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[1] The focus of this study is on the role of precipitation uncertainty in the estimation of
soil texture and soil hydraulic properties for application to land-atmosphere modeling
systems. This work extends a recent study by Santanello et al. (2007) in which it was
shown that soil texture and related physical parameters may be estimated using a
combination of multitemporal microwave remote sensing, land surface modeling, and
parameter estimation methods. As in the previous study, the NASA-GSFC Land
Information System modeling framework, including the community Noah land surface
model constrained with pedotransfer functions (PTF) for use with the Parameter
Estimation Tool, is applied to several sites in the Walnut Gulch Experimental Watershed
(WGEW) in southeastern Arizona during the Monsoon ’90 experiment period. It is
demonstrated that the application of PTF constraints in the estimation process for
hydraulic parameters provides accuracy similar to direct hydrologic parameter estimation,
with the additional benefit of simultaneously estimated soil texture. Precipitation
uncertainty is then represented with systematically varying sources, from the high-density
precipitation gauge network in WGEW to lower quality sources, including spatially
averaged precipitation, single gauges in and near the watershed, and results from the
continental-scale North American Regional Reanalysis data set. It is demonstrated that the
quality of the input precipitation data set, and particularly the accuracy of the data set, in
both detection of convective (heavy) rainfall events and reproduction of the observed
rainfall rate probabilities, is a critical determinant in the use of successive remote sensing
results in order to establish and refine estimates of soil texture and hydraulic properties.
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1. Introduction

[2] The simulation of soil moisture dynamics using land
surface models (LSMs) has been addressed in a wide variety
of studies and with models of various complexity [e.g.,

Shao andHenderson-Sellers, 1996;Albertson andMontaldo,
2003]. Soil moisture plays a well-known role in the energy
and water budgets for land-atmosphere exchange [e.g., Betts,
2000; Berbery et al., 2003; Betts et al., 2003; Findell and
Eltahir, 2003; Koster et al., 2004]. As a result, important
applications such as agriculture, water resource manage-
ment, flood forecasts, and weather and climate prediction
depend on our ability to predict soil moisture.
[3] However, soil moisture profiles required for these

applications are not collected in situ on a routine basis
except in sparse networks, such as that in Illinois [Hollinger
and Isard, 1994] or throughout the USDA Soil Climate
Analysis Network (SCAN) [Schaefer and Paetzold, 2001].
Archives of these and other historical soil moisture data sets
are available at the Global Soil Moisture Data Bank
[Robock et al., 2000]. Soil moisture profiles are also
collected and studied at experimental watersheds estab-
lished by the USDA Agricultural Research Service (ARS),
such as that managed by the Southwest Watershed Research
Center at the Walnut Gulch Experimental Watershed
(WGEW) [Hymer et al., 2000] in southeastern Arizona.
Other than these networks, soil moisture observations in
particular locations are generally carried out during short-
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term field experiments, many of which have highlighted the
heterogeneous nature of soils by measurement of water
content and texture [Mohanty et al., 2002].
[4] Indirect, integrated estimates of soil moisture can be

obtained using thermal infrared measurements [e.g., Carlson
et al., 1995]. However, other studies [e.g., Entekhabi et al.,
1994; Houser et al., 1998] have suggested that the most
promising approach to surface soil moisture estimation over
time and space may be a combination of remote sensing and
modeling. In general, microwave remote sensing methods
using passive (radiometer) and active (radar) sensors
have had the greatest success producing surface soil
moisture estimates suitable for assimilation in LSMs
[Hollenbeck et al., 1996; Moran et al., 2004; Thoma et al.,
2006]. Overall, none of the remote sensing methods provides
an estimate of the vertical distribution of moisture in the soil
column; the profile of soil moisture can, currently, only be
estimated using modeling methods.
[5] In addition to the complexity and inherent nonlinear-

ity of an LSM, the two primary uncertainties in soil
moisture modeling are precipitation and soil hydraulic
properties. Many soil models, including the community
Noah LSM employed here, require the specification of
hydraulic parameters in order to determine the vertical
transport of moisture within the soil column by a simplified
form of the one-dimensional Richards’ [1931] equation.
Hydraulic parameters are often derived from soil texture
information, but the soil parameterization schemes often
remain crude, inflexible, or inappropriate owing to the
natural heterogeneity of the soils and a lack of detailed soil
property maps. In some cases, the LSMs have been dem-
onstrated to be more sensitive to the specification of soil
hydraulic properties or soil textures than to the atmospheric
forcing variables, including precipitation [Gutmann and
Small, 2005; Pitman, 2003].
[6] In this work, the community Noah LSM [Chen et al.,

