
]~4ATHEMATICAL watershed mod- with
1T-’-els that take into account the face
physical mech~sm of su~ace mnoff
consist of various geometric combina
tions of the basic components of over
land and channel flow. In rather sim
pie systems (a parking lot, for exam
ple), there may be a one-to-one cor
respondence between components of
the real system and components of the
model. If one considers even a small
agricultural watershed, however, the
number of planes and channels for
such a correspondence would become
extremely large; so, further simplifica
tion is necessary.

In a definitive series of papers, Hen
derson and Wooding (1.) ° and Wood
ing (2), (3), (4) presented analytic
and numerical solutions of the kine
matic-wave equations for surface run
off from a V-shaped watershed (Fig. 1)
and compared numerical results with
measurements from three natural wa
tershecls. In Wooding’s comparison all
watersheds, regardless of their com
plexity, were represented as a single
V-shaped watershed with overland
flow planes contributing lateral inflow
to a channel in the apex of the V. Al
though agreement between observed
and computed hydrographs was quite
good, he concluded that a better geo
metrical description of the stream net
work would be desirable. One feature
of the hydrographs that his model was
unable to reproduce was the steeply
rising portion of the hydrograph caused
by concentration of runoff,

A watershed model consisting of a
V-shaped section plus a portion of the
surface of a cone (Fig. 2) at theup
stream end may result in a better geo
metrical description because of the
concentration of flow on the cone. Such
a model could be taken to represent a

-watershed of any complexity or it could
be used as a basic element in a net
work model.

Veal (5) derived the continuity and
momentum equations for unsteady flow
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lateral inflow on a converging sur
and obtained numerical solutions

for certain values of the parameters.
However, his solutions were confined
to subcritical flow and he experienced
numerical difficulties when the parame
ters were in the range of hydrologic
significance. Woolhiser and Liggett
(6) demonstrated that, for one-dirnen
sional overland flow, the kinematic
wave approximation is valid for most
cases of hydrologic interest, and it ap
pears that it will be sufficiently ac
curate for converging flow.
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Overla~ad Flow on a Converging Surface ~
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where L0(1—r) is the length of the flow
plane, H0 is the normal depth at x =

iso ( 1—r) under steady-state conditions,
V0 is the steady-state normal velocity
at x = L0(1—r), and q0 is a normalizing
lateral discharge to be chosen later.

By substituting these quantities into
equations [1] and [4] we obtain

-~-+ u-!~!I+ n.~Ni =
at. ax. ax H0 V0

(1—r) q. + (1—r) u. h. . - [5]
[l—x.(1—r)]

and
U. = Iz.”—~ [6]

HV
If q0 is chosen to be 0 ~ and q,

is0 ( 1—r)
and u. are substituted into [5] we ob
tain (dropping the asterisks)

—~ + nhfl_i — = q +
at 3x

This paper presents solutions of un
steady converging flow in dimension
less form using the kinematic wave ap
proximation and examines some of the
properties of these solutions.

BASIC EQunioNs

The basic equations describing con
verging overland flow as derived by
Veal (5) are:

The continuity equation,
ah ah ,

— + U — -r Is — = q +
at ax ax

(is0 —x) [1] (1—r) ho
and the momentum equation, [1x(1~)] [7]

— + u + g ~L = g (S~
at ax at

— _q_ (it — n)
It

‘vhich is a partial differential equation
— S) having a single fashily of characteristics.

The differential equation of the char-
• [2] acteristic ground curves is:

where it is the local average velocity, Is
is the local depth, q is the rate of lat
eral inflow and has dimensions of vol
ume per unit area per unit time, S0
is the bed slope, S~ is the friction slope,
g is the acceleration of gravity, v is the
x component of the velocity of the lat
eral inflow, is0 is the radius of the flow
region, and x and t are space and time
coordinates (Fig. 2).

In the kinenihtic wave approxima
tion, all terms in the momentum equa
tion, except the term involving bed
slope and friction slope, are assumed to
be negligible. Equation [2] then be
comes

S~=S [3]

which can be written in the form
it ahn~ [4]

Using the Chezy friction formula a
would be C-QS0 and it would be 3/2.

Equations [1] and [4] can be writ
ten in dimensionless form by introduc
ing the following variables:
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and the time derivative along this
curve is:

(1__r)hn .. .[9]
cit [1—(1-—r)x]

which is a nonlinear, nonhomogeneous
ordinary differential equation of the
first order and degree.

