

Initialize other variables at k = 0, such as V° = 0,do= 0, and

z, =x0 where x0 is the initial solution of the problem defined at

some <w0. One way to obtain x0 is to externally solve the corres

ponding deterministic problem whose random parameters are set

at their mean values.
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1. For k = k + 1, randomly generate an observation cok according to

the specified probility distribution of the random parameters.

2. Solve the subproblem (DSk) and get the dual vector n(zk,cok).

Modify Vk by adding the new n if it has not already been included.

Form the candidate cut according to Eqs. (14) and (17).

3. Determine the set Jk~* of active constraints distinguished from the

previous master program solution as those having positive Lagrange

multipliers. Update these constraints according to Eqs. (18) and (19).

4. Check the re-estimation conditions (20) and (21). If satisfied, re-

evaluate the cut at the current incumbent using the new Vk.

5. Check the new incumbent condition (22). If satisfied, replace xk

with zk and yk with k. Otherwise, keep xk and yk as they are. Deter

mine J* according to Equation (8).

6. Solve the master program Mk to obtain dk, vk(dk) and Lagrange

multipliers ?.k of the relevant constraints. Set zk +, = xk + dk.

7. Check the termination criteria. If satisfied, stop. Otherwise, go to

step 1.

NONLINEAR FIRST-STAGE OBJECTIVE FUNCTION

The RSD approach, has been applied to linear two-stage problems

with uncertainly only in RHS of the second-stage constraints. Since

many engineering problems behave in a nonlinear manner, the algo

rithm was adapted to handle the nonlinearity of the first-stage objec

tive function. The assumption of convexity of the overall problem is

violated, in this case, especially with problems in which the first-stage

objective function is non-convex. Therefore, global optimality of the

optimal solution is no longer guaranteed. Prudent selection of the

initial point can potentially improve the solution and bring it closer to

the global optimal solution for the case of non-convexity of the objec

tive function.

The nonlinearity in the first-stage objective is easily handled by

including this nonlinear function, g(xk), in the objective of the master

program rather than as part of the cut generation. Cuts identified with

this objective will approximate the second-stage stochastic function

only. The new objective, Eq. (28), replaces Eq. (5) and the cut expres

sion is also modified from Eq. (9) to Eq. (29). All other definitions and
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equations remain the same. The new forms of Eqs. (S) and (9) are:

Min[O.5||«ya+0(x) + v,(4k)] (28)

fi(xk) = *{ + fiixk (29)

GRG2 (Lasdon [17]), a nonlinear programming model, was used to

solve the master problem for the case of the non-linear first stage

objective. GRG2 applies the generalized reduced gradient method as a

basis for solving the NLP. A small subroutine linked to GRG2 is

required to describe the first-stage objective function and constraints

of the investigated problem. Restarting the algorithm at several initial

starting points is suggested to improve the objective for the case of

multiple local optima.

STOCHASTIC COEFFICIENTS OF THE SECOND-STAGE

OBJECTIVE FUNCTION

Both the SD (Higle and Sen [14]) and the RSD (Yakowitz [29])

algorithms were developed considering only the case of stochastic

right-hand sides of the second-stage constraints. In many applications,

the coefficients of the second-stage objective funciton include future

revenues and/or prices that might be subject to a great deal of uncer

tainty. Therefore, it was necessary to consider modifications necessary

for the algorithm to handle the stochasticities of the second-stage

objective function. Most algorithm developments address only the

case of random right-hand sides, noting that the dual of the subprob-

lem with random objective coefficients has random right-hand side

coefficients. It is important to note that the major difference in tack

ling this problem is that when the random components appear in the

second-stage objective, the first-stage decision and these random vari

ables are de-coupled. In both the primal and dual problems, one

appears in the objective while the other appears in the constraints.

Issues of feasibility of the previously produced dual variables require

modifications to steps of RSD in order to produce the best feasible cuts.

To consider random components in the second-stage objective func

tion, the subproblem and its dual must be redefined to include deter-
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ministic RHS and stochastic objective coefficients. The subproblems,

(S*) is now:

(S*) Q(zk,qk)=Min(qk)y (30)

subject to

Wy = h-Tzk (31)

and its dual, (DS*), is:

(DS*) Q(zk, qk) = Maxn(h - Tzk) (32)

subject to

k}, (33)

where, h is a deterministic vector in R"1 and random n2 vector q, is

defined on a probability space (Ji, A, P) where Cl is a compact set. The

probability distribution function, F?, is associated with q, and £4[.] is

the mathematical expectation with respect to q.

