The Automated Geospatial Watershed Assessment Tool

Modeling post-fire rehabilitation using the Land Cover Modification Tool

<table>
<thead>
<tr>
<th>Introduction:</th>
<th>In this exercise you will identify all watersheds affected by a fire and you will assess a simulated fire treatment on a burned watershed using the Land Cover Modification Tool.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal:</td>
<td>To familiarize yourself with the Area of Interest delineation feature and with the Land Cover Modification Tool for use as a fire treatment analysis tool.</td>
</tr>
<tr>
<td>Assignment:</td>
<td>Identify watersheds affected by a fire. Run the KINEROS2 model parameterized with post-fire land cover, then modify the land cover using the Land Cover Modification Tool to parameterize the models with treated, post-fire land cover.</td>
</tr>
</tbody>
</table>

Background

Wildfires can have and have had a profound impact on the nature of watershed response to precipitation (DeBano et al. 1998). Increases in peak runoff rate and volume, as well as sediment discharge, typically increase following fires (Robichaud, et al. 2000; Anderson et al. 1976). Mitigating these effects is one of the primary objectives of the Burned Area Emergency Response (BAER) teams. Weather and climatic conditions often force these teams to make rapid post-fire assessments for decision-making on how and where to deploy remediation measures. Building and running distributed hydrological models to predict potential impacts of fire on runoff and erosion can be a time-consuming and tedious task. The USDA-ARS Southwest Watershed Research Center, in cooperation with the U.S. EPA Office of Research and Development, and the University of Arizona have developed the AGWA geographic information system (GIS) based tool to facilitate this process. A GIS provides the framework within which spatially-distributed data are collected and used to prepare model input files and evaluate model results in a spatially explicit context.

The Study Area

The Aspen Fire in June of 2003 burned 84,750 acres on Mount Lemmon. Mount Lemmon is located in the Santa Catalina Mountains north of Tucson, AZ (Figure 1). The burned area intersects several drainages on the mountain, including Molino Canyon, Sabino Canyon, Ventana Canyon, Romero Canyon, Canyon Del Oro, Peppersauce Wash, Catalina Wash, and Stratton Wash. This exercise will focus on the impacts of the fire on the Marshall Gulch watershed (873 ha), a subwatershed of the larger Sabino Canyon watershed (16,478 ha).

The Land Cover Modification Tool in AGWA will be used to create a treated version of the National Land Cover Data 2001 (NLCD 2001) already modified to represent the effects of the fire. The post-fire NLCD 2001 dataset and the treated, post-fire NLCD 2001 dataset will be used to parameterize the KINematic Runoff and EROSion Model (KINEROS2; Semmens et al., 2008; www.tucson.ars.ag.gov/kineros).
discussion on the selection of parameter values used to parameterize the model for simulating post-fire runoff and sediment transport is presented by Canfield et al. (2005)* and Goodrich et al. (2005).

Figure 1. Location Map of the study area, near Tucson, Arizona.

This exercise examines the effects of a typical fire treatment on the hydrology of a particular burned watershed in the Santa Catalina Mountains. The results disclose potential immediate changes to the hydrologic regime that are attributable to effective recovery efforts. Changes include the reduction in sediment yield and decrease of higher runoff peaks.

Getting Started

Start ArcMap with a new empty map. Save the empty map document as **tutorial_MarshallGulchRehabilitation** in the

www.tucson.ars.ag.gov/agwa
C:\AGWA\workspace\tutorial_MarshallGulchRehabilitation directory (you may need to create the tutorial_MarshallGulchRehabilitation folder). If the AGWA Toolbar is not visible, turn it on by selecting Customize > Toolbars > AGWA Toolbar on the ArcMap Main Menu bar. Once the map document is opened and saved, set the Home, Temp, and Default Workspace folders by selecting AGWA Tools > Other Options > AGWA Preferences on the AGWA Toolbar.

- Home: C:\AGWA\
- Temp: C: \AGWA\temp\
- Default Workspace: C:\AGWA\workspace\tutorial_MarshallGulchRehabilitation\
 The default workspace location will need to be created by clicking on the Make New Folder button in the window that opens.

The Home folder contains all of the look-up tables, datafiles, models, and documentation required for AGWA to run. If this is set improperly or you are missing any files, you will be presented with a warning that lists the missing folders or files that AGWA requires.

