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P RESENT concern of society forenvironmental quality requires con
sideration of water as a transporting
medium for pollutants. Symbolic hydro
logic models provide a quantitative,
mathematical description of the trans
port processes within a watershed. A
conceptual model of a watershed as a
continuous system in three space dimen
sions is presented. Examples are given of
mathematical formulations of this mod
el as a distributed system (partial differ
ential equations) and as a lumped sys
tem (ordinary differential equations).
The structure 0f several currently used
watershed models is examined briefly.

Penman (1961) proposed a concise
definition of hydrology in the form of
the question: “What happens to the
rain?” This is the general question we
are trying to answer through the use of
material or symbolic watershed models.
As society becomes more aware of the
environmental problems that may result
from man’s activities on a watershed, we
must direct our activities toward an
swering the questions: “What happens
to the fertilizer?” or “What happens to
the pesticides?” Because nutrients or
pesticides may be carried by running
water or may be adsorbed by sediments
transported by runoff, the last two
questions can only be answered through
the use of hydrologic models.

A watershed is an extremely compli
cated natural system that we cannot
hope to understand in all detail. There
fore abstraction is necessary if we are to
understand or control some aspects of
watershed behavior. Abstraction con
sists in replacing the watershed under
consideration with a model of similar
but simpler structure. There are two
classes of models: material and symbol
ic. (R.osenblueth and Wiener, 1945). A

material model is the representation of
the real system by another system that
is assumed to have similar properties but
is not as complicated or difficult to
work with. A symbolic model is a
mathematical description of an idealized
situation that shares some of the struc
tural properties of the real system.

Material models include the iconic or
“look alike” models and analog models.
For example, lysimeters or rainfall simu
lators can be classified as material mod
els. Symbolic or mathematical models
are sometimes subdivided into theoreti
cal models and empirical models. This is
a rather arbitrary subdivision because
one man’s empiricism may be another
man’s theory. However, the point can
be made that an empirical model merely
presents the facts—it is a representation
of the data. If conditions change, it has
no predictive capabilities. The theoreti
cal model, on the other hand, has a
logical structure similar to the real
world system and may be helpful under
changed circumstances.

All theoretical models simplify and
therefore are more or less wrong. All
empirical relationships have some
chance of being fortuitous and in prin
ciple should not be applied outside the
range of data from which they were
obtained. Both types of models are
useful, but in somewhat different cir
cumstances.

If anyone wishes to develop a model
to aid in understanding a process, they
should choose the theoretical model.
However, if they wish to make a deci
sion based upon answers obtained by
using the model, the choice is not
necessarily obvious. For example, engi
neering models contain components de
rived from the social science of econom
ics as well as physically based compo
nents. Because the objective of engineer
ing design is stated in economic terms,
the physical fidelity of the model com
ponents is irrelevant. Net benefits of
any project are a function of design
costs. Therefore if an empirical compo
nent gave equal accuracy at a lower
cost, it would be preferred to a theoreti
cal model.

Symbolic models may be classified

further as lumped or distributed, sto
chastic or deterministic. In general, a
lumped model can be represented by an
ordinary differential equation or a series
0f linked ordinary differential equa
tions. A distributed model includes spa
tial variations in the inputs, parameters
and dependent variables and consists of
a partial differenital equation or linked
partial differential equations.

Stochastic models describe processes
occurring in time governed by certain
probability laWs. A model is determinis
tic if when the initial conditions, bound
ary conditions and inputs are specified,
the output is known with certainty.

The purpose of this paper is to
briefly review currently used watershed
models and to examine how they might
be used in understanding and predicting
transport of pesticides, plant nutrients
or other substances that might affect
water quality. Other important aspects
of the environment such as scenic
beauty are not considered because
hydrologic modeling does not seem to
be directly involved in their evaluation.

A GENERAL DISTRIBUTED
WATERSHED MODEL

Consider the general distributed
model of a watershed shown in Fig. 1.
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FIG. 1 Schematic drawing of watershed as a
distributed system.
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C I TI ance for this system can be expressed as

This open system is bounded by imper
vious rock on the bottom, by the
imaginary surface S on the sides and by
the imaginary surface A on the top. If
we knew the flux of water in liquid and
vapor form and the volumetric moisture
content at all points within this volume,
we could answer the question “What
happens to the rain?” Vertical flux
through the surface A consists of precip
itation (positive) and evapotranspiration
(negative) and is designated as ~(x,y,t).
This flux through the surface may be
considered as a stochastic process be
cause even though we know its value at
some instant to, we can only make
probabilistic statements regarding its
value at t0 + At.t Sample functions of
this process at a time t T and at a
point (x,y) are shown in Figs. 2 and 3.

