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Abstract

This paper introduces the general outline of CELMOD5, a parametric, semi-distributed,

quasi-linear model, for conversion of rainfall into surface runoff. The model considers the

watershed as a series of interconnected cell units, each representing a specific portion of the

area of the watershed. In contrast to grid models using a large number of rectangular elements

or cells, the number of cells in CELMOD is relatively small and their boundaries are chosen

according to the watershed topography. For each cell, the program computes the surface runoff

hydrograph at the cell outlet, related to a specified record of total rainfall data at a number of

rain gages. If measured surface runoff data are available for some locations in the watersheds,

the program can compare these data with computed values of surface runoff at the correspond

ing points of the cell model. Detailed descriptions are provided for the main model procedures

— computation of rainfall excess, conversion of rainfall excess into surface outflow, routing the

channel inflow and subtraction of channel losses. Special attention is given in this model to the

specific conditions of arid or semi-arid watersheds.

This paper is also concerned with a technique for calibrating and testing a forecasting model

of storm hydrographs with emphasis on two objective functions — runoff volume and peak

discharge. A method for evaluation procedure is presented based on the following five steps:

trial and error calibration; sensitivity analysis; bilinear interpolation optimization; testing the

model on different storm events; testing the model on a different watershed. Results are

presented for all the larger storm events with reliable data during 12 years in two sub-
watersheds of the Walnut Gulch Experimental Watershed in southeastern Arizona. The

evaluation procedure is demonstrated for one particular rainfall-runoff event.

* Corresponding author.
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1. Introduction

Semi-distributed models in surface hydrology were developed in response to dis

satisfaction with the lumped models used to represent the relationship between

rainfall and runoff. The main criticism of the lumped models is that they require an

assumption that the rainfall input is uniformly distributed over the area of the

watershed or, at least, that the spatial distribution is constant (Diskin, 1964). This

condition is rarely realized. It may be speculated that some of the non-linearities in the

rainfall-runoff response reported in technical papers are actually due to the non-

uniform or non-constant distribution of the rainfall or rainfall excess inputs.

Cell models are not new in hydrology. The first semi-distributed model was prob

ably that proposed by Dooge (1959), although he suggested that the model should be

used to derive a unit hydrograph rather than using it directly as a rainfall-runoff

model. Other early contributors to the development of semi-distributed models were

Laurenson (1964), Mein et al. (1974) and Boyd (1978, 1981). In all models, including

CELMOD, the cells are large and their number is relatively small. The cells are, in

fact, subwatershed units represented by lumped model elements. This is in contrast to

grid models, in which the equations of motion are applied to very small rectangular

elements or cells. The purpose of this paper is not to review the various models

proposed over the years, but to describe the structure of one semi-distributed

model and results obtained with it. The model considered is CELMOD, originally

developed while the first author was visiting the University of Arizona at Tucson.

Tracing the development of the CELMOD, it is possible to identify five versions of

the model. These are described briefly in the following section.

2. Development of the cell model

CELMOD was originally proposed as a semi-distributed, parametric, routing

model for conversion of rainfall excess into direct surface runoff (Diskin and

Simpson, 1978). In that form, it consisted of a system of interconnected cell units,

each representing a definite portion, or area unit, in the watershed (Fig. 1). The

boundaries of these area units were chosen along water divides between adjacent

internal streams so that if there is inflow to a cell from adjacent upstream cells, this

inflow occurs only through a small number (0-4) of channels crossing the cell

boundaries. The outflow from each cell unit is by a single outlet channel.

All cell units receive rainfall excess input which is variable with time but assumed to

be uniform across each area unit. Two types of cells are recognized, exterior or

interior. Exterior cells, defined as cells without any channel inflow, have only one

input, namely the rainfall excess input. Interior cells are cells receiving channel inflow

from upstream cells in addition to the rainfall excess input. The interconnections

between the cells form a branching tree-like structure, which reflects the main

drainage pattern of the watershed (Fig. 1).