1996; Ek et al., 2003] is applied to the simulation of soil
moisture in the semiarid WGEW during the North Ameri-
can monsoon season. Water and energy balance predictions
using the Noah LSM, in numerous versions, have been
validated at the point scale [Schlosser et al., 2000] and at
watershed scales [Bowling et al., 2003]. The Noah LSM is
also one of several models incorporated into the NASA-
GSFC Land Information System (LIS) [Kumar et al., 2006],
which provides a flexible software framework for the
execution of LSMs with various methods for the specifica-
tion of atmospheric forcing, surface conditions, and soil
textures and hydraulic parameters.
[7] Because of their heritage in global and regional

weather and climate modeling, all of the LSMs included
in LIS contain simplifying assumptions with regard to their
treatment of soil hydraulic and thermal properties. The
LSMs also typically rely on texture-based lookup tables
for the specification of these parameters. Recognizing the
limitations in an approach based on discrete texture classes,
numerous studies [e.g., Gupta et al., 1999; Hess, 2001; Liu
et al., 2004; Hogue et al., 2005] have attempted to optimize
LSM parameters using observations such as soil moisture
and surface temperature as constraints. While these studies
highlight the potential for parameter estimation methods to
derive large sets of ‘‘effective’’ parameters and to expose or
diagnose specific model weaknesses, little progress has

been made toward the determination of physically consis-
tent parameter sets. Because of the complexity of estimation
methods and the numbers of parameter sets employed in
these studies, it has remained difficult to infer or derive any
parameter information that could be applied to other,
independent studies or models.
[8] With these issues in mind, Santanello et al. [2007]

examined the potential for use of aircraft-based microwave
radiometer and satellite-based radar retrievals of near-
surface soil moisture with the Noah LSM to infer a
physically consistent set of hydraulic parameters for the
primary soil types found in the WGEW. One of the
significant findings of Santanello et al. [2007] was that
the success of this methodology was dependent on the
number of remote sensing images acquired and the dynamic
range in soil moisture captured by these images. It follows
that the methodology should be similarly sensitive to the
accuracy and range of precipitation data used as input to the
LSM during the parameter estimation process. This work
extends that study by examining the role of precipitation
uncertainty in the parameter estimation process. This uncer-
tainty is represented with a systematic variation of input
precipitation from the high-density precipitation gauge net-
work in WGEW to other, lower quality precipitation sources.
We examine here the impacts of using precipitation gauges
collocated with the soil moisture measurement sites, a single
gauge located elsewhere within the WGEW, a first-order
National Weather Service (NWS) synoptic site located ap-
proximately 100 km from the WGEW in Tucson, Arizona,
and the continental-scale North American Regional Reanal-
ysis (NARR) [Mesinger et al., 2006] data set at one-third-
degree spatial resolution over the region of interest.
[9] As in the study by Santanello et al. [2007], the LIS

modeling framework and the Noah LSM are applied to
selected sites in the WGEW during the Monsoon ’90 field
experiment. Constraints on the simulated evolution of soil
moisture at the selected sites are provided by the application
of pedotransfer functions (PTF) [e.g., Cosby et al., 1984]
and via calibration against in situ observations using the
Parameter Estimation Tool (PEST) [Doherty, 2004]. In
general, this work supports ongoing development of the
Army Remote Moisture System (ARMS) [Tischler et al.,
2006] for the US Army Corps of Engineers. The supporting
data sets for this study are described in section 2, including
information on the experiment locations, soil moisture
observations, and input precipitation data sets. The ap-
proach and methodology of these experiments are described
further in section 3. Results of these experiments are
described in section 4, and conclusions from this study
are given in section 5.

2. Data

[10] The focus of this study is the Monsoon ’90 field
experiment carried out in the WGEW. Below, we briefly
describe the watershed and the field experiment, as well as
the unique soils and precipitation data that are the founda-
tion for this work.

