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[1] Understanding ecosystem-atmosphere carbon exchanges in dryland environments has
been more challenging than in mesic environments, likely due to more pronounced
nonlinear responses of ecosystem processes to environmental variation. To better
understand diurnal to interannual variation in gross primary productivity (GPP) variability,
we coupled continuous eddy-covariance derived whole ecosystem gas exchange
measurements with an ecophysiologic model based on fundamental principles of
diffusion, mass balance, reaction kinetics, and biochemical regulation of photosynthesis.
We evaluated the coupled data-model system to describe and understand the dynamics of
3 years of growing season GPP from a riparian grassland and woodland in southern
Arizona. The data-model fusion procedure skillfully reproduced the majority of daily
variation GPP throughout three growing seasons. While meteorology was similar
between sites, the woodland site had consistently higher GPP rates and lower variability
at daily and interannual timescales relative to the grassland site. We examined the causes
of this variation using a new state factor model analysis that partitioned GPP variation
into four factors: meteorology, physiology, leaf area, and water supply. The largest
proportion of GPP variation was associated with physiological differences. The woodland
showed a greater sensitivity than the grassland to water supply, while the grassland
showed a greater sensitivity to leaf area. These differences are consistent with hypotheses
of woody species using resistance mechanisms, stomatal regulation, and grassland
species using resilience mechanisms, leaf area regulation, in avoiding water stress and
have implications for future GPP sensitivity to climate variability following wood-grass
transitions.
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1. Introduction

[2] The complexity of soil-vegetation-atmosphere inter-
actions results in distinct patterns of ecological variability at
timescales ranging from subhourly to millennial [Braswell
et al., 2005; Hetherington and Woodward, 2003; Katul et
al., 2001; Richardson et al., 2007]. While models describ-
ing the variability of photosynthesis or gross primary
production (GPP), a key component in terrestrial-
atmosphere CO2 exchanges, for mesic terrestrial systems
have had many successes [Richardson et al., 2007; Siqueira
et al., 2006], understanding the controls on GPP in semiarid

and arid regions has been more challenging [Mu et al.,
2007; Wang et al., 2007]. Hydrologic variability interacts
strongly and nonlinearly with ecological variability and
improving linkages between hydrologic and ecologic pro-
cesses will lead to a more robust understanding of carbon
cycle dynamics in dryland regions [Jenerette and Lal,
2005]. In semiarid and arid regions the lack of available
water may tighten the coupling between the meteorology
and biota leading to increased ecological variability; how-
ever the relative importance of the physical drivers and the
biological responses for the resulting ecological variability
is poorly understood. Therefore, attributing GPP variation
in water-limited regions to biological and physical compo-
nents will lead to an improved understanding of ecosystem
function and the potential to better assess ecological
responses to global changes [Brummer et al., 2008;
Mahecha et al., 2007; Richardson et al., 2007; Stoy et al.,
2006, 2008].
[3] In many dryland regions woody plant encroachment

into historic grasslands is occurring rapidly [Archer, 1995;
Briggs et al., 2005]. These shifts have large implications
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for both hydrology and carbon cycling [Huxman et al.,
2005; Knapp et al., 2008]. How these contrasting plant
functional types respond to environmental variability will
likely affect the future organization and dynamics of these
systems [D’Odorico et al., 2007; Gunderson, 2000;
Wiegand et al., 1998]. Drylands frequently exhibit alter-
native stable states between grass and woody dominated
conditions [Carpenter et al., 2001; D’Odorico et al.,
2007; Kefi et al., 2007; Rietkerk and van de Koppe,
2008] and transitions in both directions have been ob-
served [Briggs et al., 2005; Cox and Allen, 2008]. Link-
ing the organizational properties of these systems with a
mechanistic understanding of ecophysiological dynamics
has been lacking. Ecophysiological differences between
grass and woody dominated ecosystems likely result in
contrasting strategies for managing environmental varia-
tion and may influence transitions between woody and
grass dominated states. We hypothesize that the better
access to deeper soil water resources by woody plants
compared to grasses leads to both a greater total photo-
synthetic capacity [Huxman et al., 2005] and a strategy of
increased resistance to environmental variation in wood-
lands. In contrast, the more dynamic phenology and
sensitivity to near-surface water availability of grasses is
hypothesized to lead a greater variability in GPP [Knapp
and Smith, 2001; Novick et al., 2004] and a strategy of
increased resilience to environmental variation in grass-
lands. We propose these contrasting strategies for man-
aging environmental variation, resistance dominant,
preventing structural and capacity changes, and resilience
dominant, allowing structural and capacity changes, will
be associated with greater stomatal regulation and sensi-
tivity to water supply in the woodland and a contrasting
greater leaf area regulation in the grassland.
[4] Partitioning observed GPP variation into several

broad state factors provides a synthetic approach for
understanding ecological variability and facilitates compar-
isons between woodland and grassland dominated ecosys-
tems. State factor approaches were initially used for
understanding soil formation [Jenny, 1941, 1980], and
more broadly, state factor models have been considered a
general approach for understanding ecosystem dynamics
[Amundson and Jenny, 1997]. Several recent applications
have used state factor models to characterize diverse
components of ecosystem functioning [Jones et al.,
2006; Perakis and Hedin, 2007; Vancleve et al., 1991],
and the approach has been implicit in several recent
attempts to separate the dynamics of CO2 soil-vegetation-
atmosphere transfers (SVATs) into climate and biologic
determinants [Hui et al., 2003; Richardson et al., 2007;
Stoy et al., 2006; Williams and Albertson, 2005]. We
explored a general state factor approach attributing the varia-
tion in GPP to variation in four broad factors: meteorology,
biochemical physiology, leaf area, and water supply. These
four factors describe how meteorology (vapor pressure,
light availability, temperature, and CO2 concentration),
plant water supply, plant physiology (the biochemical
parameters describing photosynthesis, see Table 2), and leaf
area individually and interactively control GPP variation.
These factors are not necessarily a correlative but a
mechanistic grouping of variables affecting GPP. This
approach of using broad factors complements analyses that

