Use of ground-based remotely sensed data for surface energy balance evaluation of a semiarid rangeland

M. S. Moran,1 W. P. Kustas,2 A. Vidal,3 D. I. Stannard,4 J. H. Blanford,5 and W. D. Nichols6

Abstract. An interdisciplinary field experiment was conducted to study the water and energy balance of a semiarid rangeland watershed in southeast Arizona during the summer of 1990. Two subwatersheds, one grass dominated and the other shrub dominated, were selected for intensive study with ground-based remote sensing systems and hydrometeorological instrumentation. Surface energy balance was evaluated at both sites using direct and indirect measurements of the turbulent fluxes (eddy correlation, variance, and Bowen ratio methods) and using an aerodynamic approach based on remote measurements of surface reflectance and temperature and conventional meteorological information. Estimates of net radiant flux density (\(R_n\)), derived from measurements of air temperature, incoming solar radiation, and surface temperature and radiance compared well with values measured using a net radiometer (mean absolute difference (MAD) = 50 W/m² over a range from 115 to 670 W/m²). Soil heat flux density (\(G\)) was estimated using a relation between \(G/R_n\) and a spectral vegetation index computed from the red and near-infrared surface reflectance. These \(G\) estimates compared well with conventional measurements of \(G\) using buried soil heat flux plates (MAD = 20 W/m² over a range from -13 to 213 W/m²). In order to account for the effects of sparse vegetation, semiempirical adjustments to the single-layer bulk aerodynamic resistance approach were required for evaluation of sensible heat flux density (\(H\)). This yielded differences between measurements and remote estimates of \(H\) of approximately 33 W/m² over a range from 13 to 303 W/m². The resulting estimates of latent heat flux density, \(LE\), were of the same magnitude and trend as measured values; however, significant scatter was still observed: MAD = 40 W/m² over a range from 0 to 340 W/m². Because \(LE\) was solved as a residual, there was a cumulative effect of errors associated with remote estimates of \(R_n\), \(G\), and \(H\).

Introduction

Increasing concern over escalating costs and shortages of water and energy has spurred research into methods for estimating evapotranspiration (ET) over large areas. Conventional, ground-based methods for estimating regional ET only provide an average value for the region and are difficult, if not impossible, to verify. As an alternative, many approaches use remote sensing techniques as a means for obtaining spatial distributions (maps) of ET over diverse landscapes [Moran and Jackson, 1991]. Such approaches have been moderately successful for application to bare soil or mature agricultural fields, but have encountered problems when applied to sparsely vegetated areas.

For example, Jackson [1985] proposed an operational method that estimates latent heat flux density (\(LE\): a product of the heat of vaporization \(L\) and the rate of evaporation \(E\)) by solving the energy balance equation using remotely sensed estimates of surface reflectance and temperature and conventional meteorological information. This technique was successfully applied to mature agricultural fields using ground-, aircraft- and space-based sensors [Reginato et al., 1985; Jackson et al., 1987a; Moran et al., 1990]. However, serious difficulties were encountered when the method was applied to surfaces only partially covered by vegetation, such as immature crops and rangelands [Kustas et al., 1989]. These difficulties centered around the estimation of the sensible heat flux density term, \(H\), in the energy balance equation (see equation (1)).

According to the single-layer or bulk resistance approach, sensible heat flux density is a function of the surface-air temperature difference (\(T_s - T_a\)) and the resistance to heat transfer (see equation (5)). In the case of full cover vegetation, \(T_s\) measured by an infrared (IR) sensor corresponds fairly well with \(T_s\) in (5) [Choudhury et al., 1986], and the resistance term is a function of wind speed, stability, and surface roughness (see equation (6)). When the surface is only partially covered by vegetation, \(T_s\) measured radiometrically is a composite of the soil and vegetation temperatures.
[Kustas et al., 1990], and the resistance term is a function of both the soil and vegetation resistances [Kustas, 1990]. For a sparse canopy, Kustas et al. [1989] observed that \(H \) changed relatively little compared to the changes in \(T_s - T_a \), and concluded that the composite resistance was, in part, related to radiometric measurements of surface temperature. Consequently, for incomplete canopies, they found that it was necessary to incorporate an additional resistance to sensible heat transfer linked to \(T_s - T_a \).

This study addresses application of the energy balance approach using remotely sensed data to a sparsely vegetated rangeland site, Walnut Gulch experimental watershed, in southeast Arizona. Energy balance components were computed for two sites, one grass dominated and the other shrub dominated, using radiometric measurements of surface reflectance and temperature and on-site measurements of wind speed, air temperature, and incoming solar radiation. To account for the additional resistance to heat transfer associated with the sparsely vegetated sites, similar data from another rangeland in Owens Valley, California, were analyzed, and empirical relations were derived to correlate resistance with \((T_s - T_a) \). These relations were applied to data from the Walnut Gulch sites to compute suitable values of \(H \) and \(LE \). The overall accuracy of the method was assessed by comparing estimates of energy balance components with ground-based measurements at the two Walnut Gulch sites.

Theory

The procedure for estimating energy balance components from remote sensors and ground-based meteorological instruments is based on the one-dimensional form of the energy balance equation [Jackson, 1985], i.e.,

\[
LE = R_a - G - H, \tag{1}
\]

where \(R_a \) is the net radiant flux density, \(G \) is soil heat flux density, and values of \(LE \), \(G \), and \(H \) are positive when directed away from the surface.