The flux of water in a direction
normal to the surface S is designated
n(x,y,z,t). This function includes both
groundwater (saturated) flow and unsa
turated flow. Where the groundwater
catchment corresponds exactly with the
surface water catchment ?7(x,y,z,t) = 0,
if the position of zero gradient is time
invariant. The surface streamfiow from
the system is more concentrated than
the other fluxes and so will be consi
dered as the point process ~1(t). Stream-
flow includes both surface runoff and
water contributed to the stream from
the saturated zone. Let the mass rate of
sediment transport out of the watershed
be t2(t). Imported water, which is
always a possibility if not a fact, will be
represented as the process a(t). The
volumetric moisture content at any
point in the system is O(x,y,z,t). The
continuity equation or the water bal

‘It could be argued that this process can
be reduced to a deterministic one If a detailed
meteorological model is Included. Considering
present skiff In weather forecasting utilizing
numerical models, the surface flux model win
remain stochastic for At on the order of days
or hours. As At decreases to the order of
minutes, we might consider the process to be
deterministic, although a realization of the
process will retain an apparently random
component.

ds
PT+wT_ET_QT_~(T)= I_

1’]
where

= f ~ (~yj;=~fl~444 = precipi
A
ration rate (vol/time)

4 = f ~(x,y,t = T)dAA
evapotranspiration rate vol/
time)

= f ~)(x,y,z,t) = T)dS = net

subsurface outflow rate (vol/
time

= f 0 x,y,z,t = T dv total
V
storage. volume

Finally consider some substance i
added to an area a1 at a rate of lj per
unit area. If this material is added as
part of an agricultural operation, the
area, the amount and the intervals be
tween applications may be deterministic
or nearly so. It may also be possible to
treat the input as instantaneous. The
total mass per unit spatial volume is
denoted as Pj(x,y,z,t). After some time
lag, the substance added will be trans
ported past the mouth of the watershed
and will appear in streamflow at a
concentration c1(t). The mass rate of
transport of substance i out 0f the
watershed is

= pc1 t ~1(t) + ~‘j~2(t)] ;i = 3,4,

[2]

where p is density of water and
*[~2(t)] represents the amount of ma
terial carried by sediment. If we are
primarily concerned with the outputs of
a watershed, we will confine our atten
tion to the multidimensional stochastic
process ~1(t); i = 1,2,..N which repre
sents the instantaneous rate of transport
of water, sediment, and other sub
stances out of the watershed. In some
situations we may be interested in the
processes t~(t); in others we may be
more concerned with the total transport
during a time interval (0,t)

t
t f ~1(s)ds [3]

0

To evaluate alternate courses of ac
tion, we need to have some information
about the historical processes ~1(t) or

X~°~t) and also the processes t and
X0) (t) after some changes have been

made in the system. If we have long
periods of record, we can estimate the
parameters of the unmodified processes
from historical data. If records are
short, it may be necessary to use a
model in conjunction with longer rec
ords of precipitation to estimate the
parameters of the existing process. It
will always be necessary to use a model
to estimate the parameters of the modi
fled processes

ALTERNATE MATHEMATICAL
FORMULATIONS OF THE

CONCEPTUAL MODEL

Although the conceptual model pre
sented in the previous section is an
abstraction of reality, it presents a very
general description of the behavior of a
watershed. In fact it is too general to be
of much use in any particular situation.
To develop a more detailed formulation,
it is quite natural to begin with the
partial differential equation of continu
ity for flow of water in porous media or
for free surface flow in streams. These
equations can be derived quite readily
and, along with Darcy’s law for satur
ated flow in porous media and the
momentum equation for free surface
flow, constitute a rather rigorous mathe
matical description of transport of wa
ter within the system. Conceptually,
these equations along with initial and
boundary conditions would enable one
to solve for the streamflow process in a
deterministic manner if the rainfall and
factors affecting evapotranspiration are
given. These partial differential equa
tions are a distributed model of the
system. Unfortunately these equations
either do not have analytical solutions
or can be solved only for very simple
geometries or boundary conditions. The
equations may be written in finite-
difference form and solved numerically,
or a more abstract model may be
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FIG. 2 Schematic representation of sample
distribution of surfuce flux (x,y) over a
watershed
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FIG. 3 Sample function of vertical flux at a
point x, y.



from rainfall, q1, and the output from
the upstream storage, Q1~1. This system
can be described by the following series
of linked ordinary differential equa
tions:

postdated. The more abstract model
would be simpler than the distributed
model but hopefully would have a
similar structure and would retain most
of its important characteristics.