In the first cell model, called herein CELMOD1, the two inputs of each cell were

summed to form a single input which was routed through the model cell to form the
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Fig. I. Subwatersheds 8 and 11 of the Walnut Gulch Experimental Watershed, divided into model cells.

output of the cell. This, in turn, formed part of the channel input for the next cell

downstream of the cell considered. In CELMODI the cell model was assumed to be a

single linear reservoir. Furthermore, all cells were taken to have the same value of

reservoir constant, which is the only parameter of the model. By performing the

routing computations for each cell in a sequence, starting with upstream exterior

cells and continuing with downstream cells to the output of the watershed, a surface

runoff hydrograph is obtained. A detailed description of CELMODl, with some

examples of its applications, has been given by Diskin and Simpson (1978) and by

Diskin (1979).
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Despite the crudeness of the model and the use of only one parameter, the cell

model produced fairly good results, both for stationary and for moving rainfall

patterns. It was realized, however, that better results could be obtained if the two

inputs were treated differently in the cell model and if each cell was assigned its own

set of parameters according to its size and shape. The result of these improvements is

a model that will be called herein CELMOD2, described by Diskin et al. (1984).

The structure of each cell model in CELMOD2 consists of two procedures in

parallel. The conversion of rainfall excess into surface runoff at the outlet of each

cell is performed by routing the rainfall excess hyetograph through a pair of unequal

linear reservoirs in series. The conversion of the channel inflow to channel outflow is

carried out by routing the inflow hydrograph through a combination of a linear

channel and a linear reservoir in series.

The next version of the cell model, CELM0D3, was based on the same basic model

cell structure as used in CELM0D2, with the addition of an option of using, as input

to the model, the total rainfall hyetographs for a number of rain gage locations,

instead of the rainfall excess input needed for each cell in CELM0D2. This required

the addition of a procedure for separating rainfall excess from total rainfall.

CELM0D4 was a new version of the cell model developed at the Watershed

Research Center (US Department of Agriculture (USDA)) in Tucson, Arizona, to

take into account the specific conditions of arid or semi-arid watersheds. The main

feature included in this version (Diskin, 1984) is a procedure for simulating the

channel infiltration losses in the main channel of the area represented by each cell.

The channel loss procedure is empirical, but it is based on results reported by Lane et

al. (1971) and Murphy et al. (1972). The channel loss operation consists of subtracting

two components from the routed channel hydrograph (see Fig. 3 below) using

equations similar to Horton's infiltration equation. The output produced by the

channel loss operation is the part of the routed hydrograph which is in excess of

the sum of the two components of the channel loss.

CELMOD4 served as a basis for a new version of the semi-distributed cell model

named herein CELM0D5 (Karnieli, 1988). The main feature included in the new

version is an advanced procedure for computing the rainfall excess input for each cell

from the total rainfall data for one or several rain gages. The input for the new version

model is the total rainfall hyetographs for a number of rain gages, inside and near the

watershed boundaries, and the output is the dirept surface runoff at the outlet of the

watershed, or at intermediate points in it. A detailed description of CELMOD5 and

the procedures used in every step of the calculations are given in the next section.

3. Outline of CELMOD5

3.1. Structure of the model

The model consists of a series of interconnected cell units, each representing a

specific portion of the area of the entire watershed. The interconnections between

the cells form a tree-like structure which reflects the main drainage pattern and the
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topography of the basin. Each cell may be connected to and be receiving channel

runoff from one or more upstream cells, but it is connected and drains to only one cell

downstream. An example of the branching structure of a certain watershed showing

the boundaries ofsub-units is given in Fig. 1. As noted above, two types ofcells can be

distinguished in the model: exterior cells and interior cells. An exterior cell has no

channel inflow and is usually, but not necessarily, located on the watershed divide.

Cell 20, for example, is located internally in the watershed, but with absence of

channel inflow it is classified as an exterior cell. As there is no channel inflow into

an exterior cell, the rainfall hyetograph over the cell area is the only input to this cell.

An interior cell has one or more inflow channels crossing its boundary and supplying

channel inflow to the cell. The interior cell receives as inputs both the rainfall hyeto

graph over the cell area and the channel inflow hydrographs from upstream channels.

Each cell in the model is composed of a number ofelements that transform the cell's

inputs into a single output in the form of a cell outflow hydrograph. This outflow

hydrograph is the sum of the surface outflow hydrograph and the channel output

hydrograph. The program starts with the upstream exterior cells, and proceeds to the

downstream cells. In an interior cell with multiple inflows, all the inflow hydrographs

are added together to form a single input hydrograph which is routed through the cell.