partition variation into specific variables [Duursma et al.,
2009; Williams et al., 2008]. While not providing direct
predictive ability of future responses, this approach should
allow for a better understanding of the sources of ecological
variability.
[5] Recent advances innearly continuouswhole-ecosystem

monitoring, coupled carbon and water modeling, and robust
data-model fusion tools have made possible the examination
of the role of multiple factors involved in GPP variability.
Eddy-covariance systems provide a relatively new data
stream for quantifying whole ecosystem gas exchange
[Baldocchi, 2003; Goulden et al., 1996], as they yield direct
estimates of net ecosystem exchange of CO2 (NEE), the
difference between respiratory losses and GPP [Chapin et
al., 2006; Randerson et al., 2002]. Robust partitioning
methods are available to separate NEE into both component
carbon loss and uptake processes [Desai et al., 2008;
Reichstein et al., 2005a]. Mechanistic ecosystem models
that couple GPP with transpiration have been developed
based on first principles of stomatal conductance, gas
diffusion across a leaf boundary, and biochemical assimila-
tion of CO2 [Dickinson et al., 1998; Ivanov et al., 2008;
Katul et al., 2003; Krinner et al., 2005; Tuzet et al., 2003;
Woodward et al., 1995]. The application of this ecophysio-
logical theory has gained prominence for describing instan-
taneous ecosystem dynamics and provides a strong
foundation for understanding observed GPP variability from
diurnal to interannual timescales [Ivanov et al., 2008; Luo et
al., 2001; Santaren et al., 2007; Wang et al., 2007]. In the
context of this quantitative theory of ecosystem gas
exchanges the different factors of meteorology, physiology,
leaf area, and water supply have strongly nonlinear and
interactive effects on GPP. To couple eddy covariance data
and ecophysiological theory, data-model fusion techniques
are becoming widely used [Bousquet et al., 1999; Braswell
et al., 2005; Sacks et al., 2007; Xu et al., 2006]. A key
benefit of data-model fusion is the ability to estimate
parameters for a model given an existing data stream and
quantify uncertainty in both the estimated parameter and
model performance. These three advances together provide
tools necessary to partition GPP variability into state factors
and allow for an expanded understanding of ecosystem
dynamics.
[6] To identify the magnitude and causes of multiscale

temporal variability of GPP we asked two linked questions:
(1) how did growing season GPP in a riparian woodland and
grassland ecosystem vary from daily to interannual time-
scales and (2) how did differences in meteorology, physi-
ology, leaf area, and water supply, contribute to this
variability? The semiarid riparian setting in a monsoon
climate of our study area results in a growing season with
a premonsoon period, characterized by hot and dry con-
ditions, and a monsoon period that is wetter, cooler during
the day, and has a substantially reduced vapor pressure
deficit (VPD). Both ecosystems had access to groundwater
and supplemented their water supply when near-surface soil
water was lacking. Thus, an evaluation of these sites
provided a unique opportunity to describe the dynamics of
vegetation, test hypotheses regarding the effects of physical
drivers and biological responses on ecosystem photosyn-
thetic variability, and evaluate the potential for differences
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in vegetation strategies for coping with environmental
variation between these two communities.

2. Methods

2.1. Data Description

[7] Data for this study came from two riparian sites
located along alluvial terraces of the San Pedro River in
southern Arizona, USA. They consisted of: (1) a mesquite
(Prosopis velutina) dominated woodland with a canopy
cover of �75% and a peak LAI of about 1.8, and (2) a
grassland dominated by the perennial bunchgrass Sacaton
(Sporobolus wrightii) with a canopy cover of 65% and a
peak LAI of 2.5 [Scott et al., 2006]. The water table depth at
the woodland and grassland were around 10 m and 2.5 m,
respectively [Scott et al., 2008]. The annual site water
balances confirm that both sites access groundwater, mak-
ing them less dependent on local precipitation inputs [Scott
et al., 2006, 2008; Williams et al., 2006]. Extensive field
physiological, biogeochemical, and hydrological studies
have been conducted at these sites and throughout the
region, providing a rich context for understanding ecosys-
tem dynamics.
[8] Eddy covariance systems located at both sites mea-

sure NEE and associated meteorological patterns at half-
hourly resolution. Tower instrumentation, data processing,
and summaries of observed fluxes have previously been
described [Scott et al., 2004, 2006]. Briefly, an open-path
infrared gas analyzer (IRGA) and a sonic anemometer were
mounted on a tower above the plant canopies. From these
instruments, measurements of atmospheric CO2 concentra-
tion and the wind field were obtained at 10 Hz. The
covariance between the vertical wind velocity and CO2

concentrations were computed over 30-min intervals. The
covariance was combined with a two-dimensional coordi-
nate rotation and corrected for density fluctuations to
produce an estimate of CO2 flux (mmol C m�2 s�1). An
estimate of CO2 storage change from the IRGA to the
ground surface was determined using the CO2 concentra-
tions from the IRGA alone and this was added to the tower
flux to estimate NEE. CO2 exchange estimated by eddy
covariance is sensitive to a number of environmental con-
ditions and these data contain frequent gaps and spikes
[Baldocchi, 2003; Goulden et al., 1996; Rannik et al., 2006;
Reichstein et al., 2005a]. A potential source of error,
occurring usually at night, happens when there is insuffi-
cient atmosphere turbulence below the instrument height to
accurately quantify the CO2 exchange within the canopy
and at the ground surface. In the topographically simple
sites where our towers were located, the periods of atmo-
spheric stability can be identified using the atmospheric