The Temp folder is where some temporary files created during various steps in AGWA will be placed. You may want to routinely delete files and folders in the Temp folder if you need to free up space or are interested in identifying the temporary files associated with your next AGWA use.

The Default Workspace folder is where delineation geodatabases will be stored by default. This can be a helpful timesaver during the navigation process if you have a deeply nested folder structure where you store AGWA outputs.

GIS Data

Before adding data to the map, connections to drives and folders where your data are stored must be established if they have not been already. To establish folder connections if they don’t already exist, click on the Add Data button below the menu bar at the top of the screen. In the Add Data form that opens, click the Connect To Folder button and select (C:).
Once the folder connection is established, navigate to the C:\AGWA\gisdata\tutorial_MarshalGulchRehabilitation\ folder and add the following datasets and layers:

- ..\AOI Inputs.gdb\Boundary
- ..\AOI Inputs.gdb\Extent
- ..\AOI Inputs.gdb\streams10000
- ..\demf
- ..\facg
- ..\fdg
- ..\hillshade
- ..\marshall_gulch_outlet.shp
- ..\postfire
- ..\treatment.shp
- ..\gsmsoil_az\spatial\gsmsoilmu_a_az.shp

You will also need to add some other data to the project. To do this, again click on the Add Data button. Navigate to the C:\AGWA\datafiles\ folder and add the following files:

- ..\lc_luts\mrlc2001_lut_fire.dbf – MRLC look-up table for post-fire and treated NLCD land cover

To better visualize the different land cover types and associate the pixels with their classification, load a legend into the postfire dataset. To do this, right click the layer name of the postfire dataset in the Table of Contents and select Properties from the context menu that appears. Select the Symbology tab from the form that opens. In the Show box on the left side of the form, select Unique Values and click the Import button on the right. Click the file browser button, navigate to and select C:\AGWA\datafiles\renderers\nlcd2001.lyr and click on Add, and click OK to apply the symbology and exit the Import Symbology form. Click on Apply in the Layer Properties form and then on OK to exit this form.
Take a look at the data you have available to you to familiarize yourself with the area. Layers can be reordered, turned on/off, and their legends collapsed to suit your preferences and clean up the display. If the layers cannot be reordered by clicking and dragging, the **List By Drawing Order** button may need to be selected at the top of the **Table Of Contents**. Zoom back into the Santa Catalinas region by right-clicking on the *demf* grid in the list of layers and selecting **Zoom To Layer**.

Save the map document and continue.

Part 1: Determining Watersheds Affected by the Fire

In Part 1, the drainages intersecting the study area will be delineated to show the watersheds impacted by the fire. The delineated group watersheds will not be used further as the rest of the exercise will focus on a specific watershed and one of its subwatersheds that both intersect the burn area.

1. Perform the watershed delineation by selecting **AGWA Tools > Delineation Options > Delineate Group Watershed**.

 DESCRIPTION In the *Group Delineator* form, several parameters are defined including the output location, the name of the delineation, the digital elevation model (DEM), the flow direction grid (FD), the flow accumulation grid (FA), the watershed outlet location, and a search radius from the outlet location which AGWA will use to locate the most downstream location to use as the watershed outlet.
1.1. **Output Location** box

1.1.1. **Workspace** textbox: navigate to and select/create

\[C:\AGWA\workspace\tutorial_MarshallGulchRehabilitation\]

DESCRIPTION The workspace specified is the location on your hard drive where the delineated watershed is stored as a feature class in a geodatabase.

1.1.2. **Geodatabase** textbox: g1

NOTE You will be required to change the name of the geodatabase if a geodatabase with the same name exists in the selected workspace.

1.2. **Input Rasters** box

1.2.1. **DEM** tab: demf (do not click Fill)

1.2.2. **FD** tab: fdg (do not click Create)

1.2.3. **FA** tab: facg (do not click Create)

1.2.4. **Stream Network** tab: streams10000 and the **No** radiobutton

1.3. **Outlet Identification** box

1.3.1. **Select Area of Interest** tab

1.3.1.1. **Boundary tab: Boundary**

1.3.1.1.1. Click the **Select Features** button and drag a box around the Boundary shape, and Click the **No** radiobutton

1.3.1.2. **Extent tab: Extent**

1.3.1.2.1. Click the **Select Features** button and drag a box around the Extent layer rectangle, and Click the **No** radiobutton
1.4. Click **Delineate**.