As an example of this process of
abstraction, let us consider various mod
els for the description of unsteady flow
over a plane—the “overland flow” prob
lem. If we make the assumption that a
one-dimensional formulation of the
problem is adequate, we can describe
unsteady, free surface flow on a plane
by the continuity equation

dS1

dt

ah a~h

obtaining general relationships for pa
rameter estimation through numerical
experiments on distributed models and
lumped system approximations to them.

As a further abstraction we might
represent overland flow as a general
system where the output (runoff) is

+ bS = q~ (t) assumed to be related to the input

(precipitation) but where no explicit

~ + bS~ = q2(t) + bS~ the internal structure of the system.
assumptions have to be made regarding

dt j This approach was first applied to

~.. [7] hydrology by Amorocho and Orlob(1961) and several investigators have
dS.
—‘ + bS~ = q1(t) + bS1 worked on this problem in the following

at ax 1966; Bidwell 1971; Amorocho and
+ = q(x,t) {4] dt decade: (Amorocho 1963, 1967; Jacoby

Brandstetter 1971). A special case ofand the momentum equation: + bS~ = t + bS~ 1 the general system approach, the theory

au uau gah qu dt of linear systems, has found hydrologic
+ + —

at ax ax g S~ S~ 1~ where bS1c represents the outflow, Q1, application since Sherman’s (1932) unit

[5] from the it~ storage element. Dooge hydrograph theory was proposed. It was
(1967) used equation [7] to represent a not until Dooge’s classic paper (Dooge

where: “uniformly nonlinear system.” There is 1959) that most of the implications of
u = local mean velocity in x an obvious similarity between the series the linear assumption were clearly

direction of nonlinear storages and the kinematic stated.
As we consider this example of forh = local depth model. During the rising stage due to muiation of successively more abstract

q(x,t) = lateral inflow rate per un- uniform lateral inflow, the solution
it area within the zone of determinacy for ~ < models, it is obvious that many of the

model classifications tend to be ratherg = acceleration of gravity for the kinematic model is given indistinct. A certain amount of lumping
s0 = bed slope
S~ = friction slope of inputs and parameters is necessary

and x and t are space and time coordi. h = qt for the distributed model because we
nates respectively. or can only obtain discrete data and be.

The above model distorts reality in cause we must use discrete mathemati
many ways and its application to flow Q = a(qt~’ [8] cal methods to solve the partial differen
over a rough, natural surface is subject Kibler (1968) has shown that if a tial equation. It is readily apparent,
to greater doubt than its application to storage element is considered to be however, that the general systems ap
flow on a parking lot, analogous to a length of plane equal to proach is valid only for time-invarient

It has been found that in most LQ/N that the discharge from the ~h systems while in principle one might use
hydrologic circumstances the above element can be written as the partial differential equation model
equations can be very accurately ap- to predict the runoff response if the
proximated by the kinematic wave N a watershed surface were changed pro-
equation (Woolhiser and Liggett 1967). ~ = a [ SN] [9] vided one had independent information

L
In the kinematic wave equation, the a on the friction relationship for the
momentum equation is simplified to as N becomes large. This expression is changed surface condition,

similar to equation (8} and is a very This example demonstrates that theS=S I‘ ° I good approximation for N> 10. If N is partial differential equations, the finite-
or [6] large, the parameters in the storage difference equations, the ordinary dif

u = ah”1 model have a direct equivalence to those ferential equations describing lumped
in the uniform flow relationship for the systems with decreasing N, and the

where a and n are parameters which kinematic model. If overland flow on a general linear and nonlinear systems can
include the effects of slope, roughness plane is represented by a single storage all be looked upon as successively more
and the regime of flow (laminar or element, however, this equivalence dis.. abstract models of the real physical
turbulent). appears although there is likely to be a system. They share some common prop-

As a further abstraction, we might relation between the number of storages erties and all inevitably involve distor
propose that overland flow be approxi- and the ratio of the parameters for the Hon. This distortion or the lack of
mated by a cascade of N non linear kinematic model and the lumped-system physical significance of model parame
storages, each receiving inputs model. This suggests the possibility of ters is the price we pay for simplicity

and reduced data requirements.
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STATE OF THE ART
WATERSHED MODELS

