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[11 Flash floods are an important component of the semiarid hydrological cycle, and
provide the potential for groundwater recharge as well as posing a dangerous natural
hazard. A number of catchment models have been applied to flash flood prediction;
however, in general they perform poorly. This study has investigated whether the
incorporation of light detection and ranging (lidar) derived data into the structure of a 1-D
flow routing model can improve the prediction of flash floods in ephemeral channels. Two
versions of this model, one based on an existing trapezoidal representation of cross-section
morphology (K-Tr), and one that uses lidar data (K-Li) were applied to 5 discrete runoff
events measured at two locations on the main channel of The Walnut Gulch Experimental
Watershed, United States. In general, K-Li showed improved performance in comparison to
K-Tr, both when each model was calibrated to individual events and during an evaluation
phase when the models (and parameter sets) were applied across events. Sensitivity analysis
identified that the K-Li model also had more consistency in behavioral parameter sets across
runoff events. In contrast, parameter interaction within K-Tr resulted in poorly constrained

behavioral parameter sets across the multidimensional parameter space. These results,
revealed with a modeling focus on the structure of a particular element of a distributed
catchment model, suggest that lidar derived cross-section morphology can lead to improved,

and more robust flash flood prediction.
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1. Introduction

[2] Flash floods are defined as runoff events that occur
within 6 hours of the causative rainfall event [National
Weather Service, 2002], and are the dominant runoff
response in many ephemeral semiarid catchment systems
[Goodrich et al., 1997; Garcia-Pintado et al., 2009]. Flash
floods are important elements of the semiarid hydrological
cycle that must be understood for two primary reasons. First,
these intermittent events provide potential for groundwater
recharge via transmission losses (e.g., infiltration through the
streambed), and are therefore an important water resource in
semiarid environments [Coes and Pool, 2005; Morin et al.,
2006]. Second, flash floods present a dangerous natural haz-
ard that can detrimentally impact channel morphology
[Hooke and Mant, 2000], human infrastructure [Foody et al.,
2004], and cause a significant number of fatalities [Ashley
and Ashley, 2008].

[3] A number of models have been developed to predict
and understand semiarid catchment hydrology, including:
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empirical regression-based models [Mcintyre et al., 2007];
semiempirical models [Mclntyre and Al-Qurashi, 2009];
spatially lumped models (e.g., Sacramento Soil Moisture
Accounting Model [Burnash, 1995]); and distributed pro-
cess based models [El-Hames and Richards, 1998], includ-
ing the Kinematic Runoff and Erosion model (KINEROS)
[Smith et al., 1995].

[4] The development of distributed process based mod-
els has attempted to overcome some of the empirical limi-
tations of simpler model structures. However, predictions
derived from distributed process based models are highly
uncertain owing to uncertain parameter values and bound-
ary conditions [Yatheendradas et al., 2008; Garcia-Pin-
tado et al., 2009], and because of epistemic uncertainty
surrounding the processes themselves. A significant source
of model uncertainty results from a paucity of spatial infor-
mation, notably information on distributed rainfall and hill-
slope infiltration properties [Al-Qurashi et al., 2008;
Yatheendradas et al., 2008]. In data poor situations, predic-
tions derived from simpler (semi-) empirical models may
be preferred, and indeed may be less uncertain [Mclntyre
et al., 2007; Mclntyre and Al-Qurashi, 2009]. Simpler
models, however, may not be appropriate to resolve
adequately key temporal and spatial processes controlling
flash flooding in semiarid environments. Simulation of
these processes is required to understand and resolve the
complex processes, thresholds and interactions that govern
the rainfall-runoff response in different semiarid catch-
ments [Goodrich et al., 1997].
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[s] Distributed parameter and initial condition uncertainty
is a significant problem in itself [ Yatheendradas et al., 2008;
Garcia-Pintado et al., 2009], but also confounds the exercise
of identifying structural errors within model components that
may contribute to overall predictive uncertainty. A renewed
focus on reducing model structural uncertainty is evident in
the literature [Refsgaard et al., 2006; Krueger et al., 2009],
and will be facilitated by the increased availability of high-
quality datasets [Bates et al., 2003 ; Croft et al., 2009]. One
uncertain structural component in distributed hydrological
models is the channel flow routing component.

[6] In semiarid environments, ephemeral river channels
have an increasing effect on catchment hydrological
response with an increase in catchment size [Goodrich
et al., 1997]. Methods that seek to simulate channel hydrol-
ogy include: regression relationships between incoming
and outgoing discharge [Walters, 1990]; and empirically
derived routing methods [Sharma and Murthy, 1995].
Transmission losses, however, are a nonlinear function of
discharge and time [Mudd, 2006]. Consequently, explicit
routing methods are required to understand how the rela-
tionship between inflow discharge and channel characteris-
tics governs infiltration and downstream discharge within
ephemeral river reaches [ Goodrich et al., 1997].