Net radiant flux density \((R_a) \) is the algebraic sum of incoming and outgoing radiant flux densities, i.e.,

\[
R_a = R_s + R \uparrow + R \downarrow, \tag{2}
\]

where the subscripts \(S \) and \(L \) signify solar (shortwave) radiation (0.15-4 \(\mu \)m) and longwave radiation (\(> 4 \mu \)m) respectively, and the arrows indicate the flux direction (downward denotes incoming, upward denotes outgoing).

Jackson et al. [1985] proposed that incoming solar radiant flux density \(R_s \) can be measured with a calibrated pyranometer sensitive to radiation over most of the solar spectrum, and incoming longwave radiant flux density \(R \downarrow \) can be estimated from ground-based measurements of air temperature and vapor pressure using the relation

\[
R \downarrow = \epsilon \sigma T_a^4, \tag{3}
\]

where \(\epsilon_s = 1.24(\epsilon_0/T_a)^{0.77} \) [Brutsaert, 1975], \(\sigma \) is the Stefan-Boltzmann constant (\(W \text{ m}^{-2} \text{ K}^{-4} \)), \(T_a \) is air temperature (kelvins), and \(\epsilon_0 \) is vapor pressure (millibars) at \(T_a \). The outgoing terms \((R \uparrow \uparrow \) and \(R \downarrow \) \) can be obtained from data collected with downlooking multispectral sensors.

Jackson [1984] described a method by which the total reflected solar radiant flux density \(R \uparrow \uparrow \) (0.15-4 \(\mu \)m) was estimated from the radiance measured using a multispectral radiometer. The outgoing longwave radiant flux density \(R \downarrow \) can be obtained from the remotely measured surface temperature, \(T_s \), where \(\epsilon_s \) is surface emissivity and \(T_s \) is surface temperature (kelvins) measured by a thermal radiometer.

The \(G \) term, though traditionally measured with temperature and heat flow sensors buried just beneath the soil surface, can be determined by a relation between \(G/R_a \) and spectral reflectance factors in the red and near-infrared (NIR) spectral bands. This permits values of \(G \) to be estimated over large, diverse areas. An exponential relation suggested by Jackson et al. [1987a] is

\[
G/R_a = 0.583e^{-2.13ND}, \tag{4}
\]

where ND is the normalized difference [(NIR - red)/(NIR + red)], a spectral index that is sensitive to the amount of green vegetation present. This expression and others like it were derived for clear sky conditions during midday [Clothier et al., 1986; Kustas and Daughtry, 1990].

The sensible heat flux density can be expressed as

\[
H = \rho c_p(T_s - T_a)/r_{ab}, \tag{5}
\]

where \(\rho c_p \) is the volumetric heat capacity \((\approx 1150 \text{ J m}^{-3} \text{ C}^{-1}) \) and \(r_{ab} \) is a resistance to heat transfer (seconds per meter). This resistance term can be defined as

\[
r_{ab} = ([\ln((z - d)/z_{0m}) + \ln(z_{0m}/z_{0h}) - \phi_h]) - [\ln((z - d)/z_{0m}) - \phi_m]/k^2U, \tag{6}
\]

where \(z \) is the height (meters) above the surface at which the wind speed and air temperature are measured, \(d \) is the displacement height (meters), \(z_{0m} \) and \(z_{0h} \) are the roughness lengths for momentum and scalar roughness for heat (meters), respectively, \(k \) is von Karman's constant \((\approx 0.4) \), \(U \) is wind speed (meters per second), and \(\phi_h \) and \(\phi_m \) are the stability corrections for heat and momentum, respectively. The distinction between the roughness lengths for heat and momentum is necessary due to the dissimilarity between heat and momentum transfer mechanisms. Heat transfer near a surface is controlled primarily by molecular diffusion, whereas momentum transfer takes place as a result of both viscous shear and local pressure gradients [Brutsaert, 1982]. This difference results in an additional resistance to heat transfer (where \(z_{0m} > z_{0h} \)), which has been expressed as

\[
kB^{-1} = \ln(z_{0m}/z_{0h}) \text{ [Chamberlain, 1968]. For a uniform vegetative surface, } kB^{-1} \text{ is observed to be fairly constant, having a value } \approx 2 \text{ [Garratt and Hicks, 1973].}
\]

The integral stability functions summarized by Beljaars and Holtslag [1991] for the unstable condition \((T_s > T_a)\) are

\[
\psi_m(\xi) = 2 \ln[(1 + x)/2] + \ln[(1 + x^2)/2] - 2 \arctan(x) + \pi/2, \tag{7}
\]

\[
\psi_h(\xi) = 2 \ln[(1 + x^2)/2], \tag{8}
\]

and, for the stable condition \((T_s < T_a)\),

\[
\psi_m(\xi) = \psi_h(\xi) = -\xi, \quad 0 < \xi < 0.5 \tag{9}
\]

\[
\psi_m(\xi) = \psi_h(\xi) = a\xi + b(\xi - c/d)e^{-d\xi} + bc/d \quad \xi \geq 0.5 \tag{10}
\]

where \(a = 0.7, \ b = 0.75, \ c = 5, \) and \(d = 0.35, \ x = (1 - 16\xi)^{1/4}, \) and \(\xi \) is a dimensionless variable \((\xi = (z - d)/L)\).
proposed by Monin and Obukhov [1954]. The Obukhov [1946] stability length, \(L \), is defined as

\[
L = \left(-u^2 \rho c_p T_a \right) / (g H),
\]

(11)

where \(u^2 \) is the friction velocity \(u^2 = k H \ln \left(\frac{z - d}{z_0} \right) - \psi_m \) and \(g \) is the acceleration due to gravity \((=9.8 \text{ m/s}^2)\). The \(L \) value can be determined by an iteration of (5)–(11), based on estimates of \(d, z_0 \), and \(kB^{-1} \) and measurements of \(T_s, T_a, \) and \(U \).