1.5. Save the map document and continue.

At this point, the area of interest watersheds are delineated and depict the extent of the watersheds affected by the fire. Post-fire conditions will be simulated in Part 2; treated, post-fire land cover will be created in Part 3; and then treated, post-fire conditions will be simulated in Part 4 so that the analysis can be performed in Part 5.
Part 2: Modeling Runoff in Study Area Using Existing Post-Fire Land Cover

Step 1: Delineating the watershed
Delineating creates a feature class that represents the entire area draining to a user-specified outlet.

2. Perform the watershed delineation by selecting **AGWA Tools > Delineation Options > Delineate Watershed**.

2.1. **Output Location** box
2.1.1. **Workspace** textbox: navigate to and create/select

C:\AGWA\workspace\tutorial_MarshallGulchRehabilitation

2.1.2. **Geodatabase** textbox: d1

2.2. **Input Rasters** box

2.2.1. **DEM** tab: demf (do not click Fill)

2.2.2. **FD** tab: fdg (do not click Create)

2.2.3. **FA** tab: facg (do not click Create)

2.3. **Outlet Identification** box

2.3.1. **Point Theme** tab

2.3.2. **Outlets Theme**: marshall_gulch_outlet

2.3.3. Click the **Select Feature** button and draw a rectangle around the **Marshall Gulch** point (see map above).

2.4. Click **Delineate**.

2.5. Save the map document and continue.

Step 2: Discretizing or subdividing the watershed

Discretizing breaks up the delineated watershed into model specific elements and creates a stream feature class that drains the elements.

3. Perform the watershed discretization by selecting **AGWA Tools > Discretization Options > Discretize Watershed**.

DESCRIPTION In the Discretizer form, several parameters are defined including the model to use, the complexity of the discretization, the name of the discretization, and whether additional pour points will be used to further control the subdivision of the watershed.

3.1. **Delineation**: select d1\d1
3.2. **Model**: select KINEROS
3.3. **Stream Definition Methodology**: select **Threshold-based**
 3.3.1. **Threshold-based**: select **CSA (Acres)**
 3.3.2. **Threshold**: do nothing
 3.3.3. **Percent Total Watershed**: enter 5
3.4. **Internal Pour Points Methodology**: select **Default**
3.5. **Discretization Name**: enter **d1k1**
3.6. Click **Discretize**.
3.7. Save the map document and continue.

Discretizing breaks up the delineation/watershed into model specific elements and creates a stream feature class that drains the elements. The CSA, or Contributing/Channel Source Area, is a threshold value which defines first order channel initiation, or the upland area required for channelized flow to begin. Smaller CSA values result in a more complex watershed, and larger CSA values result in a less complex watershed. The default CSA in AGWA is set to 2.5% of the total watershed area. The discretization process created a subwatersheds layer with the name **planes_d1k1** and a streams map named **streams_d1k1**. In AGWA, discretizations are referred to with their geodatabase name as a prefix followed by the discretization name given in the Discretizer form, e.g. **d1\d1k1**.
Step 3: Parameterizing the watershed elements for KINEROS2

Parameterizing defines model input parameters based on topographic, land cover, and soils properties. Model input parameters represent the physical properties of the watershed and are used to write the model input files.

4. Perform the element, land cover, and soils parameterization of the watershed by selecting AGWA Tools > Parameterization Options > Parameterize.

4.1. Input box

4.1.1. Discretization: \(d1 \text{d1} k1 \)

4.1.2. Parameterization Name: post

4.2. Elements box

4.2.1. Parameterization: Create new parameterization

4.2.2. Click Select Options. The Element Parameterizer form opens.

4.3. In the Element Parameterizer form

4.3.1. Slope Options: select Uniform

4.3.2. Flow Length Options: select Geometric Abstraction
4.3.3. **Hydraulic Geometry Options**: select Eastern Arizona/New Mexico sites.

Hydraulic geometry relationships define bankfull channel width and depth based on watershed size. Bankfull relationships are useful in that they define channel topography with minimal input and effort by the user; however, there are some drawbacks. The relationships are designed to be applied to very specific physiographic regions and outside of these regions the performance of the relationships in accurately depicting the channel geometries severely declines. In a BAER rapid assessment situation, it may be best to take field measurements to double-check the accuracy of the predefined hydraulic geometries. Field measurements by the Aspen Fire BAER team found the Eastern Arizona/New Mexico relationships to fit reasonably well, so it is used here.