2.1. Walnut Gulch Experimental Watershed (WGEW)

[11] The WGEW, managed by the USDA ARS South-
west Watershed Research Center, is a 148 km2 semiarid
watershed in southeastern Arizona. The predominant soil
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textures in the watershed are loamy sands and sandy
loams, with a notable amount of coarse fragments. The
vegetation throughout the watershed is generally a mixture
of grasses and brush. The watershed is hilly with numer-
ous channels, and contains more than 90 precipitation
gauges and approximately 15 streamflow measurement
stations.

2.2. Monsoon ’90 Field Experiment

[12] The Monsoon ’90 (hereafter M90) field experiment
was conducted in the WGEW from June to September 1990
[Kustas and Goodrich, 1994]. During M90, intensive sur-
face-based measurements were recorded at the eight ‘‘Met-
flux’’ sites indicated in Figure 1. These measurements
included standard meteorological variables, surface fluxes
of heat and moisture, and daily gravimetric soil moisture
data. A NASA C-130 aircraft carried an airborne L-band
Push Broom Microwave Radiometer (PBMR) from which
surface soil moisture was derived from the measured
microwave brightness temperature [Schmugge et al.,
1994]. The PBMR data was collected on 6 days during the
height of the M90 experiment over the northern portion of
the watershed, including the Metflux sites. Comparisons of
the gravimetric soil moisture, measured to a depth of 5 cm,
with the PBMR-derived observations during the M90
experiment demonstrated very good agreement, with a
compound error of 4.5% ± 1.9%.

2.3. Soils Data

[13] For the application of an LSM to WGEW, there are
several ‘‘standard’’ a priori sources of soil texture informa-
tion. In order of increasing resolution, these include: the
global United Nations Food and Agriculture Organization
(FAO) Digital Soil Map of the World at a nominal resolu-
tion of 5 arc-min (�8.5 km), which also contains derived
information on some soil properties [Food and Agriculture
Organization, 1996; Reynolds et al., 1999; Nachtergaele,
2003]; the State Soil Geographic Database (STATSGO) data
set [Miller et al., 1994] at a nominal resolution of 15 arc-sec
(�400 m), including the ‘‘model-friendly’’ CONUS-SOIL
multilayer soil characteristics data set [Miller and White,
1998]; and the county-level Soil Survey Geographic Data-
base (SSURGO) [U.S. Department of Agriculture, Natural
Resources Conservation Service, 2006] at a nominal reso-
lution of approximately 1.5 arc-sec (�40 m) in the region of
the WGEW. The FAO, STATSGO and SSURGO soil
texture maps for the WGEW are shown in Figure 1. Only
one soil texture class is specified for the entire watershed in
the FAO (sandy loam) and STATSGO (loamy sand) data
sets, while the SSURGO data set specifies several classes in
the WGEW including sandy loam and sandy clay loam.
These soil types are referenced to the texture classes of
Cosby et al. [1984] for the specification of hydraulic
parameter values in the Noah LSM. The SSURGO data
set also supplies maps of saturated hydraulic conductivity

Figure 1. Soil texture classes in the Walnut Gulch Experimental Watershed (WGEW) from various data
sets.
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and porosity, two of the more influential soil parameters.
These supplemental maps have also been employed as input
to the Noah LSM in this work.
[14] In addition to these ‘‘standard’’ soils data sets, which

are based on large groupings of soil pedon data collected at
many locations not necessarily representative of the WGEW
soils, the WGEW has also been the subject of several field
campaigns in which in situ soil texture and hydraulic
property data were collected. During the M90 experiment,
soil texture estimates at each Metflux site are as given by
Schmugge et al. [1994]. Table 2 of Santanello et al. [2007]
cites estimates from a neural network-based PTF
(ROSETTA) [Schaap et al., 1998], measurements made
during 2002 (M. G. Schaap and P. J. Shouse, personal
communication, 2004, as cited by Santanello et al. [2007])
(hereinafter Schapp and Shouse, personal communication,
2004) and the 2004 North American Monsoon Experiment
(NAME) [Higgins et al., 2006]. In this work, we employ
comparisons with the 2002 measurements of Schaap and
Shouse (personal communication, 2004) because all of the
soil hydraulic properties required for the Noah LSM were
provided at sites 1 (Lucky Hills) and 5 (Kendall).