Two methods are proposed to account for the additional heat transfer resistance associated with sparse vegetation; they are distinguished by their conceptual approach. One associates the additional resistance with the differences in transfer processes of heat and momentum by assuming that the \(kB^{-1} \) value is not a constant, but rather, a function of the composite surface temperature (termed the \(kB^{-1} \) method). The other attempts to divide the total resistance into its component parts: one related to plant height, one to canopy structure, and an additional resistance to account for the effect of partial canopy surface temperature (termed the \(r_{ss} \) method).

Additional Resistance, \(kB^{-1} \) Method

Kustas et al. [1989] found that when \(T_s \) was measured radiometrically, appropriate values of \(r_{ss} \) for sparsely vegetated surfaces could not be obtained using (6) with values of \(kB^{-1} \) from previous experimental and theoretical work [Brutsaert, 1982]. To obtain proper values of the resistance, it was necessary to link \(kB^{-1} \) to the value of \((T_s - T_a) \). The calibration of the \(kB^{-1} \) expression was performed with data from an experiment conducted in Owens Valley, California, at a site characterized by shrubbery vegetation covering about 20–30% of the soil surface. Surface temperatures were measured at times 1000, 1200 and 1400 hours on three days in June 1986 with an infrared thermometer mounted on a low-flying aircraft, and values of \(H \) were measured at several sites using Bowen ratio and eddy correlation systems. Site-specific values of \(kB^{-1} \) were computed from measurements of \(H \). A least squares regression, forcing the intercept through zero, gave the following relationship (Figure 1a):

\[
kB^{-1} = \left| s_{kb} U(T_s - T_a) \right|,
\]

(12)

where \(s_{kb} = 0.17 \) for the Owens Valley rangeland data. Substituting the empirical (12) into (6), equation (5) is expanded to

\[
H = \rho c_p \left(T_s - T_a \right) \left[\ln \left(\frac{z - d}{z_0} \right) - \psi_m \right] U \left(T_s - T_a \right) \cdot \left(\left[\ln \left(\frac{z - d}{z_0} \right) - \psi_m \right] / \left(kB^{-1} \right) \right).
\]

(13)

Kustas et al. [this issue (b)] recently revised (12) based on improvements to the estimation of the momentum roughness parameter, thus reducing the empirical estimate of \(s_{kb} \) from 0.17 to 0.13.

Additional Resistance, \(r_{ss} \) Method

The \(r_{ss} \) method approaches the problem by defining a resistance term that is independent of aerodynamic resistance and related only to the soil surface temperature. In this method, convective exchanges between leaves and the atmosphere are controlled by a sum of resistances [Vidal and Perrier, 1989].

\[
r_{ah} = r_0 + r_{ss} + r_a,
\]

(14)

where \(r_0 \) is the structural resistance due to stratification of the leaves in the crop (a function of leaf area index, LAI) and \(r_{ss} \) is the “soil surface effect” resistance representing the effect of soil surface temperature in the radiometric measurement of \(T_s \). In (14), \(r_a \) is the stability-corrected aerodynamic resistance related to average plant height \((h) \), where

\[
r_a = \left[\ln \left(\frac{z - h}{z_0} \right) / k \right]^2 \left(1 + 15 Ri \right) / (1 + 5 Ri)^{1/2} / U,
\]

(15)

(adapted from Mahrli and Ek [1984]) for the stable case, and

\[
r_a = \left[\ln \left(\frac{z - h}{z_0} \right) / k \right]^2 \left(1 - 15 Ri \right) / \left(1 + C(-Ri)^{1/2} \right) / U,
\]

(16)

for the unstable case. In (15) and (16), \(Ri \) is a variation of the bulk Richardson [1920] number related to \(h \) rather than \((z + z_0) \) (where \(Ri = g(T_s - T_a) / (z - h) / T_a u^2 \)), \(C = 75 / k^2 \left[\left(z - h \right) / z_0 \right]^{1/2} / \left[\ln \left(\frac{(z - h)}{z_0} \right) \right]^2 \), and \(z_0 = h(1 - e^{0.2LAI}) e^{0.6LAI} \) [Perrier, 1982].

For sparse canopies, where the proportion of soil to vegetation is large, the turbulent exchange between the surface and the atmosphere depends largely on the air-soil
temperature difference. Consequently, the resistance to turbulent exchange can be expressed as a function of $T_s - T_d$. Using Owens Valley data compiled by Kustas et al. [1989] for a site with LAI = 0.47 and assuming $r_0 = 10$ [Perrier, 1975], an empirical relation was defined between r_{ss} and $(T_s - T_d)$ (Figure 1b), where

$$r_{ss} = \frac{3.24(T_s - T_d)}{r_0}.$$

Thus (5) can be rewritten to account for radiometric measurements of T_s, where

$$H = \rho c_p(T_s - T_d)/r_0 + 3.24(T_s - T_d) + r_o.$$

Experiment

An experiment was conducted at the Walnut Gulch experimental watershed near Tombstone, Arizona, to acquire the hydrometeorological and remote sensing data necessary to test the remote energy balance method for rangeland vegetation. These data were acquired as part of a larger study focusing on the general utility of remote sensing to provide a practical means for monitoring some of the important factors controlling land surface processes [Kustas et al., 1991a]. The experimental sites were located in an area comprising the upper 150 km2 of the Walnut Gulch drainage basin, from about 1300 m above mean sea level (MSL) to about 1800 m MSL. 20 km east. In this region, precipitation ranges from 250 to 500 mm/yr, with two thirds of the rainfall occurring during the summer “monsoon season” in July and August. For this study, data were obtained during the dry season in June while most vegetation was still dormant and during the monsoon season in late July and early August (Table 1), when the vegetation was at peak greenness and soil moisture was highly variable in time and space due to recent precipitation events [Schmugge et al., this issue]. The majority of the measurements used in this analysis were made in the first half of the day.