The computation ends in the most downstream cell having its outlet at the outlet of

the watershed.

TOTAL
CHANNEL

CELL OUTFLOW

Fig. 2. Internal structure of a cell in CELMOD4 and CELMOD5.
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Fig. 3. Procedure used for subtracting channel losses and resulting outflow hydrograph for a given cell.

All cells have the same internal structure in terms of the elements that make up the
celVand their interaction in producing the cell output (Fig. 2). They differ only «.the
size topographic features and soil properties of the area units represented by them.
TOs enabL the user to define, work with and optimize only one set °f parameter
that represent all the cells in the model. This set of parameters is termed the mode
parameters. Using these model parameters, each cell is assigned individual values of
fhe p^meters, which are termed cell parameters. The values f ^e cell parameters
are influenced by the area of the cell or by the length of the channel withm the cell
rela£e to the average cell area or average channel length. This unique feature^cjf the
cell model is of great help in the optimization and calibration procedures. However, if
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the spatial distribution of one or more parameters is known, the model can accept

individual values of the parameters for each cell.

3.2. Computation ofrainfall excess

The equation adopted for the computation of rainfall excess in CELMODS is the

Green and Ampt (1911) equation:

where Fis the cumulative infiltration [L\ in time /,/is the infiltration rate [L T~y], K,
is the saturated hydraulic conductivity at the transmission zone \L T~\ and SM is
the effective matrie potential \L\. The equation was modified by Mein and Larson

(1971, 1973) and Chu (1978). These modifications allow the calculation of either the

infiltration or the rainfall excess under unsteady rainfall conditions.

The complete procedure for calculating the rainfall excess under variable rainfall

has been discussed by Karnieli (1988). Eq. (1) has two parameters:

(1) the saturated hydraulic conductivity, K,, which is a function of the

watershed characteristics, such as hydraulic conductivity, the canopy cover and

the ground cover of the area represented by the rain gage. It should be noted that

these features vary in the space domain but are assumed to be constant in the time

domain.

(2) The effective matric potential, SM, which is calculated from the soil texture and

the residual soil moisture.

In CELMODS, it is preferable to break the SM parameter into two separate

parameters: S, the difference in the average effective capillary potential across the

wetting front [L]; M, the difference in average soil moisture across the wetting front

[I? L ]. 5 depends on the soil texture, whereas M is a function ofboth the soil texture
and the residual soil moisture.

The residual moisture is the only parameter in CELMOD5 which is time

dependent. It is proposed that its value be calculated outside the model either by

an API-type procedure (Karnieli, 1988) or by soil water balance calculations (Karnieli

and Ben-Asher, 1993). Both procedures are based on daily rainfall data for days

before a particular event and the inter-arrival time between storms. Only the final

values from these procedures, the residual soil moisture values for each area repre

sented by a rain gage, are transferred to CELM0D5 and are used for the rainfall

excess calculations.

The rainfall excess is computed separately for each rain gage for which data are

available. Therefore, the rainfall excess data are initially applied to areas defined by a

Thiessen weighting procedure. The transformation of the rainfall excess from the

Thicssen polygons to appropriate model cells is done by GIS methods such as

overlaying the Thiessen polygons on the model cells. This procedure, explained in

detail in Karnieli (1991), is applied to each time interval for which rainfall data are

available, and results in an individual rainfall excess hydrograph for each cell in the

model.
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3.4. Routing the channel inflow

The total channel inflow hydrograph for an interior cell is equal to the total
cell outflow hydrograph or the sum of such hydrographs for the contributing cells
immediately upstream of the cell considered. The channel inflow hydrograph is
routed through a pair of elements representing a linear channel and a linear reservoir

in series (Fig. 2). The routed hydrograph is then subjected to a channel loss element
which subtracts the channel losses from the routed hydrograph (Fig. 3). The remain
ing part of the routed hydrograph, after subtracting the channel losses, forms the

channel outflow component of the interior cell.
Routing is accomplished by a linear reservoir routing subroutine using a storage

coefficient Ke [T], followed by a forward time shift, rc [T], of the linear reservoir. The
values of the two parameters ofthe routing operation are assumed to be proporUonal
to the length ofthe channel in the interior cell considered. The values are derived from
the corresponding model parameters by the following expressions:

