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Abstract. rartial differential equations describing the unsteady, one-dimensional mixing
process in an idealized homogeneous, linearly expanding estunry are presented and solved
numerically, using am implicit finite-difference scheme. These solutions portray the change in
concentration of conservative substances with time and distance as a result of tidal fluctuations
and variable inflow. Although the model presented is highly simplified in terms of estuarine
geometry, experiments with varying boundary conditions can provide insight into the ade
quacy of the more commonly used quasi-steady-state models.

INThODUCTION

Impurities introduced into estuarine water are
mixed and gradually diluted by fresh water in
flow, tidal action, and diffusion. Control or man
agement of estuarine water quality requires a
mathematical model that can quantitatively pre
dict the effects of changes in location, amounts,
and timing of waste discharges. The structure of
the model will depend largely on the nature of
the problem. If transients are of no importance,
then stationary solutions with boundary con
ditions described by periodic functions are ade
quate. On the other hand, an unsteady model
appears desirable if one considers the following
examples as management possibilities confront
ing a control agency concerned with estuarine
water quality:

1. The operation of a waste treatment plant
may be cycled such that its discharges will
coincide with the variations in tidal currents
that result in the most efficient transport of
wastes out to the sea,

2. A water intake may be operated to with
draw water of the highest quality possible dur
ing the cyclical water quality fluctuations im
posed by the tides.

3. The short-run operation of a water-related
facility may be modified when an intense, short-

duration storm strikes the area and causes rapid
deterioration of water quality.

The purpose of this paper is to present a
mathematical model that simulates the non-
steady hydrodynamic behavior of an estuary and
to incorporate this into a model that predicts
the dispersion of a conservative impurity in
estuarine waters. It was anticipated that nu
merical experiments carried out on such a model
could provide insight into the adequacy of the
more commonly used quasi-steady models.

‘IRE HYDRODYNAMIC MODEL

The motion of tidal waters is caused not only
by gravity and tidal action, but also by density
currents and wind shear. A realization of the
complex nature of the driving forces leads to
the conclusion that it is desirable to make some
compromise between the completely rigorous
mathematical formulation and the practical
necessity of building a workable model. The
simplifying assumptions introduced must be
consistent with prototype conditions for a valid
model.

The proposed model is typical of several
estuaries located on the eastern seaboard of the
United States, and its practical application in
each of these cases is not diminished by the
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general, rather than specific, approach taken
herein. The following assumptions apply to the
flow equations that were used:

1. The channel has a rectangular cross sec
tion, linearly diverging sides for which the rate
of divergence is sufficiently small to approximate
unidirectional flow at any cross section, aiid
constant bed slope, sufficiently small that the
sine of the angle of slope may be taken to be
equal to the tangent and the cosine to be equal
to unity.

2. The flow velocity is uniform over any
cross section.

3. The fluid is of homogeneous density
throughout.

4. The energy losses resulting from boundary
drag and turbulence can be accounted for by a
resistance factor that is determined from the
slope of the energy gradient; the resistance
factor for uniform, steady flow may be applied

to nonuniform, unsteady flow of the same depth
and average velocity.

5. The flow is subcritical at all times.

The model estuary adopted for this analysis
is displayed in Figure 1; the following notation
will be utilized:

1. ; the longitudinal coordinate system
whose origin is taken at the upstream boundary:

2. h, the water depth, a function of x and
time only;

3. u, the velocity of flow, a function of x
and time only;

4. L,, the length of the estuary;
5. B0, the width of the channel at the up

stream boundary;
6. b, the expansion rate of the channel sides;
7. B, the channel width, related to z by the

following expression:
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Fig. 1. Idealized estuary.
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S. 2,, the bed slope;
9. Qo, the mean river discharge into the

estuary;
10. H,, the normal water depth at the up

stream boundary at discharge Q°.
11. 110, the normal velocity at the upstream

boundary at discharge Q,.

PflE EQUAPIONS OF FLOW

By writing the equations of flow in non-
dimensional form, it is possible to apply a given
solution to many flow conditions by selecting
convenient reference quantities and defining the
dimensionless variables by the following ratios:

= tV0/L0
where the subscript designates a reference
quantity, and t represents the independent var
iable time.