[71 A number of models have been developed to simu-
late ephemeral channel rivers explicitly, based on either
full [El-Hames and Richards, 1998 ; Mudd, 2006] or partial
solutions [Smith et al., 1995] of the one-dimensional (1-D)
St. Venant equations. Results from numerical and field
investigations demonstrate the importance of hydrograph
duration [Parissopoulos and Wheater, 1991], and channel
width [Goodrich et al., 1997; Mudd, 2006] in controlling
transmission losses in ephemeral channels. The wetted area
of the channel bed during flood flows appears to be the pri-
mary control on channel transmission losses [Goodrich
et al., 1997; Mudd, 2006], and therefore the magnitude and
duration of the downstream hydrograph. These results dem-
onstrate the importance of accurately parameterizing cross-
section shape and the processes governing infiltration in
ephemeral channel flow routing models. Existing methods
applied to simulate channel flow routing in ephemeral rivers
have assumed channel morphology may be approximated by
either trapezoidal [Smith et al., 1995] or rectangular (con-
stant width) cross-sections [El-Hames and Richards, 1998;
Morin et al., 2009]. Trapezoidal and rectangular channels
may provide an adequate representation of channel cross-
section morphology in single thread reaches. However,
ephemeral piedmont rivers of the American Southwest alter-
nate between single thread and braided sections [Pelettier
and DeLong, 2004]; trapezoidal cross-sections do not
adequately represent multiple thread channels. Differences
between the simplified cross-section and actual channel mor-
phology will introduce errors into the relationship between
stage and wetted perimeter, which will affect flow convey-
ance and the bed area available for infiltration. In the case of
KINEROS [Smith et al., 1995], an empirical correction fac-
tor is applied that reduces the effective wetted perimeter of
the cross-section that is available for infiltration at low flows.
However, there is uncertainty regarding the value that this
coefficient should take [Yatheendradas et al., 2008].

[8] A parameter applied to correct for the effect on infil-
tration of an artificially high wetted perimeter does not
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account for feedbacks between cross-section shape and
flood-wave propagation, a significant factor controlling
flood routing [Hassan, 1990], even in the absence of trans-
mission losses. In such cases the applied roughness coeffi-
cient will need to account for topographic variability not
represented by a more explicit definition of cross-section
shape, along with other forms of frictional resistance owing
to the representation of depth and width using a 1-D approach
[Lane, 2005]. Assumptions regarding cross-section shape are
also likely to have a negative effect on sediment transport
estimates derived from such routing models, given that
cross-section bed load sediment transport is sensitive to the
lateral distribution of flow [Ferguson, 2003]

[o] The development and proliferation of topographic
datasets derived from light detection and ranging (lidar)
technology has facilitated the parameterization of numeri-
cal models at a fine spatial resolution (1 m) over increas-
ingly large model domains, for both 1-D models [Matgen
et al., 2007; Aggett and Wilson, 2009], and also distributed
(2-D) flow routing models [Cobby et al., 2001 ; Bates et al.,
2003; French, 2003 ; Hilldale, 2007]. A lidar Digital Ele-
vation Model (DEM) offers the potential to constrain cross-
section morphology over larger areas than is feasible
through ground survey alone, while providing comparable
levels of accuracy [Rayburg et al., 2009]. Lidar is particu-
larly useful in ephemeral channels as the channel bed may
be surveyed during no-flow conditions, which is not possi-
ble in perennial rivers.

[10] High-resolution DEM data available over large
areas have the potential to improve the representation of
cross-section morphology in 1-D flow routing models
applied to ephemeral rivers. However, given other uncer-
tainties surrounding flow routing in these environments, it
is unclear whether such data sources can improve the pre-
dictive ability of existing 1-D flow routing models. Although
manual surveys of similar accuracy have been conducted
previously, such information has not often been included in
I-D models. Climatic scenarios point toward a drier climate
for the American Southwest, and more frequent, high-
intensity rainfall events [Seager et al., 2007]. There is there-
fore a need to improve the predictive ability of hydrological
models applied in such regions, to improve understanding
and prediction of flash flood hazard and water resources.

[11] This study will investigate whether incorporating
high-resolution (1 m) topography into the structure of a I-D
flow routing model can improve flow routing predictions
when applied to an ephemeral river, in comparison to a
model using an existing, simplified representation of cross-
section morphology. The study has the following research
aims: (1) Determine whether the integration of distributed
topographic information can improve 1-D flow routing in
ephemeral rivers on an event basis (calibration); (2) Identify
how improved topographic representation modifies model
structure and affects model parameter uncertainty; (3) Eval-
uate whether modifications to 1-D model structure, and the
increase in topographic information contained within the
model can improve model predictive ability (evaluation).