This analysis was limited to two sites, namely Lucky Hills and Kendall, characterized by sparse shrubs and grass, respectively. At both sites, a large ground target was delimited over which surface temperature and reflectance were measured from a height of 2 m above the ground surface, using yoke-based radiometers and a calibrated reference reflectance panel [Jackson et al., 1987b]. Data were acquired at 1 m increments along transects through the target, covering the entire target in less than 15 min (this technique was similar to that described by Slater et al. [1987]). The Lucky Hills target was approximately 120 by 120 m in size, typified by relatively flat topography and primarily shrub vegetation of ~0.6 m height covering 20% of the soil surface. The Kendall target was much larger, 480 by 120 m, located in a hilly, grass-dominated site, stretching from the top of one hill eastward to the top of another.

An eddy correlation system [Tanner, 1988] was located near the Lucky Hills target and a Bowen ratio system [Spittlehouse and Black, 1980] near the Kendall target to measure H and LE on site. R_n and G were measured using a single-dome shielded net radiometer and a grid of strategically placed soil heat flux plates [Stannard et al., this issue]. At Lucky Hills, flux densities of latent and sensible heat were measured by the eddy correlation system using a single-axis sonic anemometer with fine wire thermocouple and krypton hygrometer and at both sites by the Bowen ratio system using unaspirated, unshielded thermocouples and a single cooled mirror dew point hygrometer [Tanner, 1988].

The area around Kendall has significantly rougher topography than the Lucky Hills site, resulting in less than adequate fetch conditions.

A meteorological and flux (METFLUX) station was erected at both sites to measure meteorological conditions and estimate the surface energy balance [Kustas et al., this issue (a)]. R_n and G were measured as described above, and H was measured with the variance method [Tillman, 1972] and the eddy correlation technique using a tower with a propeller anemometer and fine wire thermocouple [Amiro and Wischke, 1987]. Although these two techniques are not as accurate as eddy correlation using a sonic anemometer [e.g., Welsey et al., 1970], the location of the METFLUX sites (along ridgetops) and the height of the METFLUX instruments (T_a at 4 and 9 m, U at 4.5 m and vertical wind speed (W) at 9 m) ensured spatially averaged turbulent energy flux values indicative of the surrounding terrain. LE was solved as a residual using the energy balance equation (equation (1)) and METFLUX values of R_n, G, and H.

The eddy correlation, Bowen ratio, and METFLUX data were acquired at 20-min intervals and averaged to hourly values to bracket the time of spectral data collection. This was necessary because a 20-min period was not adequate to take a representative sample of the energy-carrying eddies at the 9-m tower height. Tower estimates of H were multiplied by 1.1 to correct for the slow response time of the propeller anemometers as suggested by Moore [1987]. Blanford and Stannard [1991] found that hourly averages of H estimated

<table>
<thead>
<tr>
<th>DOY</th>
<th>Date</th>
<th>Time of Day, decimal hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>156</td>
<td>June 5</td>
<td>9.0*, 11.0*</td>
</tr>
<tr>
<td>212</td>
<td>July 31</td>
<td>11.4, 11.8, 12.2</td>
</tr>
<tr>
<td>213</td>
<td>Aug. 1</td>
<td>10.4, 10.7*</td>
</tr>
<tr>
<td>214</td>
<td>Aug. 2</td>
<td>9.0, 9.4</td>
</tr>
<tr>
<td>216</td>
<td>Aug. 4</td>
<td>7.7, 8.2</td>
</tr>
<tr>
<td>217</td>
<td>Aug. 5</td>
<td>9.2, 9.5</td>
</tr>
<tr>
<td>220</td>
<td>Aug. 8</td>
<td>7.1, 7.4, 8.8, 9.1, 9.7*, 10.0, 10.4, 12.0, 12.5</td>
</tr>
<tr>
<td>221</td>
<td>Aug. 9</td>
<td>7.2*, 7.4*, 9.1*, 9.4*, 10.7*, 11.1*, 11.3*</td>
</tr>
<tr>
<td>222</td>
<td>Aug. 10</td>
<td>9.0, 9.2, 9.4, 9.6, 10.9, 11.1, 11.3, 11.5</td>
</tr>
</tbody>
</table>

Kendall

<table>
<thead>
<tr>
<th>DOY</th>
<th>Date</th>
<th>Time of Day, decimal hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>156</td>
<td>June 5</td>
<td>8.6*, 10.1*, 11.1*</td>
</tr>
<tr>
<td>211</td>
<td>July 30</td>
<td>11.1, 13.1</td>
</tr>
<tr>
<td>212</td>
<td>July 31</td>
<td>11.4*</td>
</tr>
<tr>
<td>213</td>
<td>Aug. 1</td>
<td>10.4*, 10.7</td>
</tr>
<tr>
<td>214</td>
<td>Aug. 2</td>
<td>9.0, 9.4</td>
</tr>
<tr>
<td>216</td>
<td>Aug. 4</td>
<td>7.7, 8.1, 9.3, 9.7, 10.2, 11.1, 11.6</td>
</tr>
<tr>
<td>217</td>
<td>Aug. 5</td>
<td>9.3, 9.7, 12.0, 12.3</td>
</tr>
<tr>
<td>220</td>
<td>Aug. 8</td>
<td>9.5*, 10.0*, 10.4, 12.2, 12.5</td>
</tr>
<tr>
<td>221</td>
<td>Aug. 9</td>
<td>7.2*, 7.4*, 9.1*, 9.4*, 10.1*, 10.6*, 11.1, 11.4, 14.3, 14.6</td>
</tr>
</tbody>
</table>