Substituting the above dimensionless quanti
ties into the continuity and momentum equa
tion for unsteady free-surface flow in an ex
panding section, we obtain the following di
mensionless expressions:

The dimensionless equation of continuity

+ ~ + L0u,,h~b + = 0(1)
Xe 0 * *

and the momentum equation

ôu~ 1 ai~
m + 28x,~, 3t~ F0 Ox~

— 80L0 ( u.~ Iu~J
H0 F02 \ —

where F, is a dimensionless
fined by the relation

F,, =

SOLUTION OF THE EQUATIoNs OF FLOW

The simultaneous solution of the equations of
continuity and motion consists of finding the set
of functions of x,, and t1. which, when substituted
in the equations in place of the unknowns u,,,
and h~, will satisfy them identically. Since the
equations are highly nonlinear, the solution can
best be obtained numerically.

The equations are typical of initial value
problems as discussed by Richtmyer [1957].

The properties of these problems are such that,
given the state of the physical system at some
initial time to, the solution for t greater than to
is uniquely determined by the above~ equations
and the specified boundary conditions.

Finite Difference Forms of the Equations of
Flow

1. The height of the water surface is speci
fied as a function of time, the data being avail
able from records of river stages.

2. A condition of antisymmetry is assumed to
exist for the variable h. This has been called a
transmission boundary condition by ~Shamir and
Harleman [1967] and guarantees a continuation

The solution technique chosen consists of re
placing the partial differential equations and the
associated initial and boundary conditions with
an equivalent discrete approximation. Thus, the
continuous derivatives are replaced by finite
difference approximations, and the desired func

— — — / tions are evaluated only at discrete points in the
— a1 — li/fl0 ~ — U/V0

solution domain.
= B/B0 = I + bz/B0 The solution domain is shown in Figure 2 with

the finite difference net superimposed; its re
lationship to the physical situation is indicated.
The implicit difference scheme used herein is
centered about an imaginary grid point at

= i + %. The difference scheme used and
the algorithm used for solution of the resulting
simultaneous equations are essentially the same
as those used by Ligqett and TVoolhiser [1967].

Initial conditions. The initial values of u
and ii are difficult to obtain, because of the
dynamic condition that exists in an estuary.
Therefore, arbitrary initial conditions are se
lected to conform with the anticipated flow
patterns. As the solution progresses through
time, the influence of the initial conditions
diminishes, and the solution is completely de
termined by the boundary conditions. When
this state is reached, the dynamic flow patterns

(2) are properly described, and all succeeding cal
culations may be performed by redefining the

Froude number de- initial conditions to be those final values re
sulting from the preliminary solution.

Upstream boundary. The boundary condi
tions imposed on the solution of a differential
equation describing a physical system vary with
the nature of the problem. The two conditions
imposed at the upstream boundary are:
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I bi Longitudinal Profile

Fig. 2. Solution domain.

of the slope of the water surface through the
boundary.

Downstream boundar1j~ Tidal fluctuations
are imposed on the model at the downstream
boundary. The tides were characterized by the
single component

h = H0 + A, cos(a,t+ ~i)

where H0 is the height of mean sea. level above
the channel bed, and the tidal parameters are

A,, the amplitude or semirange of the simu
lated tide;
a1, the speed, which defines the period as
360°/a,;
a,, the initial phase.

The parameters listed are readily available for
many coastal locations. The following are pre
scribed at the downstream boundary:

3.
(1) The tidal height 1’, as given by equation

(2) A condition of antisymmetry is assumed
to exist for k.

AccuRAcY AND STABILITY

If u(x, t) is the exact solution of the initial
value problem, and u~ is the solution of the
finite difference equations, the error of the ap
proximation is

— uQ ax, i ~t~I
(3) It is desirable to know the behavior of the

above error term, as the numher of calculation
cycles becomes very large, and there is the pos
sibility of unlimited errors due to truncation
roundoff or other causes.

For properly formulated explicit schemes, the
following Courant condition is imposed on the
relative step sizes to prevent these errors from
becoming so amplified over n cycles that the
solution is meaningless:

Ax/at ≥ I~~I + C
where C is the wave celerity for the given
channel depth.

A linear stability analysis of the implicit
schethe used in the study indicated uncondi—
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tional stability. However, we observed instabili
ties in the solutions in some cases. These insta
bilities were eliminated by reducing the step
length. This finding agrees with the work of
Meijer et at. [1965], who used an implicit
scheme for solving a simplified form of the same
equations.