Recall, that the set FI in the case of random RHS was independent

of the random realization <ok. This observation made it possible to use

Eq. (17) to select any ji,s Vk to correspond to <u, for t = 1,2, ...,k — 1

to produce or update the cuts to the master program. In the case of

random second-stage objective coefficients, II is no longer indepen

dent of the random observations and the argmax operation alone

does not guarantee the feasibility of the selected n. Cuts produced

according to Eq. (17) for the case of random objective coefficients

could be invalid. Another approach to determine the correct feasible

multipliers to be used in the cut generation and cut updating is needed

and is described below.

Since q does not appear in the subproblem dual objective function,

n(H — Tzk), maximizing this function over the current set of dual

solutions can be accomplished as follows:

1) Arrange the multipliers, n, in Vk in descending order according of

the value n (H-Tzk).
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2) For each q,,t = l,...,/c — l.nf is selected by testing one by one, in

order, the sorted multipliers in Vk until Eq. (33) is satisfied.

3) The cut is then defined according to Eqs. (9), (IS) and (16).

This method select a multiplier for each realization qt,t = l,...,fc — 1,

from the multipliers generated so far, that maximizes the dual objective

function while also being feasible to Eq. (33). The result is a feasible cut

estimate given the current information at the current incumbent solution.

Although the modification was successfully implemented, computa

tional problems during execution point out the difficulty in practical

usage of the algorithm in certain situations. The sorting-testing

scheme should perform well if the number of multipliers in Vk is finite

and not too large.

APPLICATION

To illustrate the RSD method and modifications for the case for

stochastic second-stage objective coefficients, a water planning prob

lem is presented.

Consider a region that has two communities. Each community

has demands for both potable water P, for municipal use, and re

claimed water U, for irrigation and other uses. The goal is to design

water supply facilities for satisfying the community demands over a

20-yr time horizon which is divided into two 10 year periods. The

demands of potable water can be met from direct supply from the

aquifer Q and/or treated water from the water treatment plant W

which is supplied from a surface source V (see Fig. 1). The demands

for reused water can be also met from direct supply from the aquifer

or from a tertiary treatment plant T which is supplied from a secon

dary wastewater treatement plant S. The aquifer is recharged through

a basin system R with water from the river or the wastewater treat

ment plant after secondary treatment.

The planning problem is to determine the design capacities of the

recharge basin, water treatment plant, secondary wastewater treat

ment plant, and tertiary treatment facility. These decisions represent

the first-stage decision variables in the two-stage formulation. The

second-stage variables represent the water allocations (in million liters
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River "V"

FIGURE 1 Diagram of the water planning application system Tor communities 1

and 2.

per day, mid) from the supply facilities to different users during differ

ent time periods. The variables y, to y, 7, shown on the system outline

of Fig. 1, are the second-stage operation variables for the first 10

years period. The total number of the second-stage variables for the

two 10 year periods is 34.

The first-stage objective funciton represents the present construc

tion cost of the four supply facilities. These costs were first assumed to

be linear functions of the design capacities with linear cost coefficients

given in Table I. The second-stage objective represents the expected

value of the uncertain operation cost during the future time periods.

The operation costs include treatment costs and pumping costs. These

costs were assumed to be linear functions of the treated and delivered

amounts of water, respectively. The linear coefficients of these costs

are given in S per million liters per day and listed in Table II.

To obtain a good design, the two components of the objective

function need to be represented in appropriate measures. Therefore,

the time value of each period was considered through the use of

equivalent present worth of the operation cost during the period. It

was assumed that the operation cost is uniformly distributed along
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TABLE 1 Construction cost

variables (S/mld)

Unit Tertiary

Coefficient

15,900

Recharge

2,650

coefficients for the

Water Treat.

80,000

first-stage decision

WastewaterTreat.

40,000

TABLE II Cost coefficients for the second-stage objective function (S/mld)

Treatment Cost Coefficients

Unit Recharge Water Treat. WastewaterTreat. Tertiary

Cocf. in Period I 0.026 2.643 1.586 0764

Cocf. in Period II 0.032 3.171 1.718 0.317

Piping and pumping Cost Coefficients

Route V-R V-W R-Q W-P P-S T-U S-T Q-U Q-P S-R S-V T-V

Period I 1.32 0.00 5.30 5.30 5.30 1.32 13.21 7.93 2.64 5.30 0.00 0.00

Period II 1.60 0.00 5.80 5.80 5.80 1.50 14.50 9.25 3.20 5.80 0.00 0.00

"The route V-R means from the component V (river) to the component R (recharge).

each individual period with constant average annual value. This an

nual value was obtained by multiplying the allocation variable (mid)

by 365 days/year by the corresponding average operation cost coeffi

cient. The present worth of each period k, Pk, is given at the beginning

of the period. The first 10 year period is assigned a discounting factor

of 6.145 corresponding to a 10% discount rate. A second discount

factor of 0.386 is used for the second period operation variables to

present cost.