2.4. Meteorological Data

[15] For the simulations in this study, the input forcing
from solar and long-wave radiation, temperature, humidity,
wind speed, and surface atmospheric pressure were obtained
by a merger of data sets from the available sites in the
WGEW, due to the noncentered locations of the Metflux
sites as well as several sites having discontinuous observa-
tions, and are applied as spatially constant values through-
out the watershed. The precipitation data set collected at 84
precipitation gauges throughout the watershed (as shown in
Figure 2) is aggregated from breakpoint data to hourly
intervals and then interpolated spatially over the watershed
following the multiquadric-biharmonic method described by
Garcia et al. [2008]. As shown in Figure 2, the eight M90

Metflux sites are either collocated with (sites 1, 3, and 5–8),
or situated very near (sites 2, 4, and 8), a precipitation
gauge. For those sites without a collocated precipitation
gauge (gauges 2, 4, and 8), the interpolated field is
employed in order to determine the precipitation intensity
at those locations.
[16] Several methods for degradation of the forcing

precipitation were employed to produce alternative data sets
for input to the LSM, in order to examine the sensitivity of
the parameter estimation process (described below) and the
resulting soil moisture values to the quality of the input
precipitation data set. One method employed here was
application of the watershed mean-areal precipitation
(MAP) based on the interpolated field over the entire
WGEW at each hour. This method is thought to preserve
some information from the actual spatial distribution of the
precipitation in the watershed during the study period,
whereas a simple average of all gauges in the watershed
removes all such information from the resulting MAP value.
For example, during the study period examined here, the
MAP value found by simple mathematical averaging of the
WGEW gauges gives a total-period value of 31.2 mm,
whereas spatial averaging of the interpolated field produces
a total-period MAP value of 40.6 mm (see Figure 3). This
difference can be attributed to the limited spatial extent of
the convective precipitation observed during the M90
period, as discussed by Garcia et al. [2008].
[17] Another method for degradation of the input precip-

itation data set simply took the precipitation measured at a
single gauge near the center of the watershed (gauge 33,
indicated in Figures 2 and 3) for application over the entire
WGEW, as studies suggest that a single gauge is likely the
only instrumentation available in a typical area similar to
the size of the WGEW (�150 km2) throughout much of the
United States [see Garcia et al., 2008]. This particular gauge
was selected for its central location within theWGEWas well

Figure 2. Precipitation gauge locations (numbered) and Monsoon ’90 Metflux site locations (boxes) in
the WGEW.
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as coverage of its location in the PBMR observations during
the M90 experiment.
[18] One additional choice for a single-gauge source of

precipitation data for the period of interest was selected: the
nearest first-order NWS location is located approximately
100 km distant from the WGEW in Tucson, Arizona. For a
study location similar to the WGEW but without resources
provided by the SWRC, and especially during the M90
experiment, it is more likely that information on meteoro-
logical conditions will come from outside of the study
region entirely. The selection of the Tucson precipitation
gauge as a proxy source of information is intended to
represent that likelihood.
[19] One final method employed precipitation values in

the region of the WGEW as provided in the one-third-
degree North American Regional Reanalysis (NARR)
[Mesinger et al., 2006]. The NARR data set shows consis-
tently light and moderate, but not intense, precipitation
during the M90 experiment over the WGEWarea. However,
such small precipitation rates and totals were not observed
in the WGEW, and the results provided by the NARR may
be attributed to the large region of focus in that work.
However, we considered that, in the absence of even first-
order NWS stations, data sets like the NARR may provide
the best information that can be obtained for many regions
about the world, and are similar in format and detail to
output from a numerical forecast model.
[20] The cumulative time series of precipitation from

these sources, compared with that observed at the site 5
(precipitation gauge 82) Metflux location, are shown in
Figure 3. The precipitation estimates based on gauges
within the WGEW show little precipitation until late on
1 August 1990 (DOY 213), when a very intense event
occurred. The precipitation intensity during this event

varied between the data sets, however. The NARR data
set significantly underestimated the event intensity and the
Tucson gauge did not capture this event at all, while the
center-gauge records show slightly more intense precipita-
tion during this event. Following the analysis provided by
Garcia et al. [2008], this event was likely convective in
nature and was focused on a portion of the WGEW that
included the center gauge, providing the higher total pre-
cipitation there while much of the remainder of the water-
shed was less affected by the storm, producing a slightly
lower MAP estimate for the event.
[21] As a positive result of these input selections, the