Lucky Hills

*Days when the solar path was not occluded by clouds during the measurement period (termed “clear sky” conditions in the text).
Table 2. Mean Absolute Difference (MAD) and Range of Data Presented in Figures 2–8

<table>
<thead>
<tr>
<th>Figure</th>
<th>X</th>
<th>Y</th>
<th>n</th>
<th>MAD W/m²</th>
<th>X Minimum</th>
<th>X Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>2a</td>
<td>Rₚ, ECBR</td>
<td>Rₚ, METFLUX</td>
<td>73</td>
<td>12.1</td>
<td>113</td>
<td>717</td>
</tr>
<tr>
<td>2b</td>
<td>G, ECBR</td>
<td>G, METFLUX</td>
<td>73</td>
<td>14.2</td>
<td>-25</td>
<td>228</td>
</tr>
<tr>
<td>2c</td>
<td>H, EC</td>
<td>H, METFLUX</td>
<td>31</td>
<td>32.5</td>
<td>12</td>
<td>375</td>
</tr>
<tr>
<td>2d</td>
<td>LE, EC</td>
<td>LE, METFLUX</td>
<td>31</td>
<td>20.6</td>
<td>20</td>
<td>390</td>
</tr>
<tr>
<td>3a, all</td>
<td>Rₚ, METFLUX</td>
<td>Rₚ, remote</td>
<td>73</td>
<td>56.9</td>
<td>115</td>
<td>670</td>
</tr>
<tr>
<td>3b, clear</td>
<td>Rₚ, METFLUX</td>
<td>Rₚ, remote</td>
<td>19</td>
<td>40.8</td>
<td>115</td>
<td>612</td>
</tr>
<tr>
<td>4a, all</td>
<td>G, METFLUX</td>
<td>G, remote</td>
<td>73</td>
<td>19.0</td>
<td>-13</td>
<td>213</td>
</tr>
<tr>
<td>4b, clear</td>
<td>G, METFLUX</td>
<td>G, remote</td>
<td>19</td>
<td>24.8</td>
<td>-13</td>
<td>213</td>
</tr>
<tr>
<td>5a, all</td>
<td>H, METFLUX</td>
<td>H, kB⁻¹</td>
<td>73</td>
<td>33.4</td>
<td>13</td>
<td>303</td>
</tr>
<tr>
<td>5a, all</td>
<td>H, METFLUX</td>
<td>H, rₑ</td>
<td>73</td>
<td>34.8</td>
<td>13</td>
<td>303</td>
</tr>
<tr>
<td>5b, clear</td>
<td>H, METFLUX</td>
<td>H, kB⁻¹</td>
<td>19</td>
<td>40.6</td>
<td>26</td>
<td>303</td>
</tr>
<tr>
<td>5b, clear</td>
<td>H, METFLUX</td>
<td>H, rₑ</td>
<td>19</td>
<td>36.9</td>
<td>26</td>
<td>303</td>
</tr>
<tr>
<td>6a, all</td>
<td>H, METFLUX</td>
<td>H, no adjustment</td>
<td>73</td>
<td>279.0</td>
<td>13</td>
<td>303</td>
</tr>
<tr>
<td>6b, clear</td>
<td>H, METFLUX</td>
<td>H, no adjustment</td>
<td>19</td>
<td>297.2</td>
<td>26</td>
<td>303</td>
</tr>
<tr>
<td>7a*, all</td>
<td>LE, METFLUX</td>
<td>LE, kB⁻¹</td>
<td>73</td>
<td>40.0</td>
<td>0</td>
<td>340</td>
</tr>
<tr>
<td>7a, all</td>
<td>LE, METFLUX</td>
<td>LE, rₑ</td>
<td>73</td>
<td>75.8</td>
<td>0</td>
<td>340</td>
</tr>
<tr>
<td>7b, clear</td>
<td>LE, METFLUX</td>
<td>LE, kB⁻¹</td>
<td>19</td>
<td>22.9</td>
<td>0</td>
<td>296</td>
</tr>
<tr>
<td>7b, clear</td>
<td>LE, METFLUX</td>
<td>LE, rₑ</td>
<td>19</td>
<td>52.5</td>
<td>0</td>
<td>296</td>
</tr>
<tr>
<td>8a*, all</td>
<td>LE, METFLUX</td>
<td>LE, kB⁻¹</td>
<td>73</td>
<td>33.4</td>
<td>0</td>
<td>340</td>
</tr>
<tr>
<td>8a, all</td>
<td>LE, METFLUX</td>
<td>LE, rₑ</td>
<td>73</td>
<td>34.8</td>
<td>0</td>
<td>340</td>
</tr>
<tr>
<td>8b, clear</td>
<td>LE, METFLUX</td>
<td>LE, kB⁻¹</td>
<td>19</td>
<td>40.6</td>
<td>0</td>
<td>296</td>
</tr>
<tr>
<td>8b, clear</td>
<td>LE, METFLUX</td>
<td>LE, rₑ</td>
<td>19</td>
<td>36.9</td>
<td>0</td>
<td>296</td>
</tr>
</tbody>
</table>

*In Figure 7, remote LE (Y axis) was computed using remote estimates of Rₚ, G, and H. In Figure 8, remote LE (Y axis) was computed using remote estimates of H and METFLUX measurements of Rₚ and G.