4.3.3.1. **Channel Type** box:

- 4.3.3.1.1. Select the Natural item.
- 4.3.3.1.2. Click the Edit button.
- 4.3.3.1.3. Change the Hydraulic Conductivity to 0.
- 4.3.3.1.4. Do not change the Roughness and Armoring values.
- 4.3.3.1.5. Change the Channel Description to Natural_0KS and click Create.

There are three channel types available by default: Default, Natural, and Developed. The Default channel type is equivalent to the Natural channel type. The Natural channel type reflects a sandy channel bottom with high infiltration and a winding but clean channel with roughness set to 0.035 Manning’s n. The Developed channel type reflects a concrete channel with zero infiltrability, very low roughness set to 0.010 Manning’s n, and fraction of channel armored against erosion equal to 1. Since Marshall Gulch is a natural but perennial stream, the Natural default hydraulic conductivity of 210 is not realistic. Instead, the value was reduced using the provided trackbar or numerical textbox.

4.3.4. Click Continue. You will be returned to the Parameterizer form to create the Land Cover and Soils parameterization.

4.4. Back in the Land Cover and Soils box of the Parameterizer form

4.4.1. **Parameterization**: Create new parameterization
4.4.2. Click Select Options. The Land Cover and Soils form opens.

4.5. In the Land Cover and Soils form

4.5.1. Land Cover tab
4.5.1.1. Land cover grid: postfire
4.5.1.2. Look-up table: mrlc2001_lut_fire

NOTE If the mrlc2001_lut_fire table is not present in the combobox, you may have forgotten to add the table to the map earlier. If this is the case, click on the Add Data button and browse to the C:\AGWA\datafiles\luts\ folder and select mrlc2001_lut_fire, then select the mrlc2001_lut_fire table from the combobox.

4.5.2. Soils tab
4.5.2.1. Soils layer: gsmsoilmu_a_az
4.5.2.2. Soils database: navigate to and select C:\AGWA\gisdata\tutorial.MarshalGulchRehabiliation\gsmsoil_az\soildb_US_2002.mdb
4.6. Click **Continue**. You will be returned to the **Parameterizer** form where the **Process** button will now be enabled.

4.7. In the **Parameterizer** form, click **Process**.

In the last step, parameterization look-up tables for the overland flow elements and stream elements have been created to store the model input parameters representing the physical properties of the watershed.
Step 4: Preparing rainfall files

Two different average return periods will be used to demonstrate the impacts of different size events. An abridged table from NOAA’s National Weather Service Precipitation Frequency Data Server (PFDS, http://hdsc.nws.noaa.gov/hdsc/pfds/) for the Marshall Gulch rain gage location (32.419874N, 110.751911W) is presented below. The 2 year, 1 hour and 50 year, 1 hour events will be used.