The Stanford Model (Crawford and
Linsley — 1962, 1966) is certainly the1 2-- ————N
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best known general watershed model in
current use. A flow chart ior this model
is shown in Fig. 4. This is basically a
lumped-parameter model, although
large, heterogeneous watersheds can be
divided into subwatersheds if sufficient
data are available to estimate the param
eters for the subwatersheds. The essen
tial structure of the Stanford Model and
lumped parameter models in general can
be expressed in the following concise
notation:

N
ZY..=X ;i1,2,...N

13 1
1*1

[10]

where S~ is the amount of storage (state
variable) in the it~ storage element; Y1 is
output from the ~ element; ‘V11 is the
flow from storage i to storage j; X1 is the
exogenous input to the ~ element. The

will usually be functions of the S~
and Si and may be dependent on certain
threshold parameters. The inputs ~ are
independent of the state of the system,
but the outputs, ‘Y1, depend upon the
state of the system and may also depend
upon current values of some inputs. For
example, evapotranspiration rates may
be a function of incoming solar radia
tion as well as soil moisture storage. The

above system of equations are solved by
finite-difference techniques on a digital
computer. The methods by which infil
tration and evapotranspiration are com
puted infer spatial variability in these
fluxes but they are considered to be
independent of position on the water-

shed. The Stanford Model has been used
by many investigators and many differ
ent versions are available. However, the
basic structure of the model is essential
ly the same in all versions. Because of
the extensive experience with this mod
el, it is quite appropriate to compare
any new model structure with it to
ascertain if there has been an improve
ment.

Holtan and Lopez (1971) have de
scribed the USDAHL-70 model of wa
tershed hydrology. Although their ob
jective is to develop a distributed water
shed model, the present model is pri
madly lumped although, like the
Stanford Model, a watershed can be
broken down into smaller homogeneous
areas. Spatial variations in soil proper
ties and slopes are accounted for by
dividing the watershed into land capabil
ity classes which correspond to uplands,
hillslopes and bottom lands. The per
centage of outflow from each capability
class that is contributed to the other
classes or the channel is estimated from
topographic maps. Overland flow is sim
dated with a lumped, nonlinear storage
model.

Although there are many similarities
between components of the Stanford
Watershed Model and the USDAHL-70
model, the USDHAL-70 model attempts
to incorporate some aspects of spatial
variability by dividing the watershed
into land capability classes with speci
fied spatial relationships. The
USDAHL-70 model also puts more em
phasis on a prjori estimation of parame

ters, particularly for the infiltration
componeiit.

Dawdy et al (1970) have recently
developed and tested a lumped system
model describing surface runoff from
small watersheds. The model structure is
similar to parts of the Stanford Model
and it can be described by equation
[101; however, there are differences in
the functional relationships.

A distributed watershed model in
cluding overland flow, porous media
flow and open-channel flow is not yet
available. Freeze and Harlan (1969)
proposed a three-dimensional approach
which has not been completely imple
mented as yet. (Fig. 5). Freeze (1971)
has presented a three-dimensional model
for unsteady, saturated or unsaturated
flow in a groundwater basin. His model
is physically based in that it has a
structure based upon the theory of flow
in a porous medium. Models that in
clude a part of the hydrologic system
have been presented by others (Kibler
and Woolhiser 1970; Brakensiek 1967;
Henderson and Wooding 1964;
Machmeier and Larson 1967; Morgali
and Linsley 1965; Schaake 1965; Harley
et al 1970; Amisial eta1 1969; Huggins
and Monke 1970; and Smith and
Woolhiser 1971).

The parameters in the lumped system
models have little direct physical signifi
cance and, therefore, can be estimated
only by using concurrent rainfall and
runoff data. In principle, the parameters
in the distributed model have some
physical significance and the possibility
exists that they can be evaluated by
independent measurements. However, in
practice the partial differential equa
tions describing distributed systems
must be solved by finite difference
methods. This representation requires
the specification of parameter values at
a finite number of points. If the number
of points is large, the cost of measure
ments of the parameters becomes pro
hibitive. If the number of points is
reduced drastically, the measured pa
rameter values will not necessarily give
good predictions of watershed behavior
because of the distortions introduced by
the order of approximation.

