Response of Wavyleaf Oak to Nitrogen Fertilization

VOLNEY W. HOWARD, JR., JERRY R. COX, AND G. MORRIS SOUTHWARD

Abstract

This study was conducted to determine the response of wavyleaf oak to nitrogen fertilization, at rates of 0, 112, and 224 kg of elemental nitrogen per ha. Over the three years of the study, twigs were longer on fertilized areas than on unfertilized areas. Nitrogen at 112 kg/ha was generally as effective as 224 kg/ha in stimulating twig growth. Slope position did not have an effect on all sites. Where slope position was significant, plants on the upper and middle slopes responded better to fertilization than did plants growing on lower slopes. Site appeared to influence twig growth more than slope. Differences in twig growth among sites were attributed to differences in soil depth and density of vegetation. Twig length was significantly different among years due to uneven distribution of rainfall.

As wildlife populations are restricted to less favorable areas, it is increasingly important to develop new and better methods of habitat manipulation. One important area involves improvement of quality and quantity of food, as demonstrated in several studies of mule deer (Odocoileus hemionus) and white-tail deer (O. virginianus). Deer densities can be controlled by quantity and nutritive quality of available forage (Hagen 1953, Swank 1956). Many deer diseases are due to inadequate nutrition (Lang 1957, Taylor and Hahn 1947), and fertility levels in deer generally correspond with the quality of their range (Cheatum and Severinghaus 1950, Julander et al. 1961).

Recently, fertilization has gained importance in improvement of wildlife ranges. Williams (1969) stated that soil fertilization may be valuable in correcting nutritional deficiencies occurring within a wild population, providing the deficiencies are properly diagnosed and fertilizers are administered accordingly. Fertilization can significantly increase production of range plants (Schultz et al. 1958) and substantially increase carrying capacity of the range (Ward and Bowersox 1970). Fertilization can cause major compositional changes in vegetation (Basile 1970, Gibbens and Pieper 1962, Schultz et al. 1958), improve the palatability of certain species (Brown and Mandery 1962, Gibbens and Pieper 1962, Schultz et al. 1958), and improve the quality of forage (Rogler and Lorenz 1957, Ward and Bowersox 1970, Wood 1966).

On the Fort Stanton Cooperative Experimental Range, Anderson et al. (1974) fertilized mountain mahogany (Cercocarpus montanus) and wavyleaf oak (Quercus undulata) with urea at the rate of 101 kg nitrogen (N)/ha. The moun-
tain mahogany showed a growth response to the fertilizer, and the percent crude protein in leaves of wavyleaf oak increased. Mule deer use was greater on fertilized plots than on control plots.

Since oak constitutes a major portion of mule deer diets in the Southwest (Anderson et al. 1965, Boeker et al. 1972, Lamb 1971, Smith 1959), this study was initiated to determine growth response of wavyleaf oak to different rates of fertilization in a pinyon-juniper woodland.

Methods

Fort Stanton Cooperative Experimental Range encompasses 10,522 ha in Lincoln County in south-central New Mexico. Topography consists of mesas and rolling hills situated between deep, rocky canyons. Grasslands are found on mesa tops, canyon floors, and lowlands (Groce and Pieper 1967). The soils are shallow and have a stony loam texture. They are deficient in N but are not lacking in potassium or phosphorus (USDA, Soil Conservation Service 1966).

The climate is mild with warm summers and cool to cold winters. The mean annual temperature is 11°C, reaching a mean summer maximum of 19°C and a mean winter minimum of −7°C. The 94-year average annual precipitation is 384 mm. Approximately 60% of the precipitation occurs between June and September (Pieper et al. 1973).

The Experimental Range is in the Upper Sonoran Life Zone (Bailey 1913). Dominant woody species in the area are pinyon pine (Pinus edulis), single-seed juniper (Juniperus monosperma), alligator juniper (J. deppeana), and wavyleaf oak (Anderson et al. 1974). The dominant grass is blue grama (Bouteloua gracilis) (Groce and Pieper 1967). Wavyleaf oak is located in dense stands on rocky, steep slopes with pinyon and juniper scattered intermittently throughout.

Four deer-and cattle-proof exclosures (replications) were constructed in the summer of 1971. These exclosures were located on northwest slopes with similar soil types and slopes. The experimental design was 3 × 3 factorial set of treatments in a randomized split-plot with four replications. The treatments consisted of three slope positions (main plots) and three N rates (sub-plots) (Fig. 1). The main plots were separated by buffer zones to prevent runoff from contaminating plots further downhill. Sub-plots were large enough to include ten or more wavyleaf oak plants. Fertilizer was broadcast in June 1972 at the rates of 0, 112, and 224 kg N/ha (0, 100, and 200 lb N/acre).

Response to these treatments was determined by measuring annual twig growth in winter after leaf-fall. Analyses of variance were performed on the means of apical twig length and diameter. The analyses examined differences due to N rates, sites, slopes, years, and interactions between these factors. Those factors having significant F values (P<.10) were tested by the least significant difference (lsd) procedure (Steel and Torrie 1960).

On each sub-plot of the four exclosures, ten wavyleaf oak plants were selected and one twig from each plant was tagged with plastic-covered electrical wiring, so measurements of the same twigs could...
stands), and fewer open areas. Litter produced under dense vegetation. Site 4 had more trees, smaller plants (in dense fertilization on Site 4 was related to the density of the plants' ability to respond to N-fertilization. However, plants on the upper two-thirds of the slopes appeared to have a greater response to N-fertilization than did those located on the lower one-third (Table 2).