Comparison of METFLUX Data With Eddy Correlation and Bowen Ratio Outputs

The first step in the analysis was to determine the agreement between the eddy correlation (EC) and Bowen ratio (BR) data (referred to collectively as ECBR), and data acquired using the instruments of the METFLUX station. The mean absolute difference (MAD: the average of the absolute differences of corresponding data values) and the range was computed for Rₚ, G, H, and LE (Table 2).

For data collected at several times per day during the dry and monsoon seasons at the Lucky Hills and Kendall sites (Table 1), there was good agreement between the estimates of Rₚ at the ECBR stations and the METFLUX station, MAD = 12.1 W/m² (Figure 2a). There were significant differences at times between the ECBR and METFLUX values of Rₚ, probably due to differences in location of the instruments. Considering that these data were averaged over a 1-hour period during which the sky and surface conditions were highly variable, it was expected that Rₚ measurements at different locations would reflect this variability.

Measurements of G showed some scatter along the 1:1 line (Figure 2b); however, the MAD of ECBR and METFLUX data was only 14.2 W/m². Considering the likely spatial variation in G values and that ECBR and METFLUX values generally differed by less than 50 W/m² over a range from -25 to 228 W/m², the correlation was considered satisfactory.

Due to the rough terrain and limited fetch conditions at the Kendall site and intermittent problems with the Bowen ratio equipment, it was deemed preferable to use the Lucky Hills data for evaluation of METFLUX H and LE values. The mean of the METFLUX “variance” and “tower” estimates of H tended to be slightly lower than the eddy correlation estimates at Lucky Hills (Figure 2c). However, as with the G values, the difference was generally less than 50 W/m², and the MAD was relatively small, 32.5 W/m². Since the variance and tower values were similar, means of the two values were computed and used for evaluation of residual LE.

Comparison of eddy correlation LE and METFLUX LE showed similar agreement (Figure 2d), MAD = 20.6 W/m².

The differences in the METFLUX estimates and EC measurements of H and LE are due to several factors, including the fact that the instrumentation for determining H at the METFLUX sites is not as accurate as the EC instrumentation. Another factor is the height of the tower (~9 m) and variance (~4 m) measurements, compared to eddy correlation (~2 m), resulting in the METFLUX site integrating over 4–20 times the area sampled by the eddy correlation system. In fact, H evaluated at the METFLUX site is influenced by conditions 500–1000 m upwind, whereas ECBR systems represent a 200–300 m upwind footprint. Based on this analysis, the METFLUX data were considered reliable, indicative of about 1 km upwind from the site, and suitable for use in evaluation of the remote energy balance method.

It should be emphasized that the comparison of latent and sensible heat flux densities measured by systems of different designs is inherently difficult due in part to differences in spatial and temporal measurement scales, instrument cali-
brations, sensor response times, and calculation algorithms. For example, Dugas et al. [1991] reported results from an experiment in which four Bowen ratio systems and three eddy correlation instruments were installed in a single wheat field over a 2-day period. They found that the average eddy correlation measurements of \(H \) and \(LE \) differed from the average values derived from Bowen ratio measurements by up to 31% and 33%, respectively. Thus, though differences in flux measurements appear large at times, they must be considered within the context of measurement scales and complexity.

Results and Discussion

The accuracy of the energy balance method proposed by Jackson [1985] for evaluation of \(R_n \), \(G \), \(H \), and \(LE \) was assessed based on simultaneous measurements of spectral and meteorological data acquired at the Lucky Hills and Kendall sites in June, and late July and early August (Table 1). Data were acquired for a variety of atmospheric conditions, including occasions when the Sun was occluded from view. The following analysis presents results for the entire data set (termed “all days”) and for a subset of the data that included only days and times when the solar path was cloud-free (termed “clear sky”). This distinction was made because cloudy conditions can cause bias in measurements of surface temperature and, to a greater degree, surface reflectance factors.

Remote Estimation of \(R_n \) and \(G \)

Based on (2), values of \(R_n \) were computed using radiometric measurements of \(R_{5.1} \) and \(T_s \), and hourly averages of \(R_{5.1} \), \(T_s \), and \(e_0 \). These “remote” estimates of \(R_n \) were compared with METFLUX measurements for all days at the Lucky Hills and Kendall sites (Figure 3a). Remote \(R_n \) values compared well with METFLUX \(R_n \) values for all days (MAD = 56.9 W/m² over the range from 115 to 670 W/m²) but tended to underestimate \(R_n \) for values greater than 550 W/m². There was an improvement when data were limited to only clear sky days, MAD = 40.8 W/m² (Figure 3b). This improvement could be due to the increased accuracy of \(R_{5.1} \) estimates during cloud-free conditions. It could also be due to the fact that the estimation of \(R_L \) using (3) is based on the assumption of clear skies [Brutsaert, 1975] and is not reliable for application during cloudy conditions.

The relation between \(G/R_n \) and ND (equation (4)) was originally derived from data collected during late morning and midday from an irrigated alfalfa field in central Arizona.
Figure 3. Net radiant flux density (R_n) estimated with the remote method and compared with results from the METFLUX measurements for (a) all days and for (b) clear sky conditions. The solid line represents the 1:1 relationship.