2. Modeling Strategy: Kinematic Wave Model

[12] To address the research aims a I-D kinematic flow
routing model was applied to simulate runoff events along
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the main channel of the Walnut Gulch Experimental Water-
shed (WGEW) [Renard et al., 2008]. The flow routing
model was applied using two alternative model structures:
First, using a trapezoidal representation of cross-section
morphology (K-Tr); Second, using laterally distributed
cross-section morphology derived from a 1 m lidar derived
DEM (K-Li).

[13] The I-D kinematic wave equation, which has been
widely applied to simulate flow in ephemeral channels
[Garcia-Pintado et al., 2009; Morin et al., 2009; Smith
et al., 1995; Yatheendradas et al., 2008], is applied here
and solved at each cross-section in the model domain using
an explicit scheme:

A
4= - g <1>

where A is the flow cross-section area (m?); ¢ is time (s),
and subscript i is cross-section; Q is discharge (m® s~ ') cal-
culated from 4 using the Manning equation with Manning’s
coefficient, n; x is distance in the stream-wise direction
(m); and ¢ represents transmission losses (m? s~ '), which
are determined at each cross-section by calculating the sum
of infiltration across all wet cross-section cells. Infiltration
rate (/) in each cell is calculated using the Green-Ampt
equation [Green and Ampt, 1911], capable of simulating
run on infiltration:

1=K, L“’% @)

z

where [ is infiltration rate (m s '), K| is saturated hydraulic
conductivity (m s7h), wis the wetting front suction (m), z is
accumulated depth of infiltration (m) in the cell, and % is
the depth of water at the bed surface (m). Infiltration in
K-Tr is calculated using the empirical correction factor
applied in KINEROS(2), which uses an effective wetted
perimeter (p.) to correct for the error introduced in the
actual wetted perimeter (¢) when calculating infiltration in
trapezoidal cross-sections [Smith et al., 1995]:

h
. = min |[—————, 1]a, 3
P [WC\/BW } ®)

o  Rain gauge
— Subwatershed

Main channel

Figure 1.
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where BW is the channel bottom width (m), and Wc is the
empirical Woolhiser coefficient. In K-Tr simulations,
cross-section cells are ordered from minimum elevation to
the maximum elevation, and p, is used to determine the
fraction of wet cells to calculate infiltration, which are then
summed to determine g.

3. Study Area and Data

[14] The research aims were addressed using data
derived from The WGEW, southeast Arizona, USA
(31.45°N, 110.0°W; Figure 1; see WRR special issue)
[Moran et al., 2008]. The watershed, with an area of
150 km?, drains west from headwaters in the Dragoon
Mountains in the east (1900 m amsl) into the San Pedro
River (1250 m amsl). The main channel of The WGEW is
a 6.5 km continuous sand bed river, which alternates
between single thread reaches and braided sections with a
wavelength >200 m (Figure 2). The reach may be consid-
ered typical of river morphologies present on Piedmont
slopes of the basin and range province of the semiarid
American Southwest [Pelettier and DeLong, 2004].

[15] Lidar data used to determine channel cross sections
for the 1-D model were acquired from an OPTECH ALTM
1233 (Optech Incorporated, Toronto, Canada) laser scanner
flown over The WGEW in the summers of 2003 and 2004.
The Optech ALTM 1233, which has a 1064 nm laser, a
pulse rate of 33 kHz, a scanning frequency of 28 Hz, and a
scanning angle of £20°, was flown to obtain a spot size of
approximately 15 cm, and the data processed using Optech
REALM proprietary software, alongside a vegetation filter-
ing algorithm [Hutton, 2010], to derive a 1 m resolution
DEM of the watershed. The DEM had a vertical accuracy
of +£0.15 m derived in comparison to ground based differ-
ential GPS survey points measured in 2003 at Flumes 1 and 2,
and also using stable locations at surveyed cross-sections in
the reach.

[16] Analysis of the 1 m channel DEM was used to deter-
mine where to extract representative cross-sections of the
channel morphology. The 101 cross-sections were extracted
manually from the DEM at a spacing of ~65 m, a spacing
sufficient to represent changes between braided and single

ARIZONA

110.0°W

Hillshade map of the Walnut Gulch Experimental Watershed, SE Arizona. The main channel

reach under study is enclosed in the black rectangle, as shown in Figure 2.
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Figure 2. Lidar derived DEM hillshade showing downstream changes between braided and single
thread morphology, and two representative cross-sections. Note exaggerated Y-Axis. The upper-left pho-
tograph shows a flash flood event looking upstream from Flume 1.

thread sections in the reach, which alternate downstream
with an approximate wavelength of >200 m (Figure 2). Tra-
pezoid cross-sections were constructed directly from the
lidar data: the channel bottom elevation in each cross
section was set to the elevation of the thalweg identified
from the lidar data; trapezoidal cross sections were fitted by
varying the channel bottom width to reduce the mean-
square-error between the original cross section data and the
trapezoidal cross section (Figure 2).

[17] Five discrete flow events recorded at Flume 2 and
Flume 1 upstream and downstream of the study reach, respec-
tively, were used to address the research aims (Table 1). The
selected events first activated Flume 2 and then Flume 1 with
little or no rainfall recorded in the tributary catchments that
join the main reach between the flumes (Figure 1). These
events were therefore chosen to ensure mass conservation
when calculating both infiltration in the reach, and the down-
stream hydrograph at Flume 1.

4. Model Evaluation

[18] The model evaluation procedure employed to
address the research aims follows the concepts outlined
within the Generalized Likelihood Uncertainty Estimation
(GLUE) methodology [Beven and Binley, 1992; Brazier
et al., 2000], which is applied to understand how different
parameter sets (and interactions) within competing models
structures affect model performance [e.g., Beven and Freer,
2001].

[19] Each model structure (K-Tr and K-Li) was applied
to simulate the events listed in Table 1. For each model
application to an event, 40,000 Monte Carlo simulations
were conducted sampling randomly from uniform prior dis-
tributions for each parameter (Table 2). Prior ranges were
determined with recourse to studies within similar sand-
gravel ephemeral channels [4/-Qurashi et al., 2008 ; Blasch
et al., 2006; Dahan et al., 2007 ; El-Hames and Richards,
1998 ; Michaud and Sorooshian, 1994 ; Morin et al., 2009;
Yatheendradas et al., 2008], and hydrological properties
for the bed sediment texture [Rawls et al., 1993]. After
20,000 simulations the initial parameter ranges were nar-
rowed where no well performing parameter sets were found
across all events (Table 2). For each event an evaluation of
the convergence of the Cumulative Distribution Functions
(CDF) across each parameter range for each measure of
model performance demonstrated 40,000 simulations were
sufficient for convergence of the posterior distribution.

[20] In order to identify model structures and parameter
combinations that perform well for the right hydrological
reasons [Brazier et al., 2000], four performance measures
(PM) have been chosen to evaluate model performance,
calculated for each event simulation (Table 3). The fourth
PM (NT) is derived by multiplying the values of all other per-
formance measures to define a good model prediction as one
which replicates the magnitude and timing of discharge (NP),
and the shape of the hydrograph (NSE), while also maintain-
ing the correct mass balance (e.g., predict transmission losses

Table 1. Summary Discharge Statistics of Runoff Events Used in Model Evaluation®

Flume 2 Flume 1
Event Number and Date O Total (m%) 0 Peak (m* s ") O Total (m?) O Peak (m* s 1) 0 Loss (m*(%))
1. 17 Jul 1999 71,191 12.6 42,572 12.6 28,619 (40)
2.23 Jul 1999 261,147 61.2 238,838 61.1 22,309 (9)
3.22 Aug 2005 54,498 12.7 46,587 6.3 7911 (15)
4. 10 Sep 2006 36,202 9 16,227 4.2 19,975 (55)
5. 25 Jul 2007 28,604 7.7 11,169 3.6 17,435 (60)

aSummary Discharge is Q.
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Table 2. Parameter Ranges Used in Monte Carlo Simulation for
Each Model Structure®

Parameter K-Li K-Tr
Manning (n;) 0.015-0.1 0.015-0.1
(0.015-0.05) (0.015-0.05)
Initial moisture (M;%) 0-1 0-1
Saturated Conductivity 1.8-432 (1.8-144) 1.8-432
(Ky; mmh™")

Wetting Front Suction (W ; m) 0.0009-0.1 0.0009-0.1
Woolhiser Coefficient (W,) - 0-0.45

“Ranges in brackets show narrowed ranges sampled during the final
20,000 simulations based on behavioral simulations found in the first
20,000 simulations.

correctly) at Flume 1 (NV). A value of 1 for all of the meas-
ures considered above indicates a perfect fit. All simulations
that produce a value less than zero are considered nonbeha-
vioral for that performance measure, and are given a value
of zero.

[21] In order to provide reach specific context to evaluate
the quality of model performance, and determine how well
each model can simulate the reach transfer function
between the upstream and downstream hydrograph, bench-
mark values for NSE and NP are derived following Shaefli
and Gupta [2007]. However, instead of adjusting input
rainfall, the input hydrographs for each event are multiplied
by the runoff ratio (Flume 1 volume divided by Flume 2
volume) and adjusting by an optimum lag which minimizes
the value of NSE and NP separately for each event com-
pared to the respective hydrograph at Flume 1.

[22] A global method, Regional Sensitivity Analysis
(RSA) [Brazier et al., 2007; Freer et al., 1996; Horn-
berger and Spear, 1981], is applied to evaluate model sen-
sitivity. To overcome the problems of specifying a single
restrictive behavioral threshold, and to address the second
research aim, model sensitivity is evaluated by calculating
the CDF for each performance measure as a function of
each model parameter for the top 10% and also top 50% of
model simulations when applied to each event. RSA sensi-
tivity scores are derived by calculating the difference in
area between the uniform prior CDF and that of the poste-
rior CDF for each parameter. The range of each parameter
is normalized when calculating the aerial difference to
compare sensitivity across parameters, which therefore has
a maximum value of 0.5. To supplement the RSA sensitiv-
ity analysis, which only considers first-order sensitivity, the
strength of linear relationships between parameters for the

Table 3. Performance Measures Used in Model Evaluation

Name Equation®
T ¢ )2
Nash-Sutcliffe (NSE) max | 1 — Z:?L:%)z, 0
> (0,-0,)

Normalized Peak (NP)

max ((1 =120 o (1 - L el o),
max (1 — 7\‘4;,’44 ,O)
NSE + NP + NV

Normalized Volume (NV)
Normalized Total (NT)

20" = discharge at time 7; O = mean event discharge; 0, = peak dis-
charge; V' = total event volume; 7, = time of peak discharge; subscripts o
and s refer to observed and simulated, respectively.
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top performing 500 parameter sets, based on NT, were also
evaluated.

[23] To address the third research objective and identify
whether K-Li can outperform K-Tr when a single parame-
ter set is applied across runoff events, the PM scores for
each parameter set are summed across events and renor-
malized to 1, allowing a parameter set to perform poorly
for an event, yet still score well overall for good perform-
ance across all other events [Yatheendradas et al., 2008].

5. Results
5.1.

[24] A comparison of the optimal PM scores derived
when applying each model structure to each runoff event
(Table 4), show that for four events K-Li outperforms K-Tr
in terms of total performance (NT). K-Tr produces a better
overall performance for Event 3, however both models out-
perform the benchmark models (BM) for this event, there-
fore both capture aspects of the reach transfer function that
is not present in the input hydrograph. For all events both
models outperform the NP BM, and can produce near opti-
mal peak discharge predictions (NP > 0.96). Neither model
can outperform the NSE score for Event 2, and K-Tr is also
worse than NSE BM for Events 4 and 5. Both models are
capable of producing near perfect mass balance for each
event when considered only in terms of the NV perform-
ance measure. The NT scores for each event are less than
the product of the optimal scores for NSE, NP and NV;
therefore the optimal NT score is not produced from a sin-
gle parameter set that produces optimal scores for all other
performance measures.

Event Based Model Performance

5.2. Sensitivity Analysis

[25] Based on the RSA sensitivity scores for all events
and performance measures calculated for the top 10% of
parameter sets (Table 5), K-Li is most sensitive to K; fol-
lowed by n (except NSE for Event 1), and like the K-Tr
model, insensitive to the initial moisture (M) and wetting
front suction (wg). The lowest n sensitivity scores in both
models for NV show the correct runoff volume may be pre-
dicted without necessarily producing the hydrograph shape,
as measured by NSE. In K-Tr the single dominant parame-
ter is n, with the exception of NV for Event 5. The next
most sensitive parameters were K; and W,.. Some of the
largest K sensitivity scores for the T model occurred in
Event 2, the largest runoff event. The results obtained using
the top 50% of behavioral parameter sets (not shown) iden-
tified the same ordering of the most sensitive parameters.

[26] For K-Li, significant positive linear interactions
were identified between M and K, except for Event 3
(Table 6), and between n and M, except for Events 2 and 3.
Given RSA identifies optimal K and » in a narrow area in
parameter space, such interactions are of secondary impor-
tance. In K-Tr for all events except Event 2, a significant
positive interaction was identified between K; and W,
which coupled with low RSA scores shows this interaction
for the optimal performing parameter sets occurs across the
whole range sampled for each parameter. Significant posi-
tive interactions between n and both K and W, were identi-
fied when K-Tr was applied to Event 3.

5of 11



W04509 HUTTON ET AL.: FLOW ROUTING IN EPHEMERAL RIVERS W04509
Table 4. Performance Measures for the Optimal Performing Parameter Sets for Each Runoff Event and Model Structure®
NSE NP NV NT

Event Number and Date K-Li K-Tr BM K-Li K-Tr BM K-Li K-Tr K-Li K-Tr
Event 1: 17 Jul 1999 0.965 0.964 0.857 0.984 0.998 0.613 0.999 0.999 0.744 0.651
Event 2: 23 Jul 1999 0.978 0.969 0.983 0.963 0.960 0.913 0.999 0.999 0.911 0.882
Event 3: 22 Aug 2005 0.943 0.962 0.684 0.997 0.994 0.274 0.999 0.999 0.634 0.763
Event 4: 10 Sep 2006 0.986 0.978 0.985 0.991 0.998 0.953 0.999 0.999 0.900 0.811
Event 5: 25 Jul 2007 0.991 0.943 0.964 0.990 0.995 0.845 0.999 0.999 0.955 0.769
Total 0.862 0.845 - 0.868 0.863 - 0.884 0.885 0.662 0.598

“BM refers to predictions derived from the benchmark model. The bolded scores show the best performing model for each measure of model

performance.

5.3. Predictive Performance

[27] K-Li outperformed K-Tr when measured by NSE,
NP and NT (Table 4) when parameter sets were evaluated
across events, and produced a number of better performing
parameter sets (Figure 3). Sensitivity across all events con-
firms the sensitivity results identified for each individual
event (Table 4; Figure 3): K-Li performance across all
events is most sensitive to K; and Manning’s n, with optimal

Table 5. RSA Sensitivity Scores Derived From the Top 10% of
Parameter Sets When Each Model Was Applied to Each Event for
Each Measure of Model Performance®

K-Li K-Tr
PM n Wy M K, n Wy M K W
Event 1
NSE 0.436 0.003 0.049 0.405 0.469 0.003 0.023 0.046 0.134
NP  0.391 0.006 0.095 0.452 0.425 0.006 0.039 0.254 0.186
NV  0.268 0.004 0.047 0.444 0.180 0.010 0.014 0.024 0.120
NT 0.426 0.003 0.058 0.427 0.465 0.004 0.013 0.012 0.107
Event 1
NSE 0.309 0.005 0.057 0.415 0.371 0.011 0.051 0.203 0.120
NP  0.302 0.006 0.129 0.450 0.327 0.008 0.081 0.360 0.117
NV  0.283 0.005 0.069 0.474 0.278 0.007 0.132 0.390 0.117
NT 0.296 0.005 0.087 0.455 0.344 0.011 0.083 0.330 0.129
Event 3
NSE 0.358 0.005 0.023 0.458 0.451 0.004 0.014 0.069 0.165
NP  0.402 0.004 0.074 0.407 0.443 0.005 0.007 0.022 0.144
NV 0.273 0.006 0.059 0.476 0.312 0.006 0.040 0.305 0.214
NT 0.357 0.006 0.025 0.463 0.447 0.003 0.006 0.062 0.176
Event 4
NSE 0.373 0.004 0.023 0.413 0.449 0.005 0.006 0.054 0.053
NP  0.379 0.004 0.056 0.408 0.421 0.004 0.003 0.099 0.073
NV  0.275 0.005 0.055 0.444 0.091 0.004 0.028 0.043 0.069
NT 0.369 0.004 0.024 0.425 0.448 0.003 0.006 0.104 0.099
Event 5
NSE 0.379 0.004 0.026 0.415 0.453 0.005 0.008 0.065 0.056
NP  0.381 0.007 0.061 0.419 0.424 0.007 0.005 0.069 0.088
NV  0.273 0.005 0.050 0.438 0.043 0.006 0.028 0.083 0.071
NT 0.379 0.004 0.028 0.425 0.460 0.005 0.012 0.105 0.135
Total
NSE 0.381 0.003 0.023 0.425 0.452 0.006 0.007 0.020 0.086
NP  0.379 0.005 0.069 0.424 0.428 0.008 0.007 0.017 0.110
NV  0.274 0.004 0.047 0.448 0.206 0.003 0.009 0.131 0.158
NT 0.373 0.005 0.039 0.441 0.452 0.005 0.007 0.015 0.083

Total shows values across events. PM is model performance. Bold and
italic indicates, respectively, the most sensitive parameter (bold), and sec-
ond most sensitive parameter (italic), for each model and performance
measure.

parameter sets in the range 7-46 mm h™', and 0.02-0.03,
respectively. All event optimal values of K and 7 lie in these
ranges, except Event 2, which had a higher roughness coeffi-
cient (0.035). The lack of significant relationships in K-Li
across all events for M, alongside the spread in the optimal
initial moisture for each event (Figure 3), suggests M is spe-
cific to each event. The sensitivity to n across events for K-
Tr is also shown in Figure 3; the optimal value is smaller
than in K-Li (0.015-0.023), and like K-Li all event optimal
values of # lie in this range, except for Event 2. The strong
linear relation between W, and K, in K-Tr predictions was
also identified for total model performance across all events.
In contrast to K-Li predictions, optimal performing parame-
ter sets can be found across the whole range of K, which is
also the case for M and W,. Although, the best performing
parameter sets are toward the lower range of ...