<table>
<thead>
<tr>
<th>ARI* (years)</th>
<th>5 min</th>
<th>10 min</th>
<th>15 min</th>
<th>30 min</th>
<th>60 min</th>
<th>120 min</th>
<th>3 hr</th>
<th>6 hr</th>
<th>12 hr</th>
<th>24 hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>12</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>29</td>
<td>32</td>
<td>38</td>
<td>46</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>16</td>
<td>19</td>
<td>26</td>
<td>32</td>
<td>37</td>
<td>41</td>
<td>48</td>
<td>57</td>
<td>62</td>
</tr>
<tr>
<td>5</td>
<td>14</td>
<td>21</td>
<td>25</td>
<td>34</td>
<td>42</td>
<td>48</td>
<td>52</td>
<td>60</td>
<td>71</td>
<td>78</td>
</tr>
<tr>
<td>10</td>
<td>16</td>
<td>24</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>57</td>
<td>61</td>
<td>70</td>
<td>83</td>
<td>91</td>
</tr>
<tr>
<td>25</td>
<td>19</td>
<td>29</td>
<td>36</td>
<td>48</td>
<td>60</td>
<td>68</td>
<td>73</td>
<td>84</td>
<td>99</td>
<td>110</td>
</tr>
<tr>
<td>50</td>
<td>21</td>
<td>32</td>
<td>40</td>
<td>54</td>
<td>67</td>
<td>77</td>
<td>83</td>
<td>96</td>
<td>112</td>
<td>124</td>
</tr>
<tr>
<td>100</td>
<td>24</td>
<td>36</td>
<td>45</td>
<td>60</td>
<td>74</td>
<td>86</td>
<td>93</td>
<td>108</td>
<td>126</td>
<td>139</td>
</tr>
<tr>
<td>200</td>
<td>26</td>
<td>39</td>
<td>49</td>
<td>66</td>
<td>82</td>
<td>95</td>
<td>104</td>
<td>120</td>
<td>140</td>
<td>155</td>
</tr>
<tr>
<td>500</td>
<td>29</td>
<td>44</td>
<td>55</td>
<td>74</td>
<td>91</td>
<td>108</td>
<td>118</td>
<td>137</td>
<td>159</td>
<td>177</td>
</tr>
<tr>
<td>1000</td>
<td>31</td>
<td>48</td>
<td>59</td>
<td>80</td>
<td>99</td>
<td>118</td>
<td>130</td>
<td>150</td>
<td>174</td>
<td>195</td>
</tr>
</tbody>
</table>

* These precipitation frequency estimates are based on a partial duration series. ARI is the Average Recurrence Interval.

Please refer to the NOAA Atlas 14 Document for more information.

NOTE: Formatting forces estimates near zero to appear as zero.

5. Write the KINEROS2 precipitation file for the watershed by selecting AGWA Tools > Precipitation Options > Write KINEROS Precipitation.
 5.1. **KINEROS Precipitation** form
 5.2. **Discretization**: d1/d1k1
 5.3. **Storm Source**: select User-Defined Depth
 5.3.1. **Depth (mm)**: enter 32
 5.3.2. **Duration (hrs)**: enter 1
 5.3.3. **Time steps**: enter 13
 5.3.4. **Storm/hyetograph shape**: select SCS Type II
 5.3.5. **Initial soil moisture**: select 0.2
 5.4. **Storm Location**: select Apply to entire watershed
 5.5. **Precipitation filename**: enter 2yr1hr
 5.6. Click **Write**
 5.7. **AGWA KINEROS Precipitation** window: Click Yes
6. Repeat for the 50 year, 1 hour event. Select **AGWA Tools > Precipitation Options > Write KINEROS Precipitation**.

 6.1. **KINEROS Precipitation** form
 6.2. **Discretization**: d1/d1k1
 6.3. **Storm Source**: select **User-Defined Depth**

 6.3.1. **Depth (mm)**: enter 67

 6.3.2. **Duration (hrs)**: enter 1

 6.3.3. **Time steps**: enter 13

 6.3.4. **Storm/hyetograph shape**: select **SCS Type II**

 6.3.5. **Initial soil moisture**: select 0.2
 6.4. **Storm Location**: select **Apply to entire watershed**
 6.5. **Precipitation filename**: enter 50yr1hr
 6.6. Click **Write**
 6.7. **AGWA KINEROS Precipitation** window: Click **Yes**

Step 5: Writing KINEROS2 input files

7. Write the KINEROS2 simulation input files for the watershed by selecting **AGWA Tools > Simulation Options > KINEROS Options > Write KINEROS Input Files**.

 ![KINEROS Simulation Information](image)

 7.1. **Basic Info** tab:

 7.1.1. **Select the discretization**: d1/d1k1

 7.1.2. **Select the parameterization**: post

 7.1.3. **Select the precipitation file**: 2yr1hr

 7.1.4. Select a name for the simulation: 2yr1hr

 7.1.5. Click **Write**.
8. Repeat the writing of input files for the 50yr1hr event. Select the Write KINEROS Input Files menu item from the AGWA Tools > Simulation Options > KINEROS Options menu.

8.1. Basic Info tab:
 8.1.1. Select the discretization: d1\d1k1
 8.1.2. Select the parameterization: post
 8.1.3. Select the precipitation file: 50yr1hr
 8.1.4. Select a name for the simulation: 50yr1hr
 8.1.5. Click Write.

Step 6: Executing the KINEROS2 model
9. Run the KINEROS2 model for the Marshall Gulch watershed by selecting AGWA Tools > Simulation Options > KINEROS Options > Execute KINEROS Model.