An implicit scheme was adopted for this study
because of its theoretically stable nature and
because several explicit schemes had been un
reliable for the overland flow problem [Liggett
and Woollriser, 1967]. Since this work was
completed, the group at Delft, who have had a
great deal of experience with estuary and river
problems, have used explicit methods very suc
cessfully. They have shown that the apparent
unreliability of some of the conditionally stable
explicit methods was caused by the manner in
which the friction term was handled in discrete
form [Vreugdenhil, 1966]. Consequently, the
use of explicit schemes for this problem should
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not be dismissed, as they have many advantages
where the channel geometry is complex.

VERIFICATION OF THE SOLUTION

Liggett [1961] presented a method for com
puting open-channel profiles for steady, non
uniform flows. Figure 3 presents a test case
solution resulting from the proposed hydro
dynamic model operated under steady-state
boundary conditions as compared with the so
lution obtained by Liggett. From this com
parison we concluded that the hydrodynamic
model and the finite-difference algorithm were
acceptable.

THE DI5PER5ION X~IODEL

Mass transport in tidal waters involves three
basic mechanisms:

1. Advection, the time-smoothed mass aver
age flow resulting from the bulk fluid velocity;

__~6

a—
~o—~

Steady state
Velocity Profile

0

station

0

to
a

0

÷ Liggett 0 Finite Difference

steady state
- Depth Profite

I I I

S to
station

Fig. 3. Verification of the hydrodynamic model.
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becomes2. Turbulent diffusion, the fluctuating mass
flow resulting from the local fluid velocity;

3. Molecular diffusion, the random migration
of individual molecules resulting from their
kinetic energy.

The model presented herein is based on those
mixing processes characteristic of an unstrati
fied type-D estuary, as outlined by Pritchard
[1955]. The simplifying assumptions involved
are: -

1. The mechanism of turbulent diffusion is
analogous to that of molecular diffusion and
obeys Fick’s Law;

2. Molecular diffusion is negligible when
compared with turbulent diffusion and advee
tion;

3. Advective and diffusive transport occur
only in tile longitudinal direction.

4. The concentration of contaminant is uni
form in the vertical and lateral directions at
any cross section.

The parameters of the conservation equation
are those presented previously, with the follow—
ing additions:

1. c is the concentration of contaminant, a
function of x and time only;

2. ac/Ox is the longitudinal concentration
gradient;

3. C9 is the mean concentration value at that
station along the channel where concentration
is a maximum.

4. E is the longitudinal coefficient of turbu
lent diffusivity and is assumed to be a function
of x only.

The conservation equation is constructed from
a materials balance on the element under con
sideration. The equation states that the net
rate of mass flux into and out of the element,
plus that produced at the sources during a
small interval of time dt must equal the time
rate of change of mass within the element.

Mass balance equation in nondimensional
form. The nondimensional form of the con
servation equation is obtained by utilizing the
dimensionless variables defined previously and
introducing the following ratios:

c/C0 E~ E/(L9T70)

(4)

The method of solution of the mass balance
equation, a typical initial value problem, very
nearly parallels that outlined for the flow equa
tions. The grid system employed is identical with
that used previously. The values of u,,~, and h~
are now known and are used to evaluate the
coefficients of the conservation equation.

An implicit difference scheme, centered at
t = i + 1/2, was employed to write the mass
balance equation in finite difference form. A pre
liminary solution was performed utilizing arbi
trary initial conditions and allowing the trans
ient response to die away. The resulting tin-

steady concentration profile served as the initial
condition for all succeeding computations.

The basic simulation model developed was
used to investigate the following cases:

1. The salinity profiles resulting from the
intrusion of sea water;

2. The dispersion pattern resulting from a
continuous waste discharge;

3. The dispersion pattern resulting from a
slug waste discharge.

5EA WATER INTRU5ION MODEL

Upstream boundary: The condition states
that the concentration of salt at the upstream
boundary must equal zero; this is consistent
with the fresh water inflows at the head of the
estuary.

Downstream boundary: The downstream
boundary was constructed at a fictitious point 0,
a distance D beyond the niouth of the estuary.
The concentration of salt at point 0 is equal to
that of sea water C,. If the concentration of
salt at the mouth were specified as that of sea
water, it would imply that the fresh water in
flows to the estuary do not exert a dilution
effect at the mouth. The imaginary boundaryThe mass balance equation in its final form
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used herein allows for possible concentration
fluctuations at the entrance while assuring a
constant concentration farther out to sea.

TRE CONTINUOUS WASