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ABSTRACT

In 1994, Cemagref-ENGREF Remote Sensing Laboratory and U.S. Water Conservation
Laboratory conducted an experiment called ‘MAC VII’ on Maricopa Agricultural Center, to
demonstrate the ability of using combined optical and microwave remote sensing data for
- estimating the evapotranspiration of irrigated crops. Two approaches were developed on alfalfa
and cotton _crops. One is based on the combination of remotely sensed surface temperature and
vegetation index representing both vegetation water stress and fractional cover, and providing a
water deficit index (WDI), which has been demonstrated to be a reliable extension of the Crop
Water Stress Index (CWSI) concept to partial coverage canopies. The estimation of WDI was
improved here by using surface soil moisture derived from ERS-1 radar satellite C-Band data,
which provided the ability to discriminate canopy transpiration from soil evaporation. The other
approach is based on the combination of airborne Ku- and C-Band radar imagery, which represent
both vegetation fractional cover and water stress, respectively. This new tool is useful for
estimating plant water stress in partial coverage conditions, and has the advantage of being
independent of atmospheric and cloudiness conditions, unlike approaches based on optical remote
sensing data.
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INTRODUCTION

It has been shown for a long time that remote sensing has good potential for
evapotranspiration monitoring. However, this potential has been limited by a series of problems
occurring when optical remote sensing data are used. Among the most common problems, one
could mention the cloudiness limiting the acquisition frequency, the resolution of sensors, and the
effects of soil on measured reflectance and thermal emission.

For the last few years, active microwave data from recently-launched ERS-1 and JERS-1
radar satellites have provided a solution to both cloudiness and resolution constraints, as radars
get information independently of cloud coverage, and with a spatial resolution which is
compatible with field sizes (30 m). When combining different wavelengths, these data can also
provide independent information on vegetation and soil (Prevot et al., 1993a), that could be used
to account for their effect on measured reflectance and thermal emission.

During the same period, an operational method was developed to account for these effects
when using optical data (i.e. red/infrared reflectances derived NDVI - Normalized Difference
Vegetation Index -, and thermal emission derived surface temperature). This approach, presented
by Moran et al. (1994), is based on the representation of the soil-canopy continuum in a diagram
of fractional vegetation cover vs. surface minus air temperature difference (7s-7a). Actually, its
position is theoretically comprised within a trapezoidal pattern; Figure 1 presents such a pattern
and the definition of its limits. These authors have shown the essence of this approach as:

e the limits of the trapezoids represent limit situations for the surface energy budget, that
can be estimated using only meteorological data and a value of the aerodynamic resistance
of the soil-canopy continuum;
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model simulations showed that hypotheses of linearity between the left (wet conditions) and right
(dry conditions) limits of the trapezoid are valid under most
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Figure 1. The theoretical trapezoidal shape showing the different biomass vs. water stress
conditions of the canopy-soil continuum (from Moran et al., 1994). The WDI (water deficit index)
of point C is given by AC/AB as shown in Eq. 1.

The above considerations lead to both a theoretical and graphically simple estimation of
the soil-canopy evaporation LE for a given Fractional Vegetation Cover, knowing its potential
evaporation Lep:

LE _ (Ts—Ta)—(Ts—Ta)dry =BC=1—WDI 1)
LEp (Ts—Ta)wet—(Ts—Ta)dry AB

where T is the composite surface temperature of the soil-canopy continuum as estimated from
thermal infrared measurements, BC and AB are the distances represented on Figure 1, and the wet
and dry subscripts correspond to the left and right limits of the trapezoid. The main advantage of
this approach is the possibility of estimating both Ts-Ta and Fractional Vegetation Cover from
remote sensing measurements. Fractional Vegetation Cover can be estimated using the
Normalized Difference Vegetation Index (NDV7) defined from pNIR and pR, the reflectances in the
sensor's near infrared and red waveband :

NDvT = PMR—PR )
PNIR + PR

In 1994, Cemagref-ENGREF Remote Sensing Laboratory and U.S. Water Conservation
Laboratory conducted an experiment called ‘MAC VII’ on Maricopa Agricultural Center, to
demonstrate the ability of using combined optical and microwave remote sensing data for
estimating the evapotranspiration of irrigated crops (Moran et al., 1996a). Two approaches were
developed on alfalfa and cotton crops. One is based on the water deficit index (WDI) presented
above, whose estimation was improved by using surface soil moisture derived from ERS-1 radar
satellite C-Band data. This provided the ability to discriminate canopy transpiration from soil
evaporation. The other approach is based on the combination of airborne Ku- and C-Band radar
imagery, which represent both vegetation fractional cover and water stress, respectively, and has
been presented by Moran et al. (1996b).



The objective of this paper is to show how the WDI can be improved by the use of C-band
radar data, and how multispectral microwave data can be used to replace optical/microwave
combination for days where clouds interfere with the use of optical data, such as thermal infrared.