Because the structure of equation
[10j is general enough to include an
extremely large number of different
models, the question arises “How do I
choose the best model for my particular
application?” Dawdy and Lichty (1968)
suggest four criteria of choice that
might be used: (a) accuracy of predic
tion, (b) simplicity of the model, (c)
consistency of parameter estimates and
(d) sensitivity of results to changes in
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FIG. 4 Flowchart of the Stanford Watershed Model IV (from Crawford and Linsley 1966).
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parameter values. Although it is impossi
ble to obtain an unambiguous ranking
with multiple criteria, these criteria are
obviously related to a criterion which
might be to maximize net benefits
through use of a model in a design
situation.

WATER QUALITY COMPONENTS
OF WATERSHED MODELS

There have been many investigations
concerning water quality in certain re
stricted segments of the conceptual wa
tershed discussed previously. Perhaps
the earliest and most widely used mathe
matical model describing water quality
is that proposed by Streeter and Phelps
(1925) to describe the dissolved oxygen
relationship in a stream. The Streeter
Phelps model considers a particular
reach of a stream with an initial bio
chemical oxygen demand (BOD) and
dissolved oxygen content at the upper
boundary. Under the assumption that
biochemical oxidation and reaeration by
absorption of atmospheric oxygen are
first-order processes and the streamfiow
process is pure translation at constant
velocity, the Streeter-Phelps model en
ables the prediction of oxygen deficit at
any point within the reach. The
Streeter-Phelps model considers only
the first stage of biochemical oxidation
and ignores the second or nitrification
stage which may also utilize significant
amounts of oxygen. Several more com
plete models have been proposed—Camp
(1963), Churchill and Buckingham

(1956), Dobbins (1964).
These refinements include the effects

of photosynthesis, sedimentation, bot
tom scour and surface runoff on the
dissolved oxygen balance. More recently
O’Connor (1967) developed a model
including, in addition to the above,
artificial aeration, photosynthetic pro
duction of oxygen, temporal and spatial
variations in flow rates, and diurnal
variation in photosynthetic activity.
Goodman and Tucker (1969) utilized a
time-varying model in studying effec
tiveness of treatment plants.

All of the previously cited works
have either considered steady-state situ
ations or have considered time-varying
cases as a series of steady states. This
approach is probably adequate for non-
tidal rivers where streamfiow and
oxygen-demanding inputs do not vary
rapidly with time.

Recognizing the possible inadequacy
of the series of steady states or the
quasi-steady state case used in earlier
water quality work on esturaries,
Dresnack and Dobbins (1968), Bella and
Dobbins (1968), Harleman et al (1968)
and Dornhelm and Woolhiser (1968)
devleoped methods for predicting water
quality based upon the partial differen
tial equation of unsteady free surface
flow and longitudinal dispersion for the
one-dimensional case. Solutions were
obtained using finite-difference or finite
element methods. Unsteady, two-dimen
sional cases have since been considered
by Fischer (1969).

Orlob and Woods (1964) studied
water quality aspects of an irrigated area
by computer modeling of the water
transport system and concurrent trans
port of conservative pollutants. They
used a lumped-system model which
could be described by equation (10].
They used a time step of one month.
Their investitagion demonstrated the
possible effects of over-irrigation and
recirculation of drainage waters on con
centration of pollutants.

Another model using the lumped
system approach to describe transport
of a substance from the point of deposi
tion on a watershed to the outlet of the
watershed is that developed by Huff
(Huff and Kruger 1967 (a, b)). Jn his
initial work at Stanford University, Huff
used the Stanford Watershed Model to
describe the movement of water
through a basin and expanded it to
include the transport 0f radioactive
aerosols (Sr90). Subsequently, he and
his associates at the University of Wis
consin (Huff et al 1970) are attempting
to modify the radionuclide transport
model to include the transport of nutri
ents (Watts et al 1970). The initial
attempt in this area is the modeling of
the transport of nitrogen in an effort to
discover mechanisms by which nutrient
enrichment of lakes and streams is
related to human activity.

Bloom et al (1970) used a very
elementary lumped storage representa
tion of soil water and surface water as
elements of a mathematical model to
evaluate the transport and accumulation
of radionuclides. Their model was very
comprehensive in that it attempted to
include the transport of radionuclides
from deposition on plants and soil,
transport by water, ingestion by fish
and finally ingestion by man. This com
plex system was subdivided into ten
“compartments.” From continuity con
siderations, the behavior of the system
was described by the system of equa
tions:

dy. N
~D Aj~y~,i1,2,...N;

dt n1
n#i

[11]

where
the amount of radionucide
in the ith compartment

y,, = the amount 0f radionuclide
in the nth compartment
the transfer rate coefficient

A11 the elimination-rate coeffici

N the total number of com
partments in the system.
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FIG. S Schematic diagram of (a) watershed and (b) three-dimensional,
discrete model of the watershed (from Freeze and Harlan).
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Equation [11J is obviously a special
case of equation [10].