_ Tkf'LcU) (6)

and

where Le(j) and Lm are, respectively, the individual channel length of each cell and
the mean channel length for all cells. The storage coefficient and the time shift for a
cell with an average channel length are given by the model parameters rA/and 7^,

respectively.
The outflow hydrograph has a lower peak and a longer time base in comparison

with the peak and duration of the inflow hydrograph. In addition, it is shifted forward
in time by the time interval tc. It should be noted that the time shift does not have to
be an integer multiple of the time step used in the computation for rainfall increments.
The program includes an interpolation procedure that calculates, by linear interpol
ation, the ordinates of the outflow hydrograph at the equally spaced time intervals,

starting at the time origin used for all computations.
The combined operation of the reservoir routing and the time shifting described

above for each of the cells is equivalent to convolution of the channel inflow hydro-
graph of that cell and a unit impulse response function, G{t), expressed by

for

3.5. Subtraction of channel losses

Channel losses are computed individually for each interior cell; they are subtracted
from the channel hydrograph after it is routed through the linear channel and linear
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reservoir combination. The channel loss operation for each cell is thus assumed to be
lumped near the outlet of the cell, after the routing operation and before the channel
outflow is combined with' the surface outflow to form the total cell output. The
channel loss element thus receives the routed channel hydrograph as input and
produces as output a channel outflow hydrograph having smaller peak discharge

and total outflow volume than the corresponding inflow hydrograph.
The channel loss operation, shown schematically in Fig. 3, consists of subtracting

two components from the routed channel hydrograph (Fig. 3(a)). One part is a constant

rate of loss for the cell considered (Qme) and the second is a variable rate (Q,,) which
decreases exponentially from an initial value (Qk) throughout the occurrence of runoff
in the routed hydrograph. The part of the routed hydrograph which is in excess of the
sum of the two loss components is the output of the channel loss operation.
The constant rate of channel loss for each cell is taken to be proportional to the

length of the channel in the cell considered. The value of this cell parameter is

computed from the corresponding model parameter (Qca) by

= QjMJl ■ (9)
Vimc — t

L'm

where Le(j) and Lm are, respectively, the individual channel length of each cell and
the mean channel length for all cells. The model parameter Qca represents the

constant channel loss for a cell with average channel length.
The variable part of the channel losses is taken to have an initial value, Q,c, which is

a fixed proportion (Pb) of the magnitude of the peak flow less the constant channel
loss of the routed channel flow hydrograph. The magnitude of this initial loss is given

r by

Qk b{QmxQ~) i (
where Qm is the maximum value of the routed channel hydrograph [L? T ']. The
model parameter Pb is a dimensionless quantity restricted to be between zero and one

(0.0 «£ Pb «S 10). . .
The diminishing portion of the non-constant channel loss component is obtained

by multiplying the variable loss at the beginning of each time interval by a constant

multiplier Qk, to produce the value of the variable at the end of the time interval.
The value of the multiplier is restricted to the range between zero and one

(0.0 s£ Qk, < 1.0). The variable loss rate, Qh, is thus given by

where the initial value of the variable loss rate (for i = 1) is computed from the initial

value (Qic), computed above, by

Q{ .

The total channel losses at the end of each time increment are equal to the sum of

the constant loss (Qmc) and the variable channel loss (Q,,) for that time increment. The
channel outflow hydrograph for the cell considered (Fig. 3(b)) is the remaining part of
the routed channel hydrograph after subtracting the two channel loss components.
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4. The study area

The watershed chosen for this study is part of the Walnut Gulch Experimental

Watershed, operated by the Agricultural Research Service of the United States

Department of Agriculture (USDA-ARS). It is located around the town of Tomb

stone, about 100 km southeast ofTucson, Arizona. The watershed is representative of

the semi-arid rangelands in southeastern Arizona, southwestern New Mexico and

northern Sonora, Mexico (Renard, 1970).

Elevations on the watershed range from 1280 to 1830 m above mean sea-level

(MSL). The watershed dissects a high foothill alluvial fan with soil texture material

ranging from clays and silts to well-cemented boulder conglomerates. The climax

vegetation of the Walnut Gulch area is desert plain grassland. About 60% of the

watershed supports desert shrubs and 40% is grass covered with a few scattered

shrubs.