METHODS AND MATERIALS

The site for the experiment was MAC, a 770 ha research and demonstration farm located
about 48 km S of Phoenix, owned and operated by the University of Arizona. The demonstration
farm is composed of large fields (up to 0.27 x 1.6 km) used for demonstrating new farming
techniques on a production scale. Alfalfa is grown year-round with about 7-8 harvests per year
and, cotton is grown during the summer. Since the predominant irrigation method for the MAC
demonstration farm is flooding, each field is dissected into level-basin borders. During a single
irrigation, the borders are sequentially flooded with a 3-4 day progression from one end of a 1.6-
km long field to the other.

This experiment was conducted on DOYs (Days Of Year) 165 to 175, directed at
investigating the utility of multispectral remotely sensed data for day-to-day farm management.
The European Remote Sensing (ERS-1) satellite supports an imaging SAR sensor operating at C-
band (5.35 GHz), VV polarization and 23° incidence angle. A SAR image covering most of MAC
was obtained on 15 June (DOY 166) during a descending pass at 10:00 p.m. Sandia National
Laboratory (SNL) in Albuquerque, New Mexico provided an airborne imaging SAR sensor
operating at Ku-band (14.85 GHz), VV polarization and 55° incidence angle. A SAR image
covering most of MAC was obtained on 24 June (DOY 175) at 11 am MST. Scientists from Utah
State University (USU) deployed a multi-spectral airborne video system with four spectral bands
covering the visible to thermal spectral region on 15 June at 11 am (Neale and Crowther, 1994).
Microwave data were calibrated using on-board calibration coefficients, and optical data using
ground-measurements of reference targets reflectance and surface temperature. For each field
border, values of T, pyir and pr from the USU sensors and values of 6°: and 6°% from the ERS-1
and SNL sensors were computed by averaging the values for all pixels located within the border.
During each overpass, detailed measurements were made in selected fields of such crop properties
as density, biomass, and Green Leaf Area Index (GLAJ).

Detailed vegetation measurements were made in selected cotton and alfalfa fields on a
weekly basis during MAC VIL In the sample sites within the cotton fields, measurements were
made of plant density, height, vegetation cover fraction, and number of squares/bolls/flowers. Five
plants were weighed in each sample site and the plant of median weight was taken to the
laboratory for measurement of wet and dry biomass and GLAI In sample sites within the alfalfa
fields, plant density, height and percent cover were measured. A 0.5-m” sample from each site was
cut and taken to the laboratory for measurements of GLAI and wet and dry biomass. Such
measurements in cotton and alfalfa fields were made coinciding with the SAR and optical
instrument overpasses. In the early morning following the nighttime ERS-1 SAR overpass,
gravimetric soil moisture samples to 5 cm depth were made in selected fields. The bulk density of
the soil was computed for each sample based on the volume of the soil sample container and
averaged to produce a bulk density estimate for the field. This was used to convert all gravimetric
data to values of volumetric soil moisture. Several values were averaged to produce one estimate
of soil moisture content for each of the selected borders.

The WDI was estimated from the trapezoid presented in the introductory section, based on
hourly meteorological data collected on MAC. In order to separate crop transpiration from soil
evaporation, the soil surface temperature was estimated from the surface soil moisture derived
from ERS-1 C-band backscattering, and using the calibration equations of Moran et al. (1996b).
Actually, Troufleau et al. (1996) have shown that an index that could be called the ‘Soil Water
Index’ (SWI), i.e. a concept similar to the Crop Water Stress Index (CWSI) defined by Jackson et
al. (1981), was related to surface soil moisture (0-5 cm) through an exponential relationship. This
relationship is physically based on the resistance of soil surface to evaporation, and was shown to
be only dependent on soil texture (Chanzy, 1991). SWI can be defined by:



Ti—Ta

SWl =——— 3
Tsmax—Ta ®)
with 7a being air temperature, and T'Sma the maximum value of s, expressed as :
Trmax-_—Ta+ = (Rn—G) (4)

P

where Rn is the net radiation flux, G the soil heat flux, pCp is the volumetric heat capacity of air (
= 1200 J m? K™), ra is the aerodynamic resistance (s/m) corrected for stability/unstability effects
and. for the additional resistance effect due to the difference between radiative and aerodynamic
surface temperature, usually referred as the kB-1 resistance (Prevot et al., 1993b).

- Figure 2 shows how the ratio crop transpiration / potential transpiration can be derived
from the above concepts. This ratio will be called from now on the CWDI (Crop Water Deficit
Index).In another approach, Moran et al. (1996b) combined Ku- and C-band data to derive soil
moisture and Green Leaf Area Index (GLAI), to estimate soil-vegetation variables on a cloudy
day.

Soil backscattering

Soil moisture

u

Figure 2. Combined use of active microwave and optical remote sensing data to derive soil
moisture and evaporation in the trapezoid. Whereas optical data only allow estimation of soil-
plant Water Deficit Index (WDI), microwave allows estimation of the so-called Crop Water
Deficit Index (CWDI).