I have been unable to obtain a gen
eral analytical solution to equations
[8] and [9], but they are readily
solved by finite difference techniques.

When lateral inflow ceases, equation
[9] becomes

dh (1—r) hn [10]

dt [1—(1—r)x]

If equation [8] is inverted and multi
plied by equation [10], there results:

dli (1—r) It [11]

dx n[1—(1—r)x]
which has the solution:

This article is reprinted from the TaugsAcrnoNs of the ASAE (Vol. 12, No. 4,Dp. 460, 461 and 462, 1969)
Published by the American Society of Agricultural Engineers, St. Joseph, Michigan



RIG. 1 Geometry of Wooding? runoff model. RIG. 2 Geometry of converging section.

With the following initial conditions

at x ;, I~ =

equation [12] becomes

Ii = [l—(1—r)x0] ‘~~h 0

[l—.(1—r)x] 1/n

FIG. 3 Solution domain.

= [l—(1—r)x] + In C~

[12]

acteristics with boundary conditions the expression for h0 at equilibrium, as
h(a, t) = 0; h.(; o) 0, are shown shown in equation [15],
in Fig. 4. The exponent ii in equation into equation [13] and into, equation
[6] was 3/2 for this run and the di- [14] with x = 1.
mensionless lateral inflow rate was Although the two equations resulting

~ 2r ( 1—i) 2r from this substitution could be com
q. = ~ 2\ = - bined into one equation expressing t’

~ i—r t as a function of discharge Q, the result-

The degree of convergence of flow is ing expression is quite unwieldy, so
indicated by the parameter r. A small Q and t’ are written as functions of the
value of r indicates a high degree of parameter’; (see equation [16] and
convergence. As r approaches one, the [17]).
flow approaches that of flow on a plane Recessions computed according to
surface. - equations [16] and [17] are shown

. in Fig. 4. The lateral inflow rate wasRecession Hydrograph set equal to zero at t = 1.8 for each

Two cases of the recession hydro- case.
graph are considered herein: (a) re- Rises and recessions from partial
cession from equilibrium and (b) re- equilibrium are shown in Fig. 5. These
cession from partial equilibrium, solutions were obtained numerically

The recession from equilibrium can and in all cases the lateral inflow rate
be obtained analytically by substituting was set equal to zero at t = t0 when

= { h0[1—(1—r)x0] 1/n —(n—i)

(Qn—1)(1—r) }
—

[13]

If the expression for Ii given by equa
tion [13] is substituted into equation
[8], the resulting equation can be
solved for t’ the time after the lateral
discharge stops until a characteristic
beginning at x0, t. intersects x (Fig. 3
and equation [14]).

The Rising Hydrograph

Rising hydrographs computed by
numerical integration along the char

0,
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n.j.
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FIG. 4 Rising hydrograph and recession from equilibrium. RIG. 5 Rise and recession from partial equilibrium.
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Q 0.6. Just as in the plane kine- cit — hn—1 to steeply rising hydrographs may be
matlc case, the partial recession’ curves — obtained by including a converging
coincide with recession from equilib- component in a mathematical water
rium after an interval T begmnmg at and shed model. The utility of such a corn
t = 4,. Within the interval 4, <t < 4, dh (1_r)hn ponent must be demonstrated by an
+ T the hydrograph for tine plane kine- = t7 + r1 j analysis of experimental or field data.
matic case is flat-topped, whereas the I. Th “t,Xj
hydrographs for values of r < 1 con
tinue to rise (apparently linearly) un
tal they intersect the recession curve. It
appears that When data show a rise in
the hydrograph after lateral inflow has
stopped, it is an indication of dynamic
behavior or convergence, or both. Con
vergence of flow can occur on plane
runoff plots with erodible surfaces be-

with boundary conditions h(o, t) = 0;
h (x, a) = 0

have been solved numerically for the
rising hydrograph and for the recession
from partial equilibrium for a number
of values of the convergence parameter
r. An analytic solution is given for re
cession from equilibrium.

An examination of the response of a
section of a cone to step and pulse in
puts of lateral inflow shows that the
shape of the rising and falling hydro
graphs may be changed appreciably by
varying the parameter r. A better fit

cause of the coalescence of small
rivulets.

Conclusions
The characteristic equations for kine

matic flow on a converging surface