friction velocity (u*), which commonly shows a correlation
with measured fluxes below some threshold. To remove the
bias associated with atmospheric friction velocity and other
potential sources of error, we applied a filtering process that
flagged individual cases based on the u* threshold identified
by Scott et al. [2006]. These thresholds were similar to the
values identified using a complementary approach de-
scribed by Reichstein et al. [2005a, 2005b]. Atmospheric
stability is more frequently a problem at night requiring
more data to be excluded than during the day. No gap-filling
procedure was used to estimate missing data points as any
such procedure would obscure the relationship between the
model and NEE.
[9] For 2003 –2005, growing season fluxes were

extracted (days 150–280), which included both the pre-
monsoon and the monsoon periods. In conjunction with the
NEE measurements, we obtained patterns of photosynthetic
photon flux density (mmol m�2 s�1 within the 400–700 nm
wavelength range; LI-190 PAR sensor manufactured by
Licor, Lincoln, NE), air temperature (�C), vapor pressure
(kPa), and atmospheric CO2 concentrations (ppm). Both
sites experienced similar meteorology forcing over the
3 years (Table 1). Estimates of plant area were derived from
empirical functions that use 16 day remotely sensed MODIS
enhanced vegetation index as input [Scott et al., 2006].

2.2. GPP Model

[10] A general theory of ecophysiological responses to
hydrologic variability is dependent upon the constraints
imposed by the biochemical demand for CO2, and the
diffusion-limited supply of CO2 constrained by stomatal
conductance (Figure 1a). A modeling approach based on
this theory has been used for theoretical studies [Katul et al.,
2003; Schwinning and Ehleringer, 2001; Tuzet et al., 2003],
as the mechanisms for several land surface models [Ivanov
et al., 2008; Santaren et al., 2007; Wang et al., 2007], and
forms the basis for process-oriented dynamic global vege-
tation models [Bonan et al., 2003; Krinner et al., 2005;
Woodward et al., 1995; Woodward and Lomas, 2004]. The
linkage of these models has been suggested appropriate for
understanding carbon cycling responses to water limitation
[Katul et al., 2003]. Because the reduction of parameters is
essential for deriving a useful coupling between eddy
covariance data and theory [Braswell et al., 2005; Wang
et al., 2001], we strategically simplified the classic model to
generate a form that could be compared with eddy covari-
ance data.
[11] The rate of water movement across the leaf was

described as a diffusion process, which was associated with
a gradient in water potentials (YL, YA for leaf and air kPa,
normalizing for atmospheric pressure P) between two pools

Table 1. Meteorological Forcing Data for 3 Years at Each Site During the Growing Seasona

Site Year PAR (mol/d) VPD (kPa) Air Temperature (�C) Total Precipitation (mm)

Woodland 2003 24.1 (5.4) �1.9 (1.5) 25.0 (6.2) 166
2004 24.8 (5.0) �1.9 (1.4) 23.8 (6.5) 102
2005 24.4 (5.1) �2.1 (1.5) 24.6 (6.3) 174

Grassland 2003 23.9 (5.4) �1.9 (1.7) 24.0 (7.7) 168
2004 24.2 (5.6) �1.8 (1.5) 22.3 (8.3) 122
2005 25.7 (6.4) �1.9 (1.6) 23.7 (7.8) 215

aMean and standard deviation.
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and a conductance across the interface. In these analyses,
we assumed leaf stomatal conductance was always much
lower than canopy conductance and the effects of canopy on
terrestrial-atmosphere exchanges could be excluded to focus
on the stomatal control of conductance [Katul et al., 2003].
Water content in the leaf was assumed to be saturated, and the
saturated vapor pressure was calculated using the Buck model
[Buck, 1981]. With an estimate of a maximum stomatal
conductance (Gmax, mmol m�2 s�1), the atmospheric water
demand (Qd, mmol m�2 s�1) was calculated as:

Qd ¼ Gmax YL �YAð Þ=P ð1Þ

[12] Because we were conducting the data-model fusion
for riparian sites that had access to groundwater, we
assumed the supply of water (Qs, mmol m�2 s�1) could
be described by a single parameter related to the strength of
the ecosystem-groundwater coupling. Differences in water
supply may reflect both differences in plant hydraulic
capacity and access to the groundwater. This assumption
greatly reduced the complexity of the hydrologic cycle,
which otherwise would entail a detailed description of soil
moisture and root dynamics. From this simplified model,
the rate of transpiration was either the water supply to the
leaf or atmospheric demand. If the demand for transpiration
was equal to or less than supply then the actual stomatal
conductance was the maximum stomatal conductance. If
transpiration was supply limited, plants adjust leaf stomatal
conductance such that demand did not exceed supply; this
has been described as the physical limitation to transpiration
and is a basis for regulation of leaf stomatal conductance
[Katul et al., 2003]. The reduced stomatal conductance (Gw)

was identified by rearranging the diffusion equation and
including the water supply rate (Qs) and total leaf area (LAI,
m2 m�2):