MAP estimates seem to capture most of the small events
that occurred during the study period, such as those on
3 August (DOY 215) and 6 August 1990 (DOY 218). Overall,
the NARR input data show more frequent, low-intensity
precipitation events throughout the study period, especially
prior to 1 August 1990 (DOY 213) while the WGEW was
predominantly dry. The Tucson gauge recorded an intense
event on 24 July 1990 (DOY 205) that is not found in the
WGEW observations, and then only small events through
the remainder of the study period. A complete lack of
precipitation signal at the Tucson gauge on 1 August
1990 (DOY 213) reinforces the conclusion that the precip-
itation event on that day remained localized over and near
the WGEW.
[22] All of the gauge-based estimates in the WGEW

demonstrate a dry period between 25 July (DOY 206) and
29 July 1990 (DOY 210). The Tucson gauge shows the
highest total amount of precipitation over the study period,
and the NARR total is the second highest over the period
but with a distinctly different profile from that observed at
gauge locations. The WGEW MAP and center-gauge
estimates demonstrate the least total rainfall over the study

Figure 3. Accumulated precipitation from the various forcing data sets used in this work.
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period of those input data sets considered here, and remain
close to each other in both magnitude and profile. The total
precipitation measured by the gauge at site 5 is nearly 10 mm
greater than theMAPor center-gauge based estimates. It should
be noted that additional storm event information is captured at
this site on 29 July (DOY 210), 2 August (DOY 214), and
6–7 August 1990 (DOY 218–219).
[23] Another representation of the differences between

the selected precipitation data sets may be shown by
probability density function (PDF) of hourly precipitation
rates within selected ranges, as shown in Figure 4. This
analysis shows that, for a significant portion of the study
period, no precipitation was recorded by surface gauges in
or near the WGEW. However, the NARR analysis suggests
that nonzero precipitation occurred over nearly 80% of the
study period, though significant portions of the NARR
precipitation occurred with intensity at or below the
measurement accuracy of the precipitation gauge stations
(0.25 mm). We attribute this result to the relatively coarse
(one-third degree) horizontal spatial resolution of meteoro-
logical variables generated by the NARR model. The NARR
also demonstrates a greater frequency of precipitation rates
below 1 mm hr�1 than did the precipitation gauges or their
derivative measures, and did not contain any occurrences
above 1 mm hr�1 in intensity. The PDF analysis suggests that
the observations obtained at the Tucson and site 5 gauges
were similar in their patterns of intensity, though the Tucson

gauge recorded greater frequencies of both heavy rainfall and
dry periods than the site 5 gauge (gauge 82).

3. Background and Approach

[24] As mentioned above, this work builds upon and
extends the work of Santanello et al. [2007], which includes
more extensive discussions of the model soil physics,
parameter estimation, and the methodology specific to soil
hydrologic parameter and texture estimation. Below, we
provide a brief summary of this background material in
order to support our experimental approach in this work.

3.1. Soil Moisture Physics in Land Surface Models
(LSMs)

[25] The influence of near-surface soil moisture on the
partitioning of surface turbulent fluxes of moisture and
latent and sensible heat to the atmosphere, using both
offline LSMs and fully coupled land–atmosphere models,
has been documented in numerous studies [e.g., Cuenca et
al., 1996; Santanello and Carlson, 2001; Ek and Holtslag,
2004]. In order to simulate properly the evolution of
moisture distribution in the soil column, a set of soil
hydraulic parameters is combined with characteristic curves
that relate soil moisture with both matric potential and
hydraulic conductivity. The expressions derived by Brooks
and Corey [1964] andCampbell [1974] have been commonly
used in coupledmeteorological models, alongwith parameter
lookup tables based on the results of soil studies by Clapp

Figure 4. Probability density functions of hourly precipitation rate (p) from the NARR reanalysis, the
Tucson NWS gauge, and the WGEW precipitation gauge (gauge 82) at site 5.
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