The annual mean precipitation in this area is about 300 mm. The precipitation

distribution is bimodal, with slow-moving cold fronts providing lift for winter pre

cipitation and convective heating of moist tropical air producing summer rainfall.

Nearly all the streamflow occurs between July and early October, and results from

intense, convective thunderstorms of short duration and limited areal extent. During

an average year, 5-10 individual runoff events are recorded at the gaging stations,

with the channel being dry about 99% of the time.

The 150 km2 Walnut Gulch watershed is divided into 12 gaged subdrainage basins

of various sizes ranging upward from 2 km2 to the entire watershed. The watershed is
equipped with a network (1.6 km x 1.6 km grid) of 95, 24 h, weighting-type, recording

rain gages, which have been in continuous operation since 1956.

The study described herein is limited to two subwatersheds: Watershed 8

(14.70 km2) and Watershed 11 (6.28 km2) (Fig. 1). Watershed 8 includes Watershed
11 as part ofits area. Watershed 8 is covered by 17 rain-gage stations (10 in Watershed

11 alone). Fig. 1 illustrates 31 model cells which were obtained from topographic

maps and aerial photographs for the two watersheds (Karnieli, 1991). The first 14

cells cover the area of Watershed 11.

Approximately 30% of the two watersheds' area is dominated by desert shrubs,

with a crown cover of approximately 30% and an understory of grasses with a basal

area of less than 1%. Five soil series have been defined by the Soil Conservation

Service (SCS) soil survey in 1986; all of them are sandy loam in texture (Karnieli,

1991).

5. Evaluation procedures

5.1. Methods

The aim of the evaluation procedure is to fit the predicted results, as closely as

possible, to the observed data and then to analyze the degree of error or goodness of

fit. In this study, the evaluation procedure includes the following steps: (1) trial and
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error calibration; (2) sensitivity analysis; (3) bilinear interpolation optimizadon; (4)
te L the model on different storm events; (5) testing the model on a different
watershed The evaluation procedure is demonstrated in detail on a single ramfal -
Tun ff event which occurred^ 12 August .971 in Watershed 11 In addmon;=.U
of the calibration, test and forecasting operations are presented for 21 events in
Watershed 11 and eight events in Watershed 8. These are the largest storm events

with reliable data which occurred in the area during 12 years
CELM0D5 is presented here as a forecasting model, which means that all the

model parameters are either constant in the time domain or their temporal variations
Trekno'wn. In its forecasting mode, CELM0D5 requires Woj^aho^j-1
water deficit before each rainfall event. Karnieh and Ben-A her (1993) Rented a
water accounting model for predicting water excess and soil wa er content vafces
based on water balance equation calculations The water ™™^™d^l™s
as input only the daily rainfall depths and their interarnval days. This model was
optimized for Watershed 11 by using a long record of rainfall and runoff data (468
S"events and 100 runoff events during 12 years). As a result, the model allows
sStions of the continuous dynamic behavior of the soil water content, which, on
desired days, was used as part of the input data to CELMOD5.

5.2. Objectivefunctions

The evaluation procedure is carried out with reference to a specified objective
function. The objective function is designed to reduce the differences between the
predicted and the observed data during a calibration period to a minimum or, as
an ahemative, to calculate the maximization of a likelihood function. To .void bias,
Diskin and Simon (1977) recommended judging the model performance with refer
ence to a number of objective functions rather than to a single funcuon.
Of a large number of objective functions that have been defined in the literature

(eg. Diskin and Simon, 1977), only two are represented below:
(1) predicted to observed total runoff ratio:

= (VBcm\_m (13)

where P . is the per cent difference of the predicted runoff volume, Vt, from
The obsemd runoff volume, Vqt (expressed in mm or m3); Pvat can be pos.Uve when
the observed value is greater than predicted, zero in the case of no deviation, or

negative;

(2) predicted to observed peak discharge ratio:

where Pymx is the per cent difference of the predicted peak discharge, Y^,
observed peak discharge, Q^ (expressed in m s" ).

04)

from the
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Table 1

Model parameters for Watershed 11

Notation Value Unit

Routing parameters !