Gw ¼
QS

LAI YL �YAð Þ=P ð2Þ

[13] Carbon assimilation (A, mmol m�2 s�1) rates can be
regarded as the interaction between a biochemical demand
and a diffusion-limited supply for CO2. With stomatal
conductance defined from hydrologic limitation (where
the conductance for water and CO2 are factored based on
the difference in molecular weights), the gross assimilation
of CO2 can be computed from two equations describing
diffusion and biochemical processes. Both the supply and
demand are directly related to the internal leaf CO2 con-
centration (Ci, ppm). With increasing Ci, the biochemical
assimilation rate increases and the demand for CO2

increases, however, at the same time the diffusion gradient
decreases and the resulting supply for CO2 decreases. A
fundamental challenge with developing whole ecosystem
physiological models is the inability to directly validate or
measure Ci. However, with two unknowns, Ci and A, and two
models describing both variables, diffusion and biochemical
assimilation, we can jointly solve for both unknowns for a
given set of parameters and environmental conditions. The
diffusion-limited assimilation is described by:

A ¼ Gc Ci � Coð Þ ð3Þ

where Gc is stomatal conductance for CO2, which is
corrected from Gw based on differences in diffusivity

Figure 1. Model schematic showing the (a) coupled carbon and water fluxes with the linkage of the
biochemical demand and atmospheric supply photosynthesis models and the (b) hierarchical partitioning
of the model inversions into a three step procedure.
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between CO2 and H2O [Farquhar and Sharkey, 1982], and
Co is atmospheric CO2 concentration, which we assume
here is equivalent to leaf boundary layer CO2.
[14] The biochemical demand for C3 vegetation (as at the

woodland) is potentially limited by electron transport,
which depends primarily on light availability, or carboxyl-
ation, which depends on primarily CO2 concentrations.
These two processes are described by the biochemical
assimilation model [Farquhar et al., 1980]. Katul et al.
[2003] provide the canonical description as:

A ¼ a1 Ci � G*ð Þ
Ci þ a2ð Þ � RL ð4Þ

[15] For electron-transport limited photosynthesis, a1 and
a2 are modeled as:

a1 ¼ aqlem ð5Þ

a21 ¼ 2G* ð6Þ

and for carboxylation-limited photosynthesis a1 and a2 are
modeled as:

a1 ¼ Vcmax ð7Þ

a2 ¼ kc 1þ Oi

ko

� �
ð8Þ

[16] In this model Ci is the internal CO2 concentration, G*
is the compensation point for CO2, RL is leaf respiration, I is
photosynthetically active radiation, aq is the leaf absorptiv-
ity for I, em is the maximum quantum efficiency, Vcmax is
the maximum carboxylation capacity of Rubsico, kc and kO
are Michaelis-Menton constants for CO2 fixation and O2

inhibition, and Oi is leaf oxygen concentration. To simplify,
we treated both aq and em as the single parameter quantum
use efficiency (Qe). When modeling carboxylation-limited
photosynthesis, we did not have sufficient information to
describe Oi and therefore collapsed the a2 into a single
parameter, kc. The resulting model describes photosynthesis
using four parameters (G*, Qe, Vcmax, kc) and two variables
(I and Ci). At the whole ecosystem scale, GPP is modeled
by multiplying the resulting A and leaf area.
[17] The C4 photosynthetic pathway for the grassland site

differs from the C3 pathway in the woodland by several
mechanism, the most important being an initial carbon
fixation by PEP-carboxylase, which greatly increases the
efficiency of internal CO2 use and secondarily an altered
quantum use efficiency that decreases the oxygenation
reaction of Rubisco and consequent photorespiration there-
by reduces the CO2 compensation point [Lambers et al.,
1998]. To account for the differences in C4 physiology we
used a common modification to the C3 biochemical model
presented in equation 4 [Collatz et al., 1992]. In the C4

specific model biochemical assimilation is described by:

A ¼ min

Ji
Jc
Je

8<
:

9=
;� RL ð9Þ

where

Ji ¼ aql ð10Þ

Jc ¼ KC4Ci ð11Þ

Je ¼ Vcmax ð12Þ

[18] Ji is the light dependent reaction, described by aq, a
quantum use efficiency, and I, photosynthetically active
radiation. Jc is the Ci limited rate, described by KC4, a rate
constant and Ci. Je is the maximum Rubisco capacity,
described by Vcmax a single maximum rate constant. The
resulting C4 biochemical demand model describes photo-
synthesis using three parameters (aq, KC4, and Vcmax) and
two variables (I and Ci).
[19] Several simplifications of the biophysical modeling