Finally, 6 fields (3 of cotton, 3 of alfalfa) were selected on MAC farm for DOY 165, in
order to obtain a representative variability of soil moisture, vegetation coverage and water stress.

RESULTS AND DISCUSSION

A preliminary result concerns the relation between soil moisture and soil temperature for
experimental conditions. It was calibrated on the experimental site for DOY 163 where
measurements of both soil surface temperature and moisture were available : the calibration
equation is given on Figure 3.
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Figure 3. Calibration of the relationship between Soil Water Index (SWI) and surface soil
volumetric moisture (0-5 cm). MAC Farm, fields 13 (Cotton), 17 (Alfalfa), 18 (Bare soil), 25
(Alfalfa) and 38 (Cotton), DOY 163. :

In a second step, different variables were estimated for each subdivision (or border) of the

6 selected fields, i.e. NDVI and surface soil moisture sv as vegetation development and field
wetness indicators, then surface minus air temperature difference 75-Ta, Water Deficit Index WDI
and Crop Water Deficit Index CWDI as various indicators of crop water stress. As no
measurement of latent heat flux was available on all selected fields, we will consider in the
following discussion the surface soil moisture variability as a reference for crop water stress
variability. The values obtained appear on Figure 4. The main results are :

e Variations of 7s-Ta are related to both variations in water stress related to soil moisture and
variations in NDVI,

e For fields with large variations of NDVI (e.g. Fields 17 and 25), WDI and CWDI better
represent variations in water stress than 75-7a (these variations are small in Fields 17-25): this
is particularly important because alfalfa is often not considered as a partial cover vegetation,
and one could think that using 7s-7a would be sufficient;

e For fields with high values of NDVI, CWDI is equivalent to WDI to represent variations in
water stress, except in Field 15 where CWDI shows a better contrast when soils are
particularly dry in the first centimeters,

e For fields with low values of NDVI, CWDI represents variation or absence of variation in water
stress better than WDI, this clearly appears in Field 38 where large variations of NDVT occur.
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Figure 4. Variations of vegetation index NDVI, surface soil moisture hv, surface minus air
temperature difference Ts-Ta, Water Deficit Index WDI and Crop Water Deficit Index CWDI
inside the selected alfalfa and cotton fields. The left axis corresponds to all variables ranging from
0 to 1, such as NDVI, WDI and CWDI (adimensional) or hv (m*/m®). The right axis only
corresponds to 7s-7a.

WDI and CWDI are obtained using optical and optical-microwave data respectively. When
no optical data is available, microwave data alone can be used to determine surface soil moisture
and Green LA These latter variables were related for the selected fields to CWDI and WDI, using
multiple linear regression (Table 1).

Table 1. Multiple and partial regression coefficients obtained when relating CWDI and WDI to
Ku-band (resp. C-band) active microwave derived GLAI - Green Leaf Area Index (resp. Av -
surface soil moisture 0 - S5cm).

CWDI WDI
Alfalfa  Cotton All Alfalfa  Cotton All
Multiple regression coefficient ~ 0.519** 0.572** 0.435** 0.614** 0.719** 0.570**
GLAI regression coefficient 0.270 0.328 0.189 0.377  0.517 0.324
hv regression coefficient 0.237 0.135 0.160 0.349 0.379 0.300
Standard-Error 0.107 0.303 0.162 0.070  0.165 0.098
Observations 48 10 58 48 10 58




In all cases, regression was significant with a 0.01 level. Except for cotton, where the
number of observations was reduced from 20 to 10 due to a partial visibility of selected fields by
the radar, the standard-error for the no-optical-data derived CWDI and WDI is close to or lower
than 10 %. This clearly shows the potential of active multi-frequency microwave data for
replacing optical or optical-microwave data for water stress monitoring.

CONCLUSIONS

The present analysis, which remains rather qualitative, shows that optical (vegetation index
and surface temperature) and active microwave data can be combined to estimate precisely the
crop water stress conditions, even for partial canopies. This approach uses two complementary
indices, the Water Deficit Index (WDI) equal to the ratio 'evapotranspiration / potential
_ evapotranspiration’, and the Crop Water Deficit Index (CWDI), equal to the ratio 'crop
transpiration / potential transpiration’. This combination is particularly efficient when the
vegetation cover is low.

A strong relation exists between these water stress indices and soil-vegetation variables
(Green LAI and surface soil moisture) derived only from multifrequency active microwave data
(e.g. Ku- and C-band). This relation makes it possible to calibrate these variables for days where
both optical and microwave data are available, and then to use microwave data only when clouds
prevents from optical data acquisition. Both methods are of interest for operational monitoring of
agricultural evapotranspiration rates, as most of the data used in this experiment could be
available weekly in the near future, either on dedicated small airborne systems or on satellites like
RADARSAT in C-Band and IRSUTE in thermal infrared, both with resolutions around 50 m and
observation frequencies better than one week.
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