EDITORIAL ... 155

TECHNICAL PAPERS

Shore Attachment of Buoyant Effluent in Strong Crossflow.
V. H. Chu and M. S. T. Abdelwahed 157

Interfacial Mixing in Estuaries and Fjords.
John P. Grubert .. 176

Hydraulic Transients in Rock-Bored Tunnels.
Lisheng Suo and E. Benjamin Wylie 196

Reliability-Constrained Pipe Network Model.
Ian C. Goulter and Francois Bouchart 211

Reliability Analysis of Pumping Systems.
Ning Duan and Larry W. Mays 230

Optimal Reliability-Based Design of Pumping and Distribution Systems.
Ning Duan, Larry W. Mays, and Kevin E. Lansey 249

TECHNICAL NOTE

Accounting for Density Front Energy Losses.
Richard A. Denton ... 270

DISCUSSIONS

By David R. Dawdy. By David Goldman.
By William H. Merkel. By Carl L. Unkrich
and David A. Woolhiser. By David A. Woolhiser
and David C. Goodrich. Closure by authors 278
General Information

Journal of Hydraulic Engineering accepts original contributions that describe the analysis and solutions of problems in hydraulic engineering, hydrology, and water resources. The emphasis is given to the presentation of concepts, methods, techniques, and results that are suitable for general application and use in the hydraulic engineering profession. The results of investigation that address any technical, economic, or social facet of the use and conservation of water as a natural resource are considered.

Journal of Hydraulic Engineering (ISSN 0733-9429) is published monthly by the American Society of Civil Engineers. Publications office is at 345 East 47th Street, New York, NY 10017-2398. All editorial correspondence should be directed to the Journals Department. Second-class postage is paid at New York, NY, and at additional mailing offices.

Postmaster: Send address changes to Journal of Hydraulic Engineering, ASCE, 345 East 47th Street, New York, NY 10017-2398.

Submission of papers. Submit five copies of papers and notes and three copies of discussions to the Journals Department. Maximum length for papers is 10,000 words; for notes, 2,500 words; for discussions, 1,250 words. Multiple submissions are not accepted for review. Indicate division and, if applicable, committee to which material is being submitted. The use of SI units is preferred; if other units are used, SI equivalents must also be given. Write or phone the Journals Department for ASCE Authors' Guide to Journals, Books, and Reference Publications for complete instructions for manuscript preparation.

Reprints for authors are ordered prior to publication; others may order them by using the coupon published in ASCE News and ASCE Publications Information or contacting the Reprint Department, ASCE.

Photocopies. Authorization to photocopy material for internal or personal use under circumstances not falling within the fair use provisions of the Copyright Act is granted by ASCE to libraries and other users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service, provided that the base fee of $1.00 per article plus $.15 per page is paid directly to CCC, 27 Congress Street, Salem, MA 01970. The identification for Journal of Hydraulic Engineering is 0733-9429/90 $1.00 + $.15. Requests for special permission or bulk copying should be addressed to the Journals Reprint Department, ASCE.

Subscriptions. 1990 rates are $35.00 for members and $140.00 for nonmembers. Postage outside the U.S.A. is $15.00 additional. Single copies are $14.00. Address all member subscription inquiries and correspondence to Member Records, ASCE. Address all nonmember inquiries and correspondence to Publications Fulfillment Department, ASCE. Subscriptions are filled for the calendar year and must be prepaid. Notify the appropriate ASCE department of an address change as soon as possible; allow six weeks for it to become effective.

This publication is abstracted in ASCE Publications Information (bi-monthly), Transactions of the ASCE (annually), and Civil Engineering Database (on-line), and indexed in ASCE Annual Combined Index. Address inquiries to Information Products, ASCE.

The Society is not responsible for any statement made or opinion expressed in its publications.

Copyright ©1990 by American Society of Civil Engineers.

This journal is printed on an acid-free paper, which meets the ANSI requirements for permanence. Ⓣ
applicability of approximate flood routing models ("Computer Program" 1983; Ponce et al. 1978).

The SCS is currently comparing selected approximate flood routing models with a full dynamic solution of the routing problem. The linear and variable parameter diffusion models show very promising results for conditions present in many SCS flood routing applications. These models have the potential to replace both the convex and modified Att-Kin procedures for SCS use.

APPENDIX. REFERENCES

Discussion by Carl L. Unkrich and David A. Woolhiser, Member, ASCE

The authors used the HEC-1 computer program to evaluate the "standard kinematic wave (finite difference) routing method" for several open channel test cases. They reported mainly on the slow-flow case, and concluded that the method is far too sensitive to the choice of computational increments. However, two major assumptions are incorrect: (1) The slow-flow case, contrary to the authors' claim, does indeed attenuate due to kinematic shock; and (2) not all kinematic wave finite-difference algorithms are as sensitive to the choice of dx and/or dt as HEC-1. To illustrate the second point, the Kineros program (Smith 1981), which uses a four-point implicit numerical scheme with centered time differences and a weighting factor of 0.8 for the space differences at the advance time step, was used to simulate the same slow-flow case. Solutions were obtained for the same combinations of dx and dt as shown in Fig. 4. These solutions are shown in Fig. 9 along with the HEC-1 solution for $dt = 6$ min and $dx = 8,333$ ft (2,540 m). The Kineros solution for $dt = 2$ min and $dx = 500$ ft (152 m) plots virtually on top of the partially analytic solution obtained by the method of characteristics with a shock following scheme. It is clear that the finite-difference scheme in Kineros exhibits much less numerical diffusion than that in HEC-1 and that with a reasonable number of dx increments (>10) it provides quite acceptable numerical results.