approach did not appear to negatively impact the perfor-
mance of the model throughout the growing season. These
simplifications allowed for a reduced number of parameters,
which was essential for comparison with eddy covariance
data [Braswell et al., 2005; Wang et al., 2001]. Rather than
explicitly modeling soil water dynamics, we considered the
water available for transpiration to be derived entirely from
near-surface groundwater. Previous research at this site has
shown relative insensitivity of the woodland to growing
season precipitation events [Potts et al., 2008]. Due to more
extensive and deeper root systems, the degree of connection
between the near-surface groundwater is likely to be stron-
ger for the woodland than the grassland systems [Scott et
al., 2006; Stromberg et al., 1996; Williams et al., 2006]. The
lack of an explicit soil moisture model may have been more
critical for describing the dynamics of heterotrophic respi-
ration in the NEE separation [Davidson et al., 1998;
Reichstein et al., 2005b]. In developing our initial GPP/R
separation we included a precipitation event component to
respiration (see below). A second simplification was not
explicitly modeling the maximum quantum yield (Jmax) in
C4 photosynthesis. As in the work of Katul et al. [2003], we
allowed Vcmax to determine the upper bound on total
photosynthesis rather than specifying a maximum for both
electron transport and carboxylation. Preliminary analyses
showed Jmax could not be well constrained; periods of high
light availability were associated with stomatal closure,
reduced Ci, and therefore consistent photosynthetic limita-
tion by the carboxylation step and the VCmax parameter. The
current model is sensitive to light-limited assimilation at
low light levels by explicitly modeling quantum yield,
which is the primary determinant of the light reaction at
low light levels. A third simplification, treating the canopy
as a single layer, was generally appropriate because these
sites had relatively low LAI. Initial studies dividing the
canopy into multiple layers did not appreciably affect the
results. A fourth simplification of the model was not
explicitly describing temperature sensitivities for photosyn-
thesis. This simplification resulted in the typical 8–10
model parameters describing temperature sensitivity
[Leuning, 1997] being reduced to two. Nonlinearities asso-
ciated with temperature dependence can vary substantially
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between plant species [Leuning, 1997, 2002; Medlyn et al.,
2002]. Furthermore, leaf temperatures were not well de-
scribed and likely vary throughout the canopy and between
communities. Previous studies have found substantial het-
erogeneity in both the microclimate and photosynthesis that
occurs within the vegetation canopy [Baldocchi et al., 2002;
Niinemets, 2007; Tissue et al., 2006]; while others have
suggested a more tightly regulated leaf temperature
[Helliker and Richter, 2008; Roden and Pearcy, 1993].
For sites located in more complicated topographies and
denser canopies, a better understanding of the interactions
between the canopy and the microclimate will likely be
needed [Bohrer et al., 2005]. The applicability of these
simplifications and the uncertainties they generate can help
guide experiments to better constrain model parameters.

2.3. Analysis

[20] To identify the parameters of the model describing
GPP based on 30 min values of I, VPD, temperature, and
Co, we developed an inversion or data-model fusion proce-
dure based on the likelihood function and Markov-chain
Monte-Carlo (MCMC) [Braswell et al., 2005; Gamerman
and Lopes, 2006; Santaren et al., 2007; Xu et al., 2006]. By
using the MCMC approach, rather than identifying a single
value for each parameter, posterior distributions of param-
eters were generated, yielding confidence intervals in model
performance and allowing the resulting forward estimation
of model output to be directly quantified. This method is
consistent with Bayesian approaches by using an uninfor-
mative uniform prior probability within the permissible
range and a prior probability of 0.0 outside the range.
Data-model agreement was defined by the log likelihood
function, which is more appropriate than a least squares
approach for eddy covariance data [Braswell et al., 2005;
Sacks et al., 2007]. We assumed the error in the data-model
relationship was both independent of time and normally
distributed. Because the error is unknown, it was estimated
for each step of the optimization. Rather than include the
error term as an inverted parameter, we estimated the most
likely value based on an optimization of the likelihood
function using the procedure described by Braswell et al.
[2005]. Following the MCMC protocol, the model was
initialized with a randomized value for all parameters,
fluxes were estimated, and the likelihood function was
evaluated. New candidate parameter were based on the
prior accepted parameters, and candidate parameters were
accepted based on the ratio of likelihoods between the
candidate and most recently accepted parameters. To facil-
itate the optimization, potential parameter values were
restricted to a permissible range that was defined to capture
a broad range of realistic values (Table 2). After a ‘‘burn-in’’

period, a stable chain occurs with the set of accepted values
determining an estimate of the posterior parameter distribu-
tion. After extensive evaluation of the procedure, we ran the
optimization for 150,000 iterations and used the final
50,000 iterations to generate the posterior distributions.
[21] We constructed our inversions using a hierarchical or

stepwise structure that allowed us to sequentially include
new sources of variability and more accurate sets of
parameters [Wu and David, 2002]. These stages included
(1) estimation of ecosystem R model parameters; (2) esti-
mation of leaf physiological model parameters; and (3)
estimation of leaf area and water supply (Figure 1b). We
developed estimates of daytime ecosystem R by inverting
the nighttime flux data against an Arrhenius ecosystem R
model that accounted for potential precipitation-induced
pulses of respiration [Jenerette et al., 2008] and projected
this model to the daytime. This temperature-sensitivity
approach for separating eddy covariance data into R and
GPP is a modification of a standardized approach [Desai et
al., 2008; Makela et al., 2008; Reichstein et al., 2005a;
Wohlfahrt et al., 2005]. Estimates of R parameters were
identified independently at 5 day intervals, and daytime
GPP values were derived from NEE observations by sub-
tracting the modeled daytime R. At the second stage, we
identified five ‘‘gold standard’’ days in the growing season
of each year. These days had complete records and did not
show any appreciable effects of stomatal reduction to water
limitation. Using these gold standard data, we implemented
the model inversion procedure to acquire the photosynthetic
parameters for each site independently. Finally, we used the
physiological parameters as input to an inversion procedure
to identify leaf area and water supply at 5 day intervals. This
hierarchical approach of using multiple levels of model
inversion allowed us to use the relative constancy in the
vegetation community to obtain physiological parameters
and then identify the more rapidly changing water and leaf
area parameters. As a check on the performance of the
overall data-model fusion procedure we generated 10,000
realizations of the model NEE patterns using the posterior
distributions of all parameters and compared these results
with observed NEE through regression analysis.
[22] With a suitable model-data correspondence, we used

the resulting distributions of parameters to identify the
magnitude, distribution, and sources of uncertainty in the
resulting estimates of GPP. We evaluated the distribution of
modeled GPP and estimated the uncertainty associated with
each factor as the ratio simulated total GPP for each factor
and the mean of the total distribution of simulated GPP. For
comparison at growing season scales, we estimated the total
growing season GPP for each year and the corresponding
uncertainty. To identify GPP temporal variability within and