The water supply planning problem can be expressed as the follow

ing two-stage stochastic program:

* r 17 r = 34 "I

Min £ c,*x, + 6.145* 365*E £ q\ *y\ + 0.386* Y q?*yj
{x.y}l=l Lr=l r=18 J

* | I I e<?* + Z <eP» + «$1 (34)
Jv=i
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Subject to

First-stage constraints

Second-stage constraints (For ^ = 1,2)

1) Canal Capacity

(35)

^x,, «e{1.4} (36)

2) Water Availability

I,ylv<AV* (37)

3) Potable and Reuse Demands

v = l,2 (38)

T.u tS v=1«2 (39>

4) Aquifer Storage

e/< + Z/..c-Z>'ie + ^>e^ (40)

5) Quality of Reuse demands

yQ^v,>PCU*DUl v=l,2 (41)

6) Quality of Potable Demands

yl-.P,ZPCP*DPl v=l,2 (42)

7) Temporal Continuity

< + DV\ (43)
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8) Mass Continuity

(1 -/ess,)*$>i, = !>'!; je{R,W,S,T,Pl,P2) (44)

where x( is the design capacity of the supply units with x,, x2, x3 and

x4 being capacities of the recharge basin {R), water (W), secondary (S),

and tertiary (T) treatment plants, respectively. Objective function coef

ficient, q) is related to the allocation, y] (the superscript 1 indicates the

first period), and reflects treatment and pumping costs. The unit price,

<?„ of the penalty water used to maintain feasibility is explained later.

The first-stage constraints are only simple bounds to maintain non-

negative values of the capacities. The subscript of y on the second-

stage constraints identifies the allocated water. For example, y_v,

defines all y's entering the unit U, and yQ_vl defines the allocated

water from unit Q, recharge storage, to unit Ul, reclaimed water user

one. The second-stage constraints, are divided into eight groups and

explained below.

1) Capacity constraints ensure that the total delivered amount of

water to any unit during any time period, £, will be less than the

capacity of the unit.

2) River availability constraints insure that the available water in the

river, AV, exceeds the amount diverted to the system during any

time period, <*. The average amounts of available water during the

two periods was assumed to be 120 mid.

3) Demand constraints guarantee that the potable demands, DP, and

the reuse demands, DU, arc satisfied for the two communities

during any period, £. The quantities epv and euv are external water

at a penalty cost required to maintain feasibility during times when

demand exceeds the supply. Table III lists the values of the de

mands used in this application.

TABLE III

User

PERIOD I

PERIOD 2

Demands Tor different users in million liters per day (mid)

PI

1S0.0

190.0

P2

190.0

227.0

Ul

114.0

150.0

U2

1310

170.0
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4) Aquifer storage constraints assure that the amount of water stored in

the aquifer at the end of each period is greater than a pre-specified

reserve amount, QS. The amount of stored water equals the initial

storage, QI, plus entering water minus withdrawn water plus exter

nal penalty water.

5) Reuse quality constraints maintain a pre-specified ratio of the total

reuse demands PCR to be direct supply from the aquifer.

6) Potable quality constraints maintain a pre-specified ratio of the

total potable demands PCR to be delivered from the water treat

ment plant.

7) Temporal continuity constraints ensure that all demands and losses

arc met using true sources of water. If these constraints are not

present, a situation might result in which the model constraints are

all satisfied although the true supplies from the river or the initial

storage of the aquifer during advanced periods are not sufficient to

satisfy the demands.

8) Mass balance constraints preserve the mass balances at different

nodes and accounting of their losses. The nodes of concern are the

supplying units and the two nodes of potable demands (P).

The total number of second-stage constraints in this problem is

forty two . When uncertainties in the right side of the second-stage

constraints were considered, the uncertain parameters were the river

supply, AV, and the four demands given by DP and DU for the two

periods. The mean values of these parameter are listed in Table III.

They were assumed to follow normal distributions with a coefficient of

variation equal to 0.2S. The number of independent random par

ameters considered in this case is 10.

In cases with uncertainty in the objective function the treatment cost

coefficients represent the treatment and pumping costs from the re

charge wells, and water, wastewater, and tertiary treatment plants. The

mean costs for the four costs are listed in Table II for periods (eight

independent random parameters). Continuous normal distributions

with a coefficient of variation of 0.25 were also assumed in this case.

RESULTS AND DISCUSSION

The problem was solved using the RSD model for the following three

cases:
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1) Linear first-stage objective function and stochastic RHS.