9.1. Select the discretization: d1\d1k1
9.2. Select the simulation: 2yr1hr
9.3. Click **Run**. The command window will stay open so that successful completion can be verified. Press any key to continue.

10. Repeat for the 50yr1hr event.
 10.1. **Select the discretization**: \(d1\d1k1\)
 10.2. **Select the simulation**: 50yr1hr
 10.3. Click **Run**. The command window will stay open so that successful completion can be verified. Press any key to continue.

At this point, post-fire conditions have been simulated; treated, post-fire land cover will be created in Part 3 and then simulated in Part 4 so that the analysis can be performed in Part 5.

Part 3: Create Treated, Post-Fire Land Cover

In Part 3, the post-fire land cover will be used along with a treatment map to create a treated, post-fire land cover product. The treatment map represents only the location of high burn severities to better focus labor on the more critical areas.
11. Perform the land cover modification for the new treatment by selecting **AGWA Tools > Other Options > Land Cover Modification Tool**.

11.1. **Input Land Cover** tab
 11.1.1. **Land cover grid**: postfire
 11.1.2. **Look-up table**: mrlc2001_lut_fire

11.2. **Output Land Cover** tab
 11.2.1. **Output folder**: navigate to and select C:\AGWA\workspace\tutorial_MarshallGulchRehabilitation\
 11.2.2. **New land cover name**: treated

11.3. **Polygon Definition** tab
 11.3.1. **Polygon feature class**: treatment
 11.3.2. **Create?** radiobuttons: No
 11.3.3. Select the **Select Features** tool and drag a box around the features in the selected feature class.

11.4. **Modification Scenario** box
 11.4.1. **Single Change** tab
 11.4.1.1. Select **Change entire polygon** radiobutton
11.4.1.2. **To type:** Treatment, wheat straw mulch 1t/ha

11.5. Click **Process**.

Part 4: Modeling Runoff in Study Area Using Treated, Post-Fire Land Cover

In Part 4, a new parameterization will be created using the treated, post fire land cover created in Part 3, and then it will be used to write a different set of model input files to execute the model.

Step 1: Parameterizing the watershed elements with treated, post-fire land cover

AGWA can store multiple parameterizations in the parameterization look-up tables. Running the parameterization with a different set of options (element, soils, or land cover) will append data to the existing look-up tables instead of overwriting them, so the parameterization can be accessed again at a later time. In a new parameterization, if only one part is different from an existing parameterization, AGWA can copy the parameters from an existing parameterization to save time.
12. Perform the element, land cover, and soils parameterization of the Marshall Gulch watershed by selecting *AGWA Tools > Parameterization Options > Parameterizer.*

12.1. **Input** box
 12.1.1. **Discretization:** d1\d1k1
 12.1.2. **Parameterization Name:** mulchTreatment

12.2. **Elements** box
 12.2.1. **Parameterization:** post
 Land cover change is the emphasis of this exercise and no other changes will be made; because no other options are changing, the element parameterization parameters can be copied from an existing parameterization.

12.3. **Land Cover and Soils** box
 12.3.1. **Parameterization:** Create new parameterization
 12.3.2. Click *Select Options.* The **Land Cover and Soils** form opens.

12.4. In the **Land Cover and Soils** form
 12.4.1. **Land Cover** tab
 12.4.1.1. **Land cover grid:** treated
 12.4.1.2. **Look-up table:** mrlc2001_lut_fire
 12.4.2. **Soils** tab
 12.4.2.1. **Soils layer:** gsmsoilmu_a_az
 12.4.2.2. **Soils database:** navigate to and select C:\AGWA\gisdata\tutorial_MarshalGulchRehabiliation\gsmsoil_az\soildb_US_2002.mdb
 12.5. Click *Continue.* You will be returned to the **Parameterizer** form where the **Process** button will now be enabled.

12.6. In the **Parameterizer** form, click **Process.**

Step 2: Writing KINEROS2 input files
The same precipitation files used in the earlier simulations will be used in the treated, post-fire simulations, so the writing of the KINEROS2 precipitation files performed earlier will be skipped now.
13. Write the KINEROS2 simulation input files for the watershed by selecting AGWA Tools > Simulation Options > KINEROS Options > Write KINEROS Input Files.