Table 2. Parameters, Symbols, Units, and Ranges Included in the Model Inversion for Each Sample Period

Symbol Description Unit Range for Inversion

Qr water supply from root to leaf mmol m�2 s�1 0–100
Gw maximum stomatal conductance for water mmol m�2 s�1 0–10
aq quantum use efficiency for electron transport (C3, C4) 0–100
G* CO2 compensation point (C3) mmol m�2 s�1 0–1000
Vcmax maximum rate of carboxylation (C3,C4) mmol m�2 s�1 0–1000
kc half saturation coefficient for photosynthesis (C3) mmol m�2 s�1 0–10000
kc4 rate constant (C4) 0–100
Rl leaf respiration mmol m�2 s�1 0.01–7.5
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between growing seasons we computed the semivariance
between daily GPP during each growing season. Semi-
variance (gh) describes the variability between data sepa-
rated by a scale lag (h) and is calculated as:

gh ¼
1

2n hð Þ
Xnh
i¼1

xi � xiþhð Þ2 ð13Þ

where xi and xi+h are two data separated by the temporal lag,
h. Semivariance has frequently been used to describe spatial
variability [Dent and Grimm, 1999; Ewers and Pendall,
2008; Meisel and Turner, 1998] but is also appropriate for
temporal data [Carmona-Moreno et al., 2005; Florin et al.,
2009].
[23] The variability of GPP associated with premonsoon

and monsoon periods within the growing season was
evaluated through comparisons between DOY 150–180
and DOY 220–250. We computed the proportional change
in GPP, leaf area, water supply, VPD, and light between
these two seasons using 1000 simulations from the posterior
distributions of all parameters. In all analyses we assumed
physiological parameters were consistent through time.
[24] To understand the causes of GPP variation, we

developed a fully factorial state factor based sensitivity
analysis to identify the dependence of GPP variability on
the individual and interactive variation in meteorology,
physiology, leaf area, and water supply. The physiology
factor was composed of the combination of all physiological

parameters. Meteorology was composed of daily patterns of
PAR, VPD, and Co. Leaf area and water supply were single
variables. The factorial analysis modeled the carbon
exchanges for 50 possible combinations of each factor,
these combinations were obtained from daily meteorology,
or the distributions of inverted parameters. This approach
allowed only realistic combinations of meteorology, such as
consistent daily trends in light and VPD, rather than
exploring the entire potential space of parameters and
variables. This grouping of variables also had a practical
aspect: this limited suite of sensitivity analyses resulted in
6,250,000 unique simulations for the woodland and grass-
land sites. A fully factorial analysis of all possible variable
combinations would be computationally challenging. To
identify the variation associated with each factor for the
grassland and woodland sites individually we computed the
mean response for each instance of the factor and then
computed the variance among all instances of the factor. A
similar analysis was conducted for all pairs and three-way
combinations of factors.

3. Results

[25] The data-model fusion procedure was able to couple
the observed subhourly variability from eddy covariance
measurements with an ecophysiological model that simul-
taneously estimated stomatal conductance, photosynthesis,
and respiration (Figure 2 and Table 3). For all sampling
periods, the confidence interval for the slope and intercept
of the model-data relationships included 1.0 and 0.0,
respectively. The model inversion procedure performed
similarly in the woodland (mean r2 = 0.62) and the grass-
land (mean r2 = 0.66). Following the whole ecosystem NEE
data-model comparisons, we focused on better understand-
ing the dynamics of GPP. The diurnal dynamics of GPP on
most days displayed responses characteristic of water-
limited systems, exhibiting a maximum photosynthetic rate
before solar noon and a hysteresis in photosynthesis
response to light. The hysteresis of the photosynthesis-light
response often resulted in substantially larger morning
assimilation rates than in the afternoon for the same amount
of light. The magnitude of this hysteresis was larger for the
woodland than the grassland. The uncertainty in GPP was
associated primarily with uncertainty in the physiological
responses. Leaf area and water supply contributed similarly
to the uncertainty and was an order of magnitude less than
plant physiology (Figure 3). Uncertainties in all components
of physiology, water availability, and leaf area factors were
higher in the woodland than the grassland. The resulting
total growing season GPP showed distinct rates and vari-

Figure 2. A 10 day example of modeled NEE versus
observations for the premonsoon season in 2003 at the
(a) woodland site and (b) grassland site.

Table 3. Goodness-of-Fit Statistics From Regression Analysis

Between the Observed and Modeled NEEa

Site Year r2 Intercept Slope

Woodland 2003 0.64–0.75 �1.6–4.3 0.56–1.32
2004 0.49–0.66 �0.16–3.58 0.55–1.22
2005 0.49–0.72 �1.65–3.35 0.63–1.37