Storage coefficient Atc 0.27 h j

Routing coefficient Tk/ 0.10 h j

Time delay factor TJf 0.03 h

Infiltration parameters

Matric potential SM Varies mm

Saturated conductivity K, 10.0 mmh"

Channel loss parameters

Constant channel loss Qn 0.15 m's"1
Initial loss ratio Pu 0.10 0 sg ?u s? 1

Loss decay factor fit, 0.85 0 « fit, « 1

5.3. Trial and error calibration

The trial and error calibration procedure is a visual method of adjusting the

predicted hydrograph to match or replicate the observed hydrograph. As discussed

above, the model has eight operative parameters for the evaluation procedure

(Table 1). There are two different types of parameter. The first type includes the

physically based parameters — the saturated hydraulic conductivity, Ks, and the

constant channel loss parameter, Qca. The values of these parameters are either

directly measured or characterized by physically based functions. It should be

noted that, to simplify the evaluation procedure, weighted average values of the

parameters Ks and Qca were used and their spatial variability has not yet been

taken into account.

The second type of parameter has no physical meaning, and can be termed a fitting

parameter. In this stage of the evaluation, only the effective matric potential, SM, is

treated as a fitted parameter. The constant values of all the other parameters are

presented in Table 1. The trial and error calibration was limited only to the fitted

parameters.

5.4. Sensitivity analysis

The relative change approach is used in the current study for sensitivity analysis.

Using this technique, the values of the parameters (which were obtained by the trial

and error calibration) are changed by incrementing each of the parameters in turn by

a small amount ofequal relative magnitude, +5%, 4-10%, -5% and -10%, while the

other parameters are held constant at their original values. The resulting change in the

value of the objective function will be a measure of the model sensitivity to changes in

the parameter's values. By comparing the sensitivity of the model with respect to the

various parameters, one can indicate how the parameters influence the values of the

objective functions (Diskin, 1970).
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Fig. 4. Sensitivity analysis Tor the storm or 12 August 1971 on Watershed 11.

Fig. 4 demonstrates the linear relationships obtained from an example of the

sensitivity analysis of the effective matric potential parameter, SM, for the storm of

12 August 1971 and for the objective functions which describe the goodness of fit of

the predicted volume and of the predicted peak discharge. Values from this analysis

will be used later for the model optimization.

5.5. Bilinear optimization

Before continuing to the next step (model calibration with optimized parameters),

one of the above objective functions should be selected to be used in the optimization

scheme. As mentioned above, it is recommended to use more than one objective

function, to avoid bias. In the present study, the optimization procedure is based

on two objective functions: (1) predicted to observed total runoff ratio (Eq. (13)); (2)

predicted to observed peak discharge ratio (Eq. (14)). These objective functions were

selected because the flow volume and the peak discharge are widely used for many

engineering applications.

Once the objective functions have been selected, it is necessary to minimize simul

taneously the differences between the predicted and observed runoff volume and

between the predicted and observed peak discharge, to fulfill the criterion of

efficiency for the optimization scheme. Combining these two objective functions

yields a new function

^unc — I"van T Kynurl (15)
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Table 2

Calibration-optimization procedure; comparison of results for the storm of 12 August 1971 on

Watershed 11

Given

Observed runoff (mJ)

Observed peak discharge

(n>V)
Effective matric potential

SM (mm)

Results

Predicted runoff (m3)
Predicted peak discharge

(mV)

Evaluation

Predicted to observed runoff

ratio, Pval (%)

Predicted to observed peak

discharge. P^ (%)

Combined objective function,

Fm(%)

Trial and error

calibration

21579.13

9.7850

11.000

19895.43

9.2327

8.463

5.982

14.445

Prediction by

optimization

21 579.13

9.7850

9.989

21 543.49

9.8669

0.165

0.830

0.995

Prediction by

API model

21579.13

9.7850

8.376

24071.28

10.7543

-10.353

-9.013

19.366

The optimal values of the model parameters are those which give the minimum value

of the criterion of efficiency defined by Eq. (15).

This efficiency criterion can be fulfilled by using a bilinear interpolation technique.

The procedure described below makes use of the linear relationships between the

effective matric potential parameter (SM) and the objective functions defined by

the ratio between the predicted and observed volume (Pval) and the ratio between

predicted and observed peak discharge (Pymx) (Fig. 4).