13.1. Basic Info tab:
 13.1.1. Select the discretization: d1/d1k1
 13.1.2. Select the parameterization: mulchTreatment
 13.1.3. Select the precipitation file: 2yr1hr
 13.1.4. Select a name for the simulation: 2yr1hr_treated

13.2. Click Write.

14. Repeat the writing of input files for the 50yr1hr event. Select AGWA Tools > Simulation Options > KINEROS Options > Write KINEROS Input Files.

14.1. Basic Info tab:
 14.1.1. Select the discretization: d1/d1k1
 14.1.2. Select the parameterization: mulchTreatment
 14.1.3. Select the precipitation file: 50yr1hr
 14.1.4. Select a name for the simulation: 50yr1hr_treated

14.2. Click Write.
Step 3: Executing the KINEROS2 model

15. Run the KINEROS2 model for the 2yr1hr event by selecting **AGWA Tools > Simulation Options > KINEROS Options > Execute KINEROS Model**.

15.1. **Select the discretization:** d1\d1k1
15.2. **Select the simulation:** 2yr1hr_treated
15.3. Click **Run**. The command window will stay open so that successful completion can be verified. Press any key to continue.

16. Repeat for the 50yr1hr event.

16.1. **Select the discretization:** d1\d1k1
16.2. **Select the simulation:** 50yr1hr_treated
16.3. Click **Run**. The command window will stay open so that successful completion can be verified. Press any key to continue.

At this point, post-fire and treated, post-fire conditions have been simulated; in Part 5, the post-fire and treated, post-fire simulations will be directly compared.
Part 5: Comparing Results from Post-fire and Treated Scenarios

In Part 5, the results from the post-fire and treated, post-fire simulations will be imported into AGWA. These results will then be differenced to visualize how the treatment impacts the hydrology of the watershed.

17. Import the results from the four simulations by selecting **AGWA Tools > View Results > KINEROS Results > View KINEROS Results**.
 17.1. **Discretization**: select d1\d1k1
 17.2. **Simulation** tab:
 17.2.1. Check boxes for 2yr1hr, 2yr1hr_treated, 50yr1hr, and 50yr1hr_treated
 17.2.2. Click **Import/Update**

18. Difference the post-fire and treated, post-fire simulation results.
 18.1. **Create Difference** tab
 18.1.1. **Base Simulation**: select 2yr1hr
 18.1.2. **Alternative Simulation**: select 2yr1hr_treated
 18.1.3. **Change Type**: select Percent
 18.1.4. **New Name**: enter 2yr1hr_treated-2yr1hr_pct
 18.1.5. Click **Create**
19. Repeat for the 50yr1hr event.
 19.1. **Create Difference** tab
 19.1.1. **Base Simulation**: select *50yr1hr*
 19.1.2. **Alternative Simulation**: select *50yr1hr_treated*
 19.1.3. **Change Type**: select *Percent*
 19.1.4. **New Name**: enter *50yr1hr_treated-50yr1hr_pct*
 19.1.5. Click **Create**

20. View the differenced results.
 20.1. **View Results (Map)** tab:
 20.1.1. **Simulation**: select *2yr1hr_treated-2yr1hr_pct*
 20.1.2. **Units**: select *English* (Note: unit selection is arbitrary when viewing percent difference)
 20.1.3. **Output**: select *Sediment Yield (lbs/ac)*
 20.1.4. Click **View**.
21. Repeat for the 50yr1hr differenced results.

21.1. *Discretization*: select `d1\d1k1`

21.2. *View Results (Map) tab:*

21.2.1. *Simulation*: select `50yr1hr_treated-50yr1hr_pct`

21.2.2. *Units*: select `English` (Note: unit selection is arbitrary when viewing percent difference)

21.2.3. *Output*: select `Sediment Yield (lbs/ac)`

21.2.4. Click `View`.
Notice that the areas that experienced the highest burn severity and were given the mulch treatment had the largest percent decrease in sediment yield (the lighter colors). Also note the differences between the 2yr1hr_treated-2yr1hr_pct and the 50yr1hr_treated-50yr1hr_pct results; spatially the results are identical, but the magnitudes of the results are much different. Treatments are most effective during small events; larger events tend to dominate any management, and will likely wash any treatment away, though the model is not representing the latter.

References

