HYDROLOGY and WATER RESOURCES in ARIZONA and the SOUTHWEST

PROCEEDINGS OF THE 1973 MEETINGS OF THE ARIZONA SECTION—AMERICAN WATER RESOURCES ASSN. AND THE HYDROLOGY SECTION—ARIZONA ACADEMY OF SCIENCE

MAY 4-5, 1973, TUCSON, ARIZONA
Air-mass thunderstorm rainfall is a major source of water in the rangeland areas of the southwestern United States. These thunderstorms occur during the summer months and produce intense afternoon and evening rains of short duration and limited areal extent. For small (100 square miles and less) watersheds in the southwest, air-mass thunderstorms produce the major flood peaks (Osborn & Hickok, 1968), therefore, knowledge of occurrence frequencies of these thunderstorms is essential in predicting flood sediment transport for small watersheds in the southwest.

Air-mass thunderstorm rainfall appears to be randomly distributed in time and space. Thus, it can be considered as a stochastic process. Stochastic processes are classified as either stationary or nonstationary. If thunderstorm rainfall can be assumed to be stationary, it most likely can also be assumed to be ergodic. If ergodic, several independent short-term samples can be combined to provide a sample which is equivalent to a long-term record, thus providing greater opportunity for obtaining sample points in the extreme tails of the rainfall probability distribution. Such extreme sample points are needed to better define the rainfall probability tails for more accurate prediction of extreme events.

In this paper, several long-term U.S. Weather Bureau records from gages in southeastern Arizona are tested for stationarity. Both the maximum daily rainfall for each season and seasonal total rainfall are tested. Also, rainfall records from a dense raingage network on the ARS Walnut Gulch Experimental Watershed near Tombstone, Arizona are examined to determine the elevation range for which these records can be considered ergodic.

TESTS FOR STATIONARITY

A rigorous definition of a stationary process requires that statistical properties computed across the ensemble of all possible sample functions at any arbitrary time point be the same for any other time point. Verification of stationarity by this definition is

2. Research Hydraulic Engineers, USDA, ARS, Southwest Watershed Research Center, Tucson, Arizona.
not feasible since there are an infinite number of possible statistics, and a complete description of the random process by the ensemble of all sample functions would be required to compute them. Usually, long-term observations are available from only one sample function. Even so, practical tests for stationarity using individual sample functions can be devised by making some important assumptions, proposed by Bendat and Piersol (1966), which are "generally valid for the vast majority of random data in nature."

These assumptions are:

(1) If the data of interest are nonstationary, then the statistical properties computed over each of a sequence of short time intervals from a single sample record will vary significantly from one interval to the next.

(2) Verification of weak stationarity (time invariance of the mean value and autocorrelation function) is acceptable for the desired analyses and applications.

(3) The sample record of the data to be investigated is very long compared to the random fluctuations of the data time history.

(4) If the mean square value of the data is stationary, then the autocorrelation function for the data is also stationary. (This assumption is not necessary to test whether a single sample record is stationary, but it does simplify practical testing procedures.)

Under the above assumptions, stationarity of annual maximum 24-hour thunderstorm rainfalls and annual rainfall totals for the summer season for eight Weather Bureau stations in southeastern Arizona was tested. Figure 1 shows location and elevation of these gages. Figures 2 and 3 give annual maximum 24-hour thunderstorm rainfalls for the eight stations and 6-year means. Figures 4 and 5 show 6-year running means of summer seasonal rainfall.

To test for stationarity of the rainfall sequences, the following procedure was used.

Periods were divided into equal intervals of 6 years each, and a mean value and a mean square value were computed for each interval. The sequences of mean values and mean square values were then tested under the null hypothesis that they were each independent samples of a random variable with the same true mean value and the same true mean square value. The nonparametric run test as recommended by Bendat and Piersol (1966) was used.