The following steps are proposed for the optimization procedure, demonstrated

with the example of the storm of 12 August 1971:

(1) From the trial and error procedure it was found that SM = 11.00 mm is close

to fitting the predicted hydrograph to the observed but it is not the optimal

value. Results of the trial and error calibration are presented in the first column of

Table 2 and in Fig. 5. It can be seen that both the observed runoff volume and

the observed peak discharge are larger than the respective predicted values. To obtain

a perfectly matched runoff volume, one should increase the predicted value by

8.46%; similarly, to obtain a perfectly matched peak discharge, one should increase

the predicted value by 5.98%. The combined objective function defined in Eq. (15)

yields

Fmc = |8.46| +15.98| = 14.44% . (16)

(2) From the sensitivity analysis results for the storm of 12 August 1971 (Fig. 2), it

can be seen that there are linear relationships between the percentage ofchange of Pva,

and Pymx and the percentage of change of the product SM.
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12.00
H

WATERSHED U

AUG. 12, 1971

PREDICTED (by optimization)
OBSERVED , „.
FORECASTED (by API)
PREDICTED (by trial and error)

0.00
2.00

TIME (hr.)

3.00 4.00
0.00 1 -00

,„ To obtain optima, resuUs both for U,« ™off volume and the peak M.

gives

(17)

which is a relatively small value. Any further change in SM will introduce a larger
combined error for the runoff volume and the peak discharge.

5.6. Forecasting procedure

It should be noted that the calibration-optimization procedure d»*^
helps in refining the predicted hydrograph to match the observed one. However,
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Table 3
Bilinear algorithm for model optimization; example for the storm of 12 August 1971 on Watershed 11

Step 1: Runoff volume

Change SM

(mm)

+ 10

+5

0

-5

-10

-7.280

-3.937

0.000

3.960

8.994

12.113

11.563

11.000

10.461

9.911

Given new Pval value is 8.463%.

Predicted new SM value is 9.911 mm.

Step 2: Peak discharge

Change SM

(mm)

+10

+5

0

-5

-10

-6.327

-3.285

0.000

3.345

7.454

12.113

11.563

11.000

10.461

9.911

Given new P^ value is 5.982%.

Predicted new SM value is 10.087 mm.

Step 3: Mean predicted new SM value is 9.999 mm.

current forecasting version of CELMOD5, an objective procedure for evaluating the

soil moisture condition before the storm event is needed. It has been proposed that the

residual moisture, which is the only time-dependent parameter in CELMOD5, should
be calculated outside the model either by an API-type procedure (Karnieli, 1988) or

by soil water balance calculations (Karnieli and Ben-Asher, 1993). Both procedures

are based on daily rainfall data before a particular event and the interarrival time

between storms. Only the final product of these procedures, the residual soil moisture

values for each area represented by a rain gage, is transferred to CELMOD5 and
used for the rainfall excess calculations. Consequently, the performance of the

API model greatly influences the differences between the observed and predicted

hydrographs.

Based on the above models (API or water balance), which eventually produced

similar results, it was calculated that the effective matric potential for the storm event

of 12 August 1971 in Watershed 11 is SM = 8.38. Running CELMOD5 with this

parameter value produces the results presented in the third column of Table 2 and in
Fig. 5. It can be seen that, according to the objective functions, these are the worst

results among the three cases.
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5.7. Results

Twenty-one storm event data sets (rainfalland runoff) are available for Watershed
11 between the years 1966 and 1982. These include all the larger events with reliable
data. Seven of these storm events contain data for Watershed 8 (as mentioned above,

Watershed 11 is a part of Watershed 8).

Eleven of the storm events of Watershed 11 (Events 1-11) were selected for the
model calibration. In addition, two types of model testing were used: (1) testing the
model on other storm events on the same watershed (Events 12-21); (2) testing the
model on another watershed with seven data sets of Watershed 8 (Events 4,13-15 and

There are three types of results: (1) results of the calibration events; (2) results of the
tested events; (3) results of the forecasting procedure. It was found that, according to
the main objective function (/w; Eq. (15)), the mean is 2.23% for all the events. Very
high correlations (r2 above 0.96) are obtained between the observed and predicted
volume and between the observed and predicted peak discharges (Figs. 6 and 7) both

for the calibration and the test events.