[28] Narrower clustering of the top 500 parameter sets in
K-Li model (Figure 4) shows the larger number of optimal
performing parameter sets, compared to K-Tr, particularly
for Event 1 and 2. However this is not the same for Event 3,
where K-Tr outperforms K-Li, most notably around the sec-
ond hydrograph peak. For Event 1 and Event 2 both models
struggle to predict peak discharge in evaluation. When both
models were calibrated to NP, peak discharge can be pre-
dicted well, which in the case of Event 1 results in an over
prediction of the receding hydrograph limb. The time to the
rising limb is well predicted for all other events, and is mar-
ginally better in K-Li predictions for Event 4 and Event 5.
For these events K-Li also performs better during the reced-
ing hydrograph limbs, notably in Event 5.

Table 6. Significant Linear Relationships Between Parameters
Determined From the Top 500 Parameter Sets for Each Event and
Model as Measured With NT*

K-Li K-Tr
Event Number and Date ~ Parameters R? Parameters R?
Event 1: 17 Jul 1999 n-M +0.17 WK, +0.72
Event 1: 17 Jul 1999 M-K, +0.41 - -
Event 2: 23 Jul 1999 M-K +0.16 - —
Event 3: 22 Aug 2005 n-K —0.17 W.-K, +0.47
Event 3: 22 Aug 2005 - - n-K; +0.14
Event 3: 22 Aug 2005 - - We-n +0.63
Event 4: 10 Sep 2006 M-K; +0.52 W.-K, +0.75
Event 4: 10 Sep 2006 n-M +0.15 - -
Event 5: 25 Jul 2007 n-M +0.21 W.-K; +0.7
Event 5: 25 Jul 2007 M-K +0.55 - —
Total - - WK, +0.77

For the values, p < 0.01.
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Figure 3. Dotty plots showing total model performance (NT) as a function of the most sensitive pa-
rameters when each parameter set was applied to all runoff events (evaluation), and the optimal perform-
ing parameter when each model was calibrated to each calibrated to each individual event.
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6. Discussion

[20] The integration of distributed topographic informa-
tion into the K-Li model, in the form of lidar derived eleva-
tions, generally improves model performance compared to
K-Tr when the models are calibrated to individual events,
and also when applied across events, producing more be-
havioral simulations. The exception to this is for Event 3,
where K-Tr performs better in predicting both hydrograph
peaks. However, both models significantly outperform the
benchmark model for this event.

[30] The sensitivity analysis conducted to address the
second research aim supports the conclusion that K-Li is a
better model for future event prediction in comparison to
K-Tr. In the former model, the two most sensitive parame-
ters K and »n are similar when calibrated to each event, and
in evaluation when applied across events. The exception to
this is the calibrated » for Event 2, which was the largest
event considered, and had a peak discharge approximately
five times the size of the next largest event. Event 2 would
have inundated a much larger area of the channel and flood-
plains, and also inundated more of the vegetation that has
developed within and alongside the channel over the last
40 years [Nichols and Shipek, 2006]. The event, therefore,
required a higher roughness coefficient to reflect these con-
ditions. In the other events the optimal range for n was
0.020-0.030, which is consistent with literature values for
clean, straight channels [Chow, 1959]; i.e., the main inset
channel in Walnut Gulch. In future application aerial im-
agery of the channel, alongside the unfiltered lidar DEM,
may be used to distinguish vegetated from bare channel
areas, and allow calibration of roughness coefficients both
for the channel and vegetated floodplain.

[31] In K-Li the optimal infiltration values in both cali-
bration and evaluation are between 7 and 46 mm h™'.
Although these infiltration rates are within the wide range
of saturated infiltration rates (1.2-254 mm h™") recorded
for comparable rivers of the American Southwest [Hoffinan
et al., 2002 ; Constantz et al., 2003 ; Blasch et al., 2006], they
are lower than that recorded for this channel in previous
experiments [Coes and Pool, 2005]. Dahan et al. [2007]
found infiltration rates recorded during a natural flow event
were typically lower than those recorded by ring infiltrome-
ters and ponding experiments. Lower infiltration rates during
natural flow events may result from air escaping at the flood
bore wave [Hassan, 1990], and the presence of abundant fine
sediment near to the channel bed that may impede infiltration
[Lange, 2005]. Such processes are not currently represented
in existing infiltration models, and might be accounted for
indirectly by changes in other parameter values (e.g., Kj).
Further work is required to understand the effect of these fac-
tors on infiltration.