The authors contend that this simple,
linear, lumped-system model is justified
because sufficient experimental data are
not available to estimate parameters of
more complex models.

Two models that use a distributed
system approach toward describing wa
ter quality in an urban environment
have been reported recently (Metcalf
and Eddy, University of Florida and
Water Resources Engineers 1971, Uni
versity of Cincinnati 1970).

Hyatt et al (1970) developed a simu
lation model of the transport of salts in
the upper Colorado River Basin. The
hydrologic transport model used was
similar in structure to the Stanford
model but was solved by an analog
computer. The salt transport model
ignored ionic exchange and chemical
precipitation phenomena within the soil
and therefore is only applicable to
steady-state situations. The basic time
unit was one month and the smallest
spatial unit was a sub-basin of the
Colorado River. in further work at Utah
State (Thomas et al 1971) a salt trans
port model has been developed that
includes reactions occurring in the soil
such as ionic exchange and chemical
precipitation of gypsum and line. Both
of these models are intended to aid
management decisions with regard to
water quality effects of irrigation.

If we consider only the lumped
parameter storage models, adding a wa
ter-transported pollutant requires a par
allel system of flows and storages similar
in structure to that describing the flow
of water. The parameters of the quality
model include the hydrologic model
parameters plus certain reaction rate
parameters to describe transformation
of the substance under consideration.
Certain elements of the hydrologic mod
el may be more important in predicting
water quality than they were in predict
ing streamfiow rates.

SUMMARY AND DISCUSSION

In this paper, I have briefly discussed
the structure of current general water
shed models or those that include im
portant parts of the hydrologic cycle
and have been used or could be used to
describe the transport of pesticides,
nutrients, radioactive nuclides or other
substances. The objective of most water
quality models has been to predict
dissolved oxygen concentrations in seg
ments of a stream or an estuary. The
more advanced models treat the river as
a one- or two-dimensional unsteady

system and involve the numerical solu
tion 0f partial differential equations.
Obviously, any model describing the
dissolved oxygen content can also de
scribe transport of conservative sub
stances.

The Stanford Watershed Model has
been used to describe the hydrologic
transport of radioactive aerosols
(Strontium 90) with some success and is
being modified to handle transport of
nutrients. The nutrient transport prob
lem appears to be less suitable for a
lumped-system approach because the
inputs are not spatially uniform. The
transport of nitrogen as an important
nutrient seems to be especially difficult
because it can exist in six major forms
including organic compounds, all 0f
which must be induded in the model.
Added to the hydrologic complexity
which includes transport and storage of
liquid water and its transformation into
solid or gas are the chemical or biologi
cal transformations of the various nitro
gen forms. While many 0f these trans
formations can be described quantita
tively in the laboratory, little can be
said regarding the extent to which they
take place under field conditions
(Stanford et al 1970).

Another problem which appears to
be significant is that of estimating initial
conditions. In hydrologic modeling, the
initial conditions may not be particular
ly important because the system has a
relatively short memory—the state of
the system after a few years is not very
sensitive to the initial condition. How
ever, nutrients present in soil can be
very large compared to those added by
fertilizer and will affect the system for a
long time.

Considering the urgency of the prob
lems associated with water quality, it is
certainly desirable to construct mathe
matical models describing these phe
nomena. However, we must give more
serious attention to the question of
model verification. Can we say in any
meaningful way that model A is better
than model B? if we cannot do this, we
are unable to determine if we are
making progress in our research a very
unsatisfactory situation. it appears to
me that research into environmental
aspects of hydrology should involve two
types of modeling: (a) models of rela
tively complex systems and (b)models
of very simple systems. in constructing
models of complex systems, we will find
out what we need to know and we may
develop operationally useful interim
models. However, only by carefully
constructed, controlled experimentation
on a more limited scale can we obtain

unambiguous answers to specific re
search questions.

Empirical, lumped-system models
will probably be useful tools in predict
ing transport of substances which are
naturally present in the environment
and which are currently being moni
tored. However, if we must evaluate the
environmental impact of new substances
before they are released or if the trans
port system itself may be changed,
theoretical models appear to be the only
possible approach. This means that we
must develop objective techniques of a
priori estimation of model parameters.

Effective research on transport of
environmental contaminants by water
will inevitably involve several disciplines
because of the variety of problems in
volved in constructing adequate models.
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