Grassland 2003 0.46–0.83 �0.04–2.23 0.48–3.56
2004 0.35–0.69 �0.65–2.38 0.40–2.70
2005 0.45–0.82 �0.05–2.76 0.51–3.52

aThe 95% confidence intervals are shown derived from bootstrapped
model runs using the posterior distribution of inversely fitted parameters.
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ability between the woodland and grassland (Figure 4) with
the woodland whole growing season GPP consistently
higher and less variable than the grassland.
[26] The patterns of GPP variability exhibited differences

in the temporal scale between the daily, growing season, and
interannual responses between the woodland and grassland
when computed over the entire growing season (Figure 5).
At lags as small as 2 days, the grassland and woodland
exhibited marked differences with the grassland having a
higher mean semivariance and higher interannual variation.
With increasing lags, the woodland and grassland patterns
diverged further. The woodland had a consistently stable
semivariance for lags up to 50 days with little difference
between years. The grassland semivariance generally con-
tinued to increase with increasing lags; each year had a
unique semivariance pattern ranging from nearly continuous
increases in semivariance (2003 and 2004) to a rapid rise
followed by a plateau (2005). Beyond the shortest lags, the
woodland dominated ecosystem was more stable (or less
variable) within and between growing seasons than the
grassland dominated ecosystem.
[27] The effects of the monsoon were subtle in the

woodland but much more pronounced in the grassland

(Figure 6). For both sites, key environmental differences
between premonsoon and monsoon seasons were a decrease
in VPD and light availability. In the woodland, the transition
to the monsoon season had no detectable effect on GPP, a
slightly increased leaf area and either no effect or slightly
decreased water supply. In the grassland, the monsoon was
associated with large increases in GPP (up to 1.4 times

Figure 3. Contribution of each source to model simulation
uncertainty. Each bar represents the width of the 95%
confidence interval in estimated GPP associated with each
source scaled by the median estimate of GPP.

Figure 4. Estimated GPP (mean and 95% confidence
intervals) for each sampling period estimated from data-
model inversion.

Figure 5. Median semivariance of GPP throughout the
entire growing season for the (a) woodland site and
(b) grassland site. Semivariances were estimated up to
50 day lags.

Figure 6. The change (median and 95% confidence
interval) in GPP, leaf area, water supply, VPD, and PAR
from premonsoon and monsoon periods of the growing
season. Change is computed as the difference from
monsoon and premonsoon scaled by the premonsoon value.
Positive values represent increases in the variable from
premonsoon to monsoon.
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premonsoon), leaf area (up to 1.7 times premonsoon), and
slight decreases in water supply.
[28] By conducting a fully factorial sensitivity analysis

we were able to identify the contribution of each factor to
overall variation (Figure 7). For GPP the differences in the
physiological parameters were the single largest contributor
to GPP variation at both sites. This factor was followed in
decreasing order by meteorology, water supply, and then
leaf area in the woodland and meteorology, leaf area, and
then water supply in the grassland. The amount of variation
related to combinations of factors was more complex with
the effects of multiple factors not simple linear combina-
tions of the individual factor. For the woodland, several
combinations of two factors yielded similar results. For the
combination of three factors, the woodland had the most
variation explained with the meteorology factor excluded
while the least amount of variation was explained with the
physiological factor excluded. For the grassland, the most
variation was observed with the water supply factor excluded
and the least variation was observed with the leaf area factor
excluded. These differences highlight the nonlinearities
associated with combinations of factors compared to factors
observed in isolation. A surprising result was the differential
sensitivity of the grassland and woodland to water supply
and leaf area. The woodland was more sensitive to water
supply by a factor of 10 than the grassland while the
grassland was more sensitive to leaf area than the woodland
by more than a factor of 2 (Figure 7).

4. Discussion

[29] Our coupled empirical and modeling approach
allowed for a mechanistically based simplification of eco-
system dynamics that could be directly linked with high
resolution environmental sensing. The hierarchical ap-
proach to data-model fusion can potentially improve the
recovery of model parameters when using sensor based data
streams. This approach provided a robust approach for
identifying the magnitude and determinants of ecosystem
variation at multiple temporal scales (Figure 2 and Table 3).
The overall correspondence between the model and obser-

vations suggests the simplifications to the physiological and
hydrological dynamics were not overly detrimental to the
analysis. This was particularly encouraging as the Ci vari-
able recovered by the inversion procedure can be affected
by strong gradients within a canopy and counter gradient
transfers. While we conducted an extensive analysis of
uncertainty in the model parameters, we did not directly
incorporate potential uncertainty in the data streams. Data
uncertainty enters the analysis through the NEE measure-
ments used for inversions and the meteorological data used
as a forcing. NEE data are generally characterized by
relatively high uncertainty, while the meteorological data
at the sensor location are generally more accurate [Goulden
et al., 1996; Medlyn et al., 2005]. Both sources of data
suffer from unknown errors in extrapolation through the
measurement footprint. As the footprints in these sites were
generally homogeneous we expect this uncertainty to be
low. While assuming a minimal data uncertainty seems
reasonable for the present study, such assumptions should
be explored for extrapolating the model in either time, with
future or historic meteorological projections, or space, to
regional analyses of shrub-grass ecosystem dynamics.
[30] Differences between the woodland and grassland

communities were observed in the dynamics of GPP at
daily, seasonal and interannual scales, and these dynamics
could be directly partitioned between meteorology, physi-
ology, leaf area, and water supply. The estimated magni-
tudes of GPP in the woodland were consistently higher than
in the grassland (Figure 4), consistent with a hypothesis that
the deeper access to groundwater allows for a higher GPP.
However, this higher rate of photosynthesis depended on a
sufficiently high Ci; stomatal closure due to a relatively
limited supply of water to the leaf compared to atmospheric
demand substantially reduced photosynthesis from maxi-
mum rates especially in the afternoons. In contrast, the
grassland did not exhibit the degree of afternoon GPP
reduction suggesting it did not experience a limitation of
water supply to the canopy when atmospheric demand was
highest. This whole ecosystem observation coincides with a
nearby experiment on semiarid grasses where at the leaf
level, the midday depression was not commonly observed