In the run test procedure, the mean values and mean square values computed for a rainfall record are designated (+) or (-) depending upon whether they are above or below the average of all values for the record.
FIGURE 1. Location in southeastern Arizona of U. S. Weather Bureau rain gages used in tests for stationarity.
Figure 2. Annual maximum 24-hour rainfalls recorded at Safford, Benson, Tombstone, and Bisbee, southern Arizona.
FIGURE 3. Annual maximum 24-hour summer rainfall recorded by U. S. Weather Bureau gages at Douglas, Wilcox, Clifton, and Bowie in southeastern Arizona.
FIGURE 4. Six-year running means of summer seasonal rainfall recorded at Bisbee, Tombstone, Douglas and Benson.
FIGURE 5. Six-year running means of summer seasonal rainfall recorded at Wilcox, Safford, Clifton, and Bowie.
The number of runs, which is a sequence of like signs followed, preceded, or both by a different sign, is then determined for the record. The number of runs which occur in a sequence indicates whether or not results are independent random observations of the same random variables.

The number of runs determined for each of the eight Weather Bureau records are tabulated in Table 1. These are all within the 90% limits of the sampling distribution for runs, i.e., if \(A_i \) is the event that the number of runs is within these limits for record \(i \), then \(P(A_i) = 0.90 \), where \(P(A_i) \) is the probability that \(A_i \) occurs. Since air-mass thunderstorms are limited in areal extent and the minimum spacing is 25 miles between the Weather Bureau gages for which records were obtained, we assume the events \(A_i \) are independent. Therefore, the probability of the number of runs for all eight records falling within the 90% confidence limits of the runs sampling distribution is as follows:

\[
\prod_{i=1}^{8} P(A_i) = (0.90)^8 = 0.43
\]

Thus, with these test results as a basis, the null hypothesis that the statistics for each interval were samples from the same population was accepted for all 8 records. That is, the sequences of annual maximum thunderstorm rainfall and summer seasonal rainfall for southeastern Arizona are assumed to be sample functions of stationary processes subject to the basic assumptions made in the above tests. It is recognized that, in general, thunderstorm rainfall is not a stationary process since the probability structure varies within the season. However, since in this paper we are interested only in sequences constructed from selected values from each season (maximum 24-hour thunderstorm rainfall and total summer seasonal rainfall), probability structure changes within the season would not be expected to affect these sequences.

CONSIDERATION OF ERGODICITY

For a stationary random process to be ergodic, the distribution of the variant must not differ when computed over different sample functions. This means that statistical properties of rainfall measured at different points must not differ significantly if the rainfall process is to be considered ergodic. Elevation may be the major factor in causing rainfall statistical properties to differ at different points in the rolling rangeland areas of southeastern Arizona. The ARS Walnut Gulch Experimental Watershed, which is instrumented with a dense raingage network, slopes gradually upward from west to east with the lowest and highest gages spaced about 15 miles and 1,400 feet in elevation apart. The lowest point on the watershed is about 4,000 feet; the highest about 6,300 feet.
TABLE 1. Number of runs obtained by the use of run test for stationarity on U. S. Weather Bureau thunderstorm rainfall records in southeastern Arizona.

<table>
<thead>
<tr>
<th>Gage Location</th>
<th>Annual Maximum 24-hour Thunderstorm Rainfall</th>
<th>Summer Seasonal Rainfall</th>
<th>r_1^u</th>
<th>r_2^u</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean X</td>
<td>Mean Square X^2</td>
<td>Mean X</td>
<td>Mean Square X^2</td>
</tr>
<tr>
<td>Benson</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Bisbee</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Bowie</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Clifton</td>
<td>7</td>
<td>9</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Douglas</td>
<td>5</td>
<td>5</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Safford</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Tombstone</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Willcox</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

1) Number of runs r such that $P[R > r_u] = .05$ where R is random variable for number of runs.

2) Number of runs r such that $P[R < r_L] = .05$.
A regression analysis was run on the Walnut Gulch data in which average number of storms per year was regressed on elevation. Statistically, according to Student's "t" test with an α level of 0.05, elevation and occurrence of significant storms were not correlated. Furthermore, there was no suggestion of a significant increase in storm occurrence for the gages closest to the Dragoon Mountains. According to Student's "t" test, there was a correlation, although poor, between elevation and occurrence of storm rainfall greater than 1 inch. If the 3 gages at the lowest watershed elevations were eliminated, there would have been no significant correlation. Osborn, Lane, and Hundley (1972) found that mean summer rainfall was significantly greater on the upper half of Walnut Gulch than on the lower half. Also, analyses of records from 8, long-term (66 years or more) USWB gages in southeastern Arizona indicate differences in average summer rainfall and average maximum 24-hour rainfall between stations at different elevations (Figure 6). Therefore, for Walnut Gulch, an ergodic network for a range of 1,400 feet in elevation between gages may be too much to assume. In this particular case, records from gages located between 4,200 and 5,400 feet in elevation might be considered ergodic. There is no evidence that this restriction would be necessary for measuring or predicting major runoff-producing thunderstorm rainfalls, but it could be significant, as suggested above, in determining such things as average seasonal rainfall.