Figure 4. Soil heat flux density (G) estimated with the remote method and compared with results from the METFLUX measurements for (a) all days and for (b) clear sky conditions. The solid line represents the 1:1 relationship.

However, because G/R_n varies with time of day (the morning rise in G precedes that of R_n, and G declines more rapidly than R_n in the late afternoon), (4) tended to overestimate G in the early morning (Figure 4). However, for a wide range of meteorological conditions during midday, the remote G values correlated well with METFLUX values, though differences at times were large (>50 W/m2).

The limitation of (4) was particularly evident for instances in the early morning when METFLUX measurements of G were negative. There was no improvement in the correlation when the data set was limited to clear sky conditions (Figure 4b). This analysis indicated that (4) should be reevaluated as a function of both ND and time of day to account for the time lag between G and R_n and to allow for negative G values.

Remote Estimation of H

Values of H were computed with the kB^{-1} and r_{ss} methods (equations (13) and (18), respectively), using remotely sensed spectral data and hourly averages of T_a, e_0, and U measured at the Lucky Hills and Kendall sites. For this analysis, s_{hh} was assumed to be 0.17 [from Kustas et al., 1989] and the agronomic and meteorological parameters associated with each site are summarized in Table 3. The "remote" values of H were compared with the mean of the METFLUX variance and tower values for all days (Figure 5a) and for clear sky conditions (Figure 3b). Though there was considerable scatter about the 1:1 line, the MAD was relatively low in all cases (<35 W/m2).

Results using the kB^{-1} method tended to underestimate H over the entire range, possibly due to uncertainty in estimation of e_0 and d and the high sensitivity of (6) to those inputs. Though the values of e_0 and d listed in Table 3 were determined using standard methods [Kustas et al., this issue (a)], the values differed slightly from those determined for the same sites using another approach described by Stannard et al. [this issue]. The value of s_{hh} in (13) was another source of uncertainty in this analysis. Assuming in (13) that $s_{hh} = 0.13$ [from Kustas et al., this issue (b)] rather than $s_{hh} = 0.17$, H values were slightly increased, resulting in an overall decrease in the MAD from 33.4 to 30.9 W/m2.

The r_{ss} method resulted in overestimations of H in many cases, but generally followed the same trend and was of the same magnitude of the METFLUX data. In contrast, when the added resistance to heat transfer was not accounted for (assuming $kB^{-1} = 1.0$ in (6)), the difference between remote H and METFLUX H was striking; the MAD increased to more than 250 W/m2 (Figures 6a and 6b). It is readily apparent that when using a single-layer model with radiometric estimates of T_s for sparse canopies, there must be some adjustment for excess resistance, especially at high $T_s - T_a$ values.
Table 3. Site Measurements and Assumptions
Regarding Lucky Hills and Kendall Targets for
Solution of (1)–(18)

<table>
<thead>
<tr>
<th>Kendall</th>
<th>Lucky Hills</th>
</tr>
</thead>
<tbody>
<tr>
<td>For Both Methods</td>
<td></td>
</tr>
<tr>
<td>Instrument height (z)</td>
<td>4.5 m</td>
</tr>
<tr>
<td>Emissivity (ε_s)🡢</td>
<td>0.96</td>
</tr>
<tr>
<td>Emissivity (ε_u)🡢</td>
<td>0.98</td>
</tr>
<tr>
<td>For kB⁻¹ Method</td>
<td></td>
</tr>
<tr>
<td>Roughness (z₀)†</td>
<td>0.01 m</td>
</tr>
<tr>
<td>Displacement (d)†</td>
<td>0.50 m</td>
</tr>
<tr>
<td>For rₛ Method</td>
<td></td>
</tr>
<tr>
<td>LAI</td>
<td>0.5</td>
</tr>
<tr>
<td>r₀</td>
<td>10 s/m</td>
</tr>
</tbody>
</table>

*Surface emissivity was measured at each site using a method described by Humes et al. [this issue]. Emissivities for the dry and monsoon seasons were computed as an average of the emissivities of the soil and shrubs weighted by their percent cover at each site [Moran et al., this issue].
†Roughness length and displacement height were estimated using standard methods described by Kustas et al. [this issue (a)].

Figure 5. Sensible heat flux density (H) estimated with the remote method using the kB⁻¹ and rₛ assumptions, and compared with results from the METFLUX station for (a) all days and (b) clear sky conditions. The solid line represents the 1:1 relationship.

Figure 6. Sensible heat flux density (H) estimated with the remote method without accounting for additional resistance due to partial canopy conditions, and compared with results from the METFLUX station for (a) all days and for (b) clear sky conditions. Note the change in scale of the Y axis relative to that of Figure 5.

Remote Estimation of LE

Values of "remote" LE were computed based on solution of (1) and remote estimates of Rₙ, G using (2)–(4) and H using the kB⁻¹ method (equation (13)) and the rₛ method (equation (18)). These values were compared with hourly averages of LE computed using METFLUX measurements of Rₙ, G, and H for all days and for clear sky conditions (Figure 7). The remote estimates of LE were of the same magnitude and trend as the METFLUX measurements of LE for all days, though the overall scatter was considerable (Figure 7a). The correlation was improved when data analysis was limited to clear sky conditions (MAD = 22.9 and 32.5 W/m² for the kB⁻¹ and rₛ methods, respectively). With the exception of several outliers, the remote LE estimates for clear sky conditions tended to follow the 1:1 line.