The ranges of peak discharge obtained from Kineros for dx ranging from 1,000 to 8,333 ft (3.5 to 2,540 m) and $dt = 5$ min are shown in Fig. 10.

6Hydrol. Asst., Univ. of Arizona, Tucson, AZ 85721.
along with the range for the convex method and a line showing the true KW solution (obtained by the method of characteristics with a shock following scheme). The resulting variation for peak flow rates is 8% at $L = 25,000$ ft (7,620 m) compared with the 130% (really 80%) because the authors incorrectly assumed that there would be no attenuation) for HEC-1.

It should be noted that Kineros has built-in limits on the number of spatial increments (which were overridden for this study). The size of dx increments is based on an input "characteristic length" for the watershed defined as the length of the longest cascade of overland flow planes or the longest channel, whichever is greater. This characteristic length is divided into 15 dx increments and shorter elements have proportionally fewer, with a minimum of five dx increments. Therefore the allowable range of dx increments for Kineros is from 1,786 to 6,250 ft (544 to 1,905 m) for a 25,000-ft (7,620-m)
reach. For a dt of 5 min, which is sufficient to define the inflow hydrograph, the range of Q_p was 626–666 cfs (17.7–18.9 m3/s), a variation of only 6.4%.

The authors’ choice of references regarding KW channel routing performance is highly selective and may lead to incorrect conclusions by the reader. For example, the cases examined by Akan and Yen (1981) involved backwater conditions so it is not surprising that KW routing procedures did not work well. Katapodes and Schamber (1983) were investigating dam-break problems that lead to kinematic shocks. Since it is precisely in the vicinity of shocks that the kinematic approximation breaks down, KW routing would normally not be recommended for this problem. Weinmann and Laurenson (1979) point out that for slowly rising hydrographs and moderately steep slopes KW routing will give results that compare favorably with solutions of the St. Venant equations. Ferrick (1985) provided a comprehensive analysis of river wave types, developed a set of scaling parameters and used case studies to define the appropriate scaling parameter range for each wave type. His criteria should provide useful guidelines for choosing the appropriate approximation for a given channel.

Appendix. References

Discussion by David A. Woolhiser,8 Member, and David C. Goodrich,9 Student Member, ASCE

Although we agree with the authors’ conclusion that there is a need for better guidelines for choosing Δx and Δt in some kinematic wave (KW) routing models and for internal checks regarding the appropriateness of the KW formulation from the physical point of view, we find that their analysis is misleading. An analysis of their “slow-flow” case, which leads to the information shown in Figs. 1–7, reveals that according to current criteria the (KW) model should not be used for this case. Ponce et al. (1978) showed that for 95% accuracy of the kinematic wave solution after one propagation period, the dimensionless period \hat{t} should be greater than 171. This translates into

$$T \geq \frac{171d_0}{(U_0S_0)} \quad \text{(4)}$$

where $T = \text{the wave period of the perturbation to steady uniform flow; } U_0 = \text{the steady velocity; } d_0 = \text{the steady depth; and } S_0 = \text{the slope. If we relate } U_0 \text{ and } d_0 \text{ to the mean variables at the upper boundary, we find that } T$ should

9Grad. Student, Dept. of Hydrol. and Water Resour., Univ. of Arizona, Tucson, AZ 85721.
be greater than three days, yet the period of input at the upper boundary is approximately 4 hr. The “fast-flow” case meets the preceding criterion and we see that the numerical errors introduced by the KW model are in fact smaller than those in the convex method (Fig. 8).

The authors state that they are evaluating only numerical errors introduced by the HEC-1 KW program rather than those due to the KW fundamental assumptions. Yet by using an example that violates the fundamental assumptions they leave the reader with the impression that the numerical errors are more serious than they really are. If the finite difference equations in the HEC-1 model are expanded in Taylor series, we find, for example, that the error terms for the conservation form are

$$
(\Delta x^2/2) (\partial^2 Q/\partial x^2) + \Delta t (\partial^2 Q/\partial x \partial t) + (\Delta t/2)(\partial^3 A/\partial t^2) + O(\Delta x)^2.
$$

If the Courant condition is exactly satisfied, this scheme can give exact results, but in general it is of first-order accuracy and is more dispersive than some alternative schemes. It is worth noting that for flows meeting the criteria for kinematic flow, the second-derivative terms are very small over most of the solution domain and, if reasonable \(\Delta x \) and \(\Delta t \) increments are chosen, this finite difference scheme will give quite accurate results.

When performing an empirical examination of the accuracy of rectangular grid finite-difference schemes it is always wise to have a more accurate solution for comparison. Both examples used will lead to a kinematic shock emanating from \(x = 0, t = 0 \), and traversing the channel with a shock velocity equal to the local velocity. Kinematic characteristics will be straight lines emanating from the line \(x = 0 \) and some will intersect the shock front. A numerical shock following scheme similar to that used by Kibler and Woolhiser (1970) was used to develop accurate hydrographs for both examples. Discharge hydrographs at various distances along the channel are shown in Fig. 11. For the slow flow case, the hydrograph peak overtakes the shock front at \(x = 12,490 \text{ ft} (3,797 \text{ m}) \), so for this case the peak does attenuate due to the peak overtaking the shock. Therefore, the line shown in Fig. 7 as the true kinematic solution is incorrect after that distance and