[32] The initial moisture content (M) had a secondary
influence on model performance on an event basis through
interactions with other model parameters in K-Li. Events 1
and 2, which both maintained their peak discharges,
occurred in a period of frequent channel activity. In con-
trast, Event 4 and Event 5 were preceded by little channel
activity. These data suggest that the initial moisture content
may be important in reducing infiltration rates near the
peak, and that model results may be improved by incorpo-
ration of a moisture model dependent on recent channel
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activity. However, as the first two events had the largest
transmission losses, a greater understanding is required of
how reduced peak infiltration leads to greater cross-section
inundation downstream and therefore increasing infiltra-
tion. Infiltration is calculated separately in each cell that
constitutes the channel cross-section in K-Li, which in con-
trast to a laterally lumped approach means that each newly
inundated cross-section cell simulates higher transient infil-
tration rates associated with an initially dry bed [Blasch
et al., 2006]. The model is therefore more representative of
the physical conditions and complex dynamics governing
transmission losses.

[33] The optimal performing parameter sets across
events in K-Tr were toward the lower range for n. In the
braided sections of the main channel a trapezoidal cross-
section provides a poor approximation of the true morphol-
ogy (Figure 2). The higher wetted perimeter therefore
requires a lower and less physically realistic roughness
coefficient to convey the flood discharge. Strong parameter
interactions within K-Tr were identified between K, and
W.. The compensatory effect of these parameters on the
rate of infiltration resulted in optimal parameter sets in dif-
ferent areas of parameter space for all events considered.
The result is that it is difficult to infer the physical meaning
of the W,, and for predictive purposes, optimize or “fix”
K-Tr parameters for future application. It is possible to fix
W.. at the default value (0.15) applied in a number of KINE-
ROS(2) applications [Smith et al., 1995], which gives
slightly worse optimal predictions than those found in this
study (Table 4), and results in optimal infiltration rates in
the range 5-223 mm h™'. While the upper end of this range
might seem physically more realistic than the optimal val-
ues found in K-Li (7-46 mm h™"), they are obtained by
applying an empirical derived, and poorly justified parame-
ter value. Whereas in K-Li the optimal range of K values
are found with a physically more plausible, and distributed
representation of the effects of cross-section morphology
on flow routing.

[34] A number of studies have identified the lack of
transferability of parameter values between event predic-
tions when used in semiarid hydrological models [4/-Qura-
shi et al., 2008 ; Yatheendradas et al., 2008], and the need
to take an event based approach to understand/predict semi-
arid hydrological response [Knighton and Nanson, 2001
Wainwright et al., 2008 ; Garcia-Pintado et al., 2009]. The
consistency of parameters in K-Li suggests, alongside
recourse to aerial imagery and consideration of previous
events, predictions from this model are more robust for fur-
ther application than identified in previous studies.

[35] Data available for this study allowed focus on a par-
ticular structural element of distributed catchment models,
which led to development of a better understanding of pa-
rameter interactions, detection of model structural deficien-
cies, and identification of where advances in data collection
may improve model application. Such model limitations
are difficult to infer from whole-of-catchment model appli-
cations due to the compensatory effects of errors in hill-
slope model structure, input data and parameters, which
may lead to the identification of erroneous parameter val-
ues [Yatheendradas et al., 2008 ; Bahat et al., 2009]. The
issue is analogous to the problems of the sediment delivery
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concept [Parsons et al., 2006] as it highlights the limita-
tions of inferring catchment understanding from a single
integrated measure of catchment response. Improved data
availability to constrain individual catchment components,
both qualitative [e.g., McMillan and Clark, 2009] and
quantitative (as implemented here), can improve the param-
eter inference procedure, leading to more robust models
and more robust model predictions.

7. Conclusion

[36] The objective of this paper was to investigate
whether lidar-derived data could lead to improved predic-
tion of flow events in ephemeral channels. In general, K-Li
showed improved performance in comparison to K-Tr, both
when each model was calibrated to individual events and
during an evaluation phase when the models (and parameter
sets) were applied across events. Sensitivity analysis identi-
fied that the K-Li model also had greater consistency in be-
havioral parameter sets across runoff events, with optimal
parameter values for the most sensitive parameters (satu-
rated infiltration and the roughness coefficient) occurring
for all events in a narrower region of parameter space. In
contrast, parameter interaction within K-Tr resulted in
poorly constrained behavioral parameter sets across parame-
ter space. Interaction between Saturated Infiltration (K) and
the Woolhiser Coefficient (,), which has little physical
meaning, had a compensatory effect on model performance.
Data used in this study allowed focus on a particular struc-
tural element common in distributed catchment models. An
understanding of the channel model component, as devel-
oped here, has previously been dominated by uncertainty in
input conditions and other catchment components. These
results suggest that lidar derived cross-section morphology
can lead to improved, and more robust flash flood predic-
tion, particularly in distributed catchment models where the
channel component can dominate runoff response.

[37] Acknowledgments. The research was primarily funded by a Uni-
versity of Exeter Graduate Fellowship, awarded to the first author. Signifi-
cant support was also provided by The USDA-ARS Southwest Watershed
Research Center.
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