Larger errors were obtained for the forecasting mode than for calibrated and tested
modes for all the objective functions. From the correlation plots (Fig. 8), it can be
seen that the model produced lower correlations (r2 = 0.806 and r = 0.771 for
volume and peak discharge, respectively) for Watershed 11 than for Watershed 8.
For the forecasting mode of Watershed 8, relatively high correlations were obtained
(r2 = 0.976 and r2 = 0.956 for volume and peak discharge, respectively; Fig. 8);
however, significant bias was obtained in the volume forecasting case.

6. Discussion and conclusions

CELMOD5 is a semi-distributed, single-event rainfall-runoff model developed for

the special hydrologic conditions that prevail in semi-arid locations such as the
Southwest in the USA or the Negev in Israel. The model represents the watershed
as a set of interconnected cells reflecting the main drainage pattern of the watershed.
The model accepts as input non-uniform and time-varying rainfall data for a
number of rain gages, derives rainfall excess hyetographs for each cell, and routes the
rainfall excess through the cell to produce a surface runoff hydrograph. Any channel
inflow to a cell is routed through model elements that modify the shape of the inflow
hydrograph and then subtract channel losses. The remaining channel outflow hydro-
graph is added to the surface runoff hydrograph to produce the total cell outflow

hydrograph.
Adopting the assumption that the values of the routing and channel loss para

meters are proportional either to the size of the area represented by the cell or to
the length of the main stream in this area reduces the number of parameters that are
evaluated in the calibration of the model. The rainfall excess separation model is
based on the modified Green and Ampt infiltration equation coupled with a simple
moisture accounting procedure. This requires the estimation of some additional
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parameters for the entire watershed or for a number of different soil types in the

watershed.

This paper presents an approach for calibrating and testing a forecasting storm

runoff model. The fitting parameters together with the physically based parameters

were used to calibrate the model on one subwatershed in the Walnut Gulch Experi

mental Watershed (Watershed 11). Because the physically based parameters were

deduced from the soil characteristics, they remained constant during the calibration

procedure. On the other hand, by changing the fitting parameters' values, a trial and

error calibration procedure was used to match as closely as possible the observed and

calculated hydrographs.

Two objective functions which are widely used for many engineering applications

were selected for the optimization procedure. These two expressed the goodness of fit

between the calculated hydrograph volume and peak discharge and the respective

values of the observed hydrograph.

By nominating two objective functions rather than a single one, the user is able to

utilize the model for more applications. However, greater error is introduced into the

results. Taking advantage of the linear relationships between the effective matric

potential parameter and the two objective functions obtained from the sensitivity

analyses made it possible to develop a bilinear interpolation algorithm to minimize,

simultaneously, the differences between the calculated and observed volume, and

peak discharge. It was found that this algorithm produces a minimum error with

reference to the combined objective function, and any further change in the para

meter will introduce a larger combined error. Satisfactory results were achieved from

testing the prediction mode of the model with data of other storm events of

Watershed 11 and also of another watershed (Watershed 8). In the prediction

mode, the effective matric potential parameter was allowed to vary from storm to

storm.

In the forecasting mode of the model, the values of the effective matric potential

parameter were estimated from the API model or from a water accounting procedure.

Larger errors were obtained in the forecasting mode than in the prediction mode.

These errors were in part caused by the errors in estimating the soil moisture deficit.

The overestimated runoff volume values in the forecasting mode of Watershed 8

can be explained by higher transmission losses as a result of larger and deeper

channels. These errors highlight some of the weaknesses of the model, which was

tested with one rainfall pattern (thunderstorms) on watersheds with ephemeral stream

channels. It can be concluded that, when applying the model to other watersheds, it

should be evaluated for the new conditions and the fitting parameters should be a

basis for a new calibration procedure.

In summary, the main contribution of the model is the technique which provides

significant assistance in terms of design runoff forecasting. The proposed forecasting

procedure can be used for various applications in the planning, design and manage

ment of water resources and other engineering systems. The design forecasting

concept is 'one-step-ahead' prediction, and it is believed that by applying the model

with weather radar data or a telemetric rain-gage system it can be used in real time for

flood forecasting and warning.
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