2) Non-linear first-stage objective function and stochastic RHS.

3) Linear first-stage objective function and stochastic second-stage

objective function.

Demands, available water, and treatment costs with the related

pumping costs were considered random parameters for the appropri

ate cases. To assess the improvement in the objective function using

the stochastic design (using the RSD model), the stochastic program

objective function was evaluated at the optimal deterministic design

which considers only the mean values of the random parameters.

In case 1, the design capacities using the stochastic approach were

obtained after 15.75 hours. The four capacities obtained using this

design were larger than those of the deterministic desing with about

5% improvement in the total objective function.

In case 2, a power form for the first-stage objective function was

assumed. Two separate designs were examined using different values

of the power function exponent. Table IV lists the stochastic and

deterministic designs for these two cases along with the total function

improvement obtained when the stochastic design was used instead of

the deterministic one. Results show that the stochastic design in both

linear and concave non-linear first-stage objectives (power

coeff. = 0.80) enlarged the facility capacities, while it reduced the capa

cities in case of the convex non-linear case (power coeff. = 1.50). In

both cases, the stochastic problem decreased the overall system cost

compared with the deterministic solution.

The solution in the third case with stochastic function coefficients,

was exactly the same as that obtained from the deterministic model

(given in Tab. IV, case of linear first-objective function). This solution was

reported on the results of the algorithm after a large number of iterations.

This means that the variability in the objective coefficients for this par

ticular setting of the problem had no effect on the first-stage decisions.

A major problem related to the execution time required to solve the

third problem was encountered. The number of dual vertices was grow

ing similar to the number of iterations. This resulted in marked delay in

the progress of the algorithm. While 940 iterations were solved during the

first 24 hours, only 200 iterations were done in the following 24 hours.

When a new dual variable is identified at nearly every iteration, the

first termination criterion cannot be satisfied and suggests that for this
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TABLE IV Results for the case of stochastic RHS

Unit R W S T Obj. Fn. NK1 NV1 KP} Tune

(mid) (mid) (mid) (mid) (106 dollars) (Am)

Case ofLinear First-Objective Function

DcLSoln 612.36 146.89 333.03 181.22 83.511

Stoch.Soln 824.90 160.44 363.53 190.41 79.497 2719 198 100 15.75

Improvement in Obj. Fn. = 4.014 (million S) = 5.05 %

Case ofNonlinear First-Objective Function with Power Coeff. = 0.80

DctSoln 587.50 146.89 332.99 236.99 68.514

Stoch.Soln 937.94 177.13 401.52 255.53 60.888 1284 139 50 2.50

Improvement in Obj. Fn. = 7.627 (million S) = 11.13 %

Case ofNonlinear First-Objective Function with Power Coeff. = 1.50

DctSoln 609.91 146.89 332.99 42.57 285.324

Stoch.Soln 586.78 75.68 189.20 0.00 217.122 954 39 50 2.33

Improvement in Obj. Fn. = 68.20 (million S) = 23.90%

1 Number of iterations.

3Numbcr of Vertices.

'Number of iteration required by termination criteria.

case, one might want to neglect the first termination criterion and

terminate the algorithm if the other two criteria are satisfied while the

incumbent does not change for a certain number of iterations. When

incorporating this modification to the present program, the application

problem still did not satisfy any of the termination criterion. The model

was stopped after four days of execution with about 1500 iterations. We

expect that violations of the model conditions on the random variables

and the dual solution set, II, were responsible for these difficulties.

SUMMARY AND EXTENSIONS

The original RSD algorithm considers only the case of stochastic

right-hand sides of the second-stage constraints in linear problems.

Two extensions of the algorithm were implemented to account for

other conditions. First, the ability to consider a non-linear first-stage

objective function was incorporated. This modification was success

fully demonstrated in the application. Global optimality might be

sacrificed based on the given application. To consider stochasticity of
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the second-stage objective function coefficients a new cut generation

procedure was introduced. Although this enhancement is theoretically

valid and the modification was successfully programmed, the compu

tations showed that the algorithm cannot be efficiently applied to

general problems that may violate the assumptions of the random

variables and dual solutions. In this case, having stochastic objective

coefficients may yield an infinite number of dual multipliers for the

subproblem. This results in significantly longer execution times per

iteration as the iterations progress. These observations indicate that

other approaches to handle the stochasticity of the second stage objec

tive coefficients such as a modification of stopping rules and/or the

selection of dual variables should be investigated.

Finally, the results of the application system indicate that significant

improvements over deterministic solutions can be obtained with maxi

mum improvement, for this example, for the case of a convex non

linear objective function.
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