Figure 7. Proportion of total variability identified in a state factor sensitivity analysis separated into
meteorology (M), leaf area (L), physiology (P), and water supply (W) for the (a) woodland site and
(b) grassland site. The value under each symbol for each factor is the variation observed for this factor
alone. The values to the right show the variation observed for the two factors connected by the line. The
values to the left show the variation observed for the three factors connected. The variability is derived
from the entire 3 years of information.
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[Ignace et al., 2007]. The higher access to groundwater and
higher maximum capacity for GPP by the woodland, was
associated with a higher regulation of leaf water loss than
the grassland. The variability in assimilation rates were
related both to differences in the temporal scale and com-
munity type (Figure 5). At short time scales, both the
woodland and the grassland had similar responses to envi-
ronmental variability. As the time scale increased, the
responses were dominated by community differences.
Grassland GPP was nearly ten times more variable than
the woodland at scales more than a few weeks. These
findings were further supported by comparing premonsoon
with monsoon season (Figure 6), where the woodland
showed little difference in GPP or leaf area, while the
grassland had larger increases in both. The reduction in
water supply at both sites is consistent with previous find-
ings of drawdown of the water table between these seasons
that recovers later in the year [Scott et al., 2004, 2008].
Inferred from the data-model analysis, the large within and
between growing season variability in the grassland was
caused primarily by variations in leaf area. Compared to
other ecosystems, the riparian woodland exhibited a surpris-
ing amount of stability: some woodlands have been shown to
vary as much as 100% [Goulden et al., 1996]. The stability
in this riparian woodland was likely due to stability of the
water table in the alluvial aquifer, which is buffered by
inflows from the vast basin aquifer that surrounds it. The
resulting analysis for these semiarid ecosystems supported
the hypothesis that meteorology, while driving ecosystem
processes, is strongly affected by nonlinear biological
responses. Our results are consistent with expectations that
biological responses to environmental variation are equally
or even more important than the magnitudes of the environ-
mental variation for physical terrestrial-atmosphere material
and energy exchanges [Polley et al., 2008; Richardson et al.,
2007; Rocha and Goulden, 2008].
[31] The multiple-factors approach compared alternative

hypotheses as described by each state factor in determining
growing season GPP variation. By examining contrasting
woodland and grassland ecosystems in a riparian environ-
ment with access to groundwater, we were able to effec-
tively separate the effects of meteorology, physiology, leaf
area, and water supply. Conducting the state factor sensi-
tivity analysis allowed for a quantitative comparison of the
contrasting factors affecting variation in GPP (Figure 7).
This approach partitioned multiple variables into conceptu-
ally related factors and facilitated understanding the differ-
ent causes of GPP variation. Physiological differences were
associated with the largest amount of variation between
sites, while meteorological differences were associated with
the least amount of variation. This result is consistent with
the conclusions found in a mesic forest site, where a similar
sensitivity analysis was conducted [Richardson et al.,
2007]. However, in a landscape-scale analysis of an African
savannah system, the importance of vegetation type was
most strongly attributed to daily and seasonal variation, not
annual scale variability [Williams and Albertson, 2005].
However, variation in the annual total of assimilation as
described by Williams and Albertson [2005] is strongly
affected by growing season length, while the interannual
variation as we describe here is only within the growing
season. Traditionally, state-factor models have been consid-

ered a phenomenological concept [Amundson and Jenny,
1997]. We suggest that examining the sensitivity of a
mechanistic data-model fusion analysis and partitioning
the factors into explicit variables and parameters provides
a mechanistic framework for understanding the state factors.
We found GPP variability was mostly attributable to the
nonlinear responses to meteorological variability rather than
meteorological variation itself. Nonlinearities in the com-
bined effects of individual factors further highlighted the
interactions between factors were as important as the
individual factors by themselves.
[32] Comparing the two community types, the state factor

analysis suggests the woodland was surprisingly more
sensitive to water supply than the grassland (Figure 7).
With more extensive and deeper root system, we had
expected the woodland to be less sensitive to water supply
than the grassland. However, the availability of water does
not necessarily lead to reductions in the ratio between
supply capacity to the leaf and atmospheric demand. The
increased variability attributable to water supply in the
woodland compared to the grassland is reflected again in
the larger hysteresis responses of the woodland than the
grassland observed both in the data and model (Figure 2).
This hysteresis is associated with stomatal closure, which is
in part determined by the balance between the atmospheric
demand and supply of water to the leaf. Thus, the greater
sensitivity to water supply in the woodland could be
interpreted not necessarily as a limitation in the availability
of water to the roots but rather as a limitation in the
hydraulic capacity of the trees, which transport water from
the water table at �10 m through woody tissues to leaves at
3–7 m above the ground. In contrast, the grassland had a
higher sensitivity to changes in leaf area than the woodland.
Rather than adjusting daily physiology, the grassland ad-
justed leaf area. This is supported by the increased impor-
tance of leaf area in the grassland compared to the
woodland. These differences are representative of alterna-
tive strategies for coping with variation in available water
and atmospheric demand: either adjust stomatal conduc-
tance or adjust leaf area. These differences are consistent
with a general model of how woodlands and grasslands
manage carbon-water exchanges: woodlands maintain a
consistent leaf area, strongly regulate stomata, and thus
may be more resistant to drought conditions while grass-
lands strongly regulate leaf area, minimally regulate stoma-
ta, and thus may be more resilient to drought conditions.
These different mechanisms are directly related to observed
levels of within and between season variability; by changing
leaf area the grassland can have a broader range of response
to environmental fluctuations than the woodland. How these
differences in resistance and resilience strategies will affect
long-term sustainability of both grass or woody dominated
states system is an open question. However, these results
highlight a potential consequence of woody plant encroach-
ment into grasslands: the increased stability of woodlands
may lead to a decreased ability to acclimate to climate
variability compared to grasslands.
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