Because LE is solved as a residual (equation (1)), there can be a cumulative effect of errors associated with remote estimates of Rₙ, G, and H. For example, consider the hypothetical case in which the remote measurement of surface temperature is erroneously high. For midday measurements at Walnut Gulch, a 2° overestimation of Tₛ would result in ≈20 W/m² underestimation of Rₙ, ≈3 W/m²
underestimation of G, and ≈ 20 W/m2 overestimation of H. Using (1), the resultant error in LE would be equal to 37 W/m2; that is, the error in LE would be equal to the sum of the errors in R_a and H, offset by the error in G.

For a direct evaluation of the effect of application of the kb^{-1} and r_{st} methods on estimation of LE, it is reasonable to evaluate LE using the 1-hour averages of R_a and G from the METFLUX stations and the remote estimates of H. When this value is compared with the METFLUX estimates of LE, any differences between the remote and METFLUX LE estimates are directly attributable to differences in the estimation of H. These data showed that acceptable values of LE for rangeland vegetation can be obtained (MAD ≈ 34 W/m2) based on remote estimates of H, providing that an adjustment is made for the additional resistance associated with partial cover vegetation (Figure 8). The differences between remote and METFLUX data could be attributed to several sources, including the inaccuracy of the variance and tower data [Weaver, 1990; Blanford and Stannard, 1991], the unavoidable variation caused by 15-min versus 1-hour time integrations, and differences in the location and spatial integration of the instruments.

![Figure 7](image1.png)

Figure 7. Residual latent heat flux density (LE) computed from remote estimates of R_a, G, and H using the kb^{-1} and r_{st} assumptions for estimation of H, and compared with results from the METFLUX station for (a) all days and (b) clear sky conditions. The solid line represents the 1:1 relationship.

![Figure 8](image2.png)

Figure 8. Residual latent heat flux density (LE) computed from remote estimates of H using the (a) kb^{-1} and (b) r_{st} assumptions, and compared with LE from the METFLUX station. The Y axis differs from that of Figure 7 because METFLUX measurements of R_a and G were substituted for remote estimates of R_a and G in the computation of remote LE.

Concluding Remarks

A single-layer, one-dimensional energy balance method that relies on remote sensing and ancillary meteorological data for evaluation of latent heat flux density (LE) was applied to rangeland vegetation in southeast Arizona. The mean absolute difference (MAD) of remote estimates of R_a was 57 W/m2 over a range from 115 to 670 W/m2. The empirical relation for estimation of G worked well for the observations taken in midday, but needs to be reevaluated for use in the early morning or late afternoon. The adjustments to the aerodynamic resistance using the kb^{-1} or r_{st} method significantly improved estimates of H at Lucky Hills and Kendall, decreasing the MAD from nearly 300 to less than 35 W/m2. Remote estimates of LE were of the same magnitude and trend as ground-based measurements; however, differences with measured values of the order of 30 W/m2 can be expected. This was in part due to the inaccuracies in the METFLUX data, the cumulative effect of errors associated with remote estimates of R_a, G, and H, and the spatial integration of R_a and G versus point measurements at the METFLUX stations. However, results confirmed that reasonable values of LE could be obtained for rangeland vegetation, based on remote estimates of H properly adjusted for the additional resistance associated with sparse
vegetation. Furthermore, the method was found to be reliable for use during both cloudy and clear sky conditions. It should be emphasized, however, that these results were obtained using data acquired mainly during the first half of the day; bias associated with the time of data acquisition may have influenced the conclusions of this analysis.

Future work will attempt to improve methods in estimating the three energy balance components, namely R_n, G, and H. This will involve improvements in evaluating the radiation balance, a reevaluation of the G/R_n relation for semiarid rangelands, and possible incorporation of soil and vegetation components for evaluating sensible heat flux [Kustas, 1990]. Once these changes have been tested and incorporated into the method, it will be used with aircraft- or satellite-based remote sensing data to provide spatially continuous maps of surface flux over the watershed. However, this next step will involve other issues such as how measurements of T_a vary with sensor spatial resolution, what area scales the estimated fluxes are representing, and the areal limitation of the remote method as determined by the height and spatial density of the meteorological data, particularly T_a and U [Kustas et al., 1991b]. Future work will also address the extrapolation of instantaneous LE to values of daily ET (millimeters per day) [Jackson et al., 1983], for practical application to rangeland, watershed and farm management.

Acknowledgments. The data reported here were taken from a larger data set acquired with support from the NASA Interdisciplinary Research Program in Earth Sciences (NASA reference number 1DP-88-086). Thanks are due to our outstanding field crew, led by Tom Clarke and including Bob Anderson, Ghanie Chehbouni, Karen Humes, Jim Washburn, Skip Mueller, and Gao Xiaoyong. We also appreciate the cooperation and assistance of personnel at the USDA ARS Southwest Watershed Research Center, Tucson, and the USDA ARS Tombstone Facility.

References

Moran, M. S., T. R. Clarke, W. P. Kustas, M. A. Welzt, and S. A. Amer, Evaluation of hydrologic parameters in a semiarid range-

J. H. Blanford, School of Renewable Natural Resources, University of Arizona, 325 Bio Science East, Tucson, AZ 85721.
W. P. Kustas, USDA Agricultural Research Service, Hydrology Laboratory, BARC-East, Beltsville, MD 20705.
A. Vidal, CEMAGREF-ENGREF Remote Sensing Laboratory, 361 Rue J. F. Breton, Boîte Postale 5095, F-34033 Montpellier, France.

(Received August 13, 1992; revised April 18, 1993; accepted October 19, 1993.)