INDEPENDENCE OF SAMPLING POINTS

Thunderstorm rainfall records from 64 gages at various spacings on Walnut Gulch were examined to determine the minimum spacing for which gage records can be considered independent. Independence of records is necessary if they are to be combined as sample functions of an ergodic process. To check for independence, both conditional frequencies (estimates of conditional probabilities) and correlation coefficients were examined.

Conditional frequencies of measuring individual thunderstorm rainfall above thresholds of 1 and 2 inches were determined by tabulating total number of occurrences above the thresholds for selected gages and the number of simultaneous occurrences above these thresholds at other gages. The ratios of simultaneous (during the same event) occurrences to total occurrences gave the conditional frequencies (Figure 7). This relation indicates that the conditional frequency asymptotically approaches the unconditional frequencies as gage spacing increases.

To further investigate conditional frequencies, 10 years of summer rainfall records from 9 U.S. Weather Bureau standard raingages in the general vicinity of Walnut Gulch with spacings ranging from 10 to 67 miles were examined. Several stations with relatively short
records were included in this analysis to provide a denser network of gages, while some long-term stations were excluded because of spacing or because of missing records during the specific 10-year period. Generally, USWB gages are considered to provide independent rainfall measurements. Conditional frequencies were computed for 24-hour rainfall amounts in the same manner as for Walnut Gulch gages, on the assumption that for southeastern Arizona during the summer months 24-hour rainfall amounts essentially represent individual storm amounts. Figure 8 shows conditional frequencies plotted versus distance between gages. This plotting shows no relation between conditional frequency of 24-hour thunderstorm rainfall occurrence and distances between gages for spacings of 10 miles and more. It supports the interpretation of Figure 7 that conditional frequencies asymptotically approach the unconditional frequencies as distance between gages increases. Thus, paired gages for which conditional and unconditional frequencies are essentially equal are considered independent sampling points.

Correlation coefficients were computed for rainfall amounts recorded during thunderstorms for sets of 12 and 14 gages for a 12-year record from Walnut Gulch. The gages were chosen to provide as much variability in distances as possible without duplication and without having to compare all 64 gages. About 320 storms occurred during the 12-year record. Distance between the gages ranged from 0.5 to 14.5 miles. Figure 9 shows the relationship between correlation coefficient \(r \) and distance between gages. The upper 95% confidence limit for the null hypotheses that \(r = 0 \) was computed as 0.11 and is shown on the graph.

These studies indicate that gages spaced approximately 8 miles apart can be considered independent when air-mass thunderstorm rainfall is measured. However, independence may be assumed with much closer spacings for some purposes.

CONCLUSIONS

The following are major conclusions of this paper.

1) The hypothesis that sequences of annual maximum thunderstorm rainfall and summer seasonal rainfall for southeastern Arizona can be considered as stationary stochastic processes could not be rejected by run tests for stationarity recommended by Bendat and Piersol (1966).

2) Rainfall sequences that can be assumed stationary as recorded by gages located between elevations 4,200 ft. and 5,400 ft. on ARS Walnut Gulch Experimental Watershed may also be assumed ergodic.

3) Gages spaced approximately 8 miles apart on the rangeland areas of southeastern Arizona can be considered independent when air-mass thunderstorm rainfall is measured.
FIGURE 6. Variation of thunderstorm rainfall with elevation in southeastern Arizona.
FIGURE 7 Conditional frequency of measuring thunderstorm rainfall above thresholds of 1 and 2 inches.
Given at least 1 inch of daily rainfall (July-Sept.), frequency of at least 1 inch at another gage on the same day is shown.

FIGURE 8. Conditional frequency of measuring 1 inch or more of rainfall at selected U. S. Weather Bureau stations in southeastern Arizona.
FIGURE 9. Correlation coefficients for rainfall amounts for selected pairs of gages on Walnut Gulch.
REFERENCES CITED