Results and Discussion

Analysis of variance of twig growth on all sites for all years showed a significant (P<.05) response to N-fertilization treatments. There was also a significant (P<0.005) difference between years following the application of N-treatments. Variability among sites was high, but was not significant (Table 1).

A single application of N, either 112 or 224 kg/ha, increased mean twig lengths for the following three years. However, 112 kg/ha N-fertilization was more effective than 224 kg/ha N-fertilization on all sites except Site 4 (Table 2). It is possible that the lack of response to 112 kg/ha N-fertilization on Site 4 was related to the density of the vegetation. Site 4 had more trees, smaller plants (in dense stands), and fewer open areas. Litter produced under dense stands often reduces the amount of precipitation infiltrating the soil and thus increases runoff (Gifford 1970).

Differences in growth response between years on all sites appeared to be related to precipitation. Gibbens and Pieper (1962) stated that the magnitude of growth response to fertilizer treatments undoubtedly would be greater in years of high rainfall.

During this study, precipitation was recorded at three locations in close proximity to the study sites (Table 3). Total precipitation was greater in 1972 and 1973. However, only 2% of the precipitation which occurred in 1972 fell early in the growing season. On all sites, no precipitation occurred in March and April of 1972, and less than 2% occurred in May. In 1973 and 1974, 20 to 25% of the annual precipitation occurred in March, April, and May. There also was a carry-over of soil moisture from the winters preceding the 1973 and 1974 growing seasons.

Although the middle slope-position produced greater mean twig lengths on Sites 2, 3, and 4 (Table 2), these differences were not large enough to be significant (Table 1). Apparently slope-position was not an important factor in the plants' ability to respond to N-fertilization. However, plants on the upper two-thirds of the slopes appeared to have a greater response to N-fertilization than did those located on the lower one-third (Table 2).

Conclusions

Nitrogen fertilization significantly increased twig growth of wavyleaf oak on the Fort Stanton Cooperative Experimental Range. Nitrogen fertilization can be an effective management tool, providing the management area receives

Table 1. Analysis of variance of twig lengths (mm) of wavyleaf oak on all sites in 1972, 1973, and 1974.

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>df</th>
<th>Sums of squares</th>
<th>F values</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>107</td>
<td>23581.0970</td>
<td>2.55</td>
<td>ns</td>
</tr>
<tr>
<td>Site</td>
<td>3</td>
<td>2496.6256</td>
<td>0.50</td>
<td>ns</td>
</tr>
<tr>
<td>Slope A</td>
<td>6</td>
<td>1960.1229</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fertilizer</td>
<td>2</td>
<td>995.7461</td>
<td>0.96</td>
<td>ns</td>
</tr>
<tr>
<td>Slope X Fertilizer</td>
<td>4</td>
<td>595.1262</td>
<td>0.96</td>
<td>ns</td>
</tr>
<tr>
<td>Year</td>
<td>2</td>
<td>5251.0094</td>
<td>20.06</td>
<td>.005<0.001</td>
</tr>
<tr>
<td>Slope X Year</td>
<td>4</td>
<td>678.3115</td>
<td>1.30</td>
<td>ns</td>
</tr>
<tr>
<td>Fertilizer X Year</td>
<td>4</td>
<td>340.6551</td>
<td>0.65</td>
<td>ns</td>
</tr>
<tr>
<td>Slope X Fertilizer X Year</td>
<td>8</td>
<td>1084.7699</td>
<td>1.04</td>
<td>ns</td>
</tr>
</tbody>
</table>

Table 2. Means of twig lengths, in mm, for years, slopes, and N-treatments for all sites.

<table>
<thead>
<tr>
<th>Sites</th>
<th>1972</th>
<th>1973</th>
<th>1974</th>
<th>0</th>
<th>112</th>
<th>224</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top</td>
<td>43.64</td>
<td>40.57</td>
<td>51.62</td>
<td>36.28*</td>
<td>50.28</td>
<td>49.26</td>
</tr>
<tr>
<td>Middle</td>
<td>35.54</td>
<td>48.35</td>
<td>36.28*</td>
<td>33.18</td>
<td>51.96*</td>
<td>35.20</td>
</tr>
<tr>
<td>Bottom</td>
<td>38.98</td>
<td>45.31</td>
<td>33.22</td>
<td>41.72</td>
<td>42.02</td>
<td>34.10</td>
</tr>
</tbody>
</table>

*Significant differences from 0 and 224 kg/ha

Fig. 1. An illustration of the relationships between rates (kg/ha) of N fertilizer treatments, slope positions, and buffer zones.
adequate rainfall. On large operations, cost of fertilization could be limiting; therefore, treatments should be restricted to areas where they will achieve the best results.

This study indicated that 112 kg/ha N was as effective as 224 kg/ha. Two of the four sites showed greater growth response to N on the upper two-thirds of the slope. Deer use of fertilized browse on the Fort Stanton Cooperative Experimental Range is greatest on the upper three-fourths of the slope (Anderson et al. 1974). Thus, effectiveness of fertilization can be maximized, while the cost is minimized, if application is restricted to the upper slopes.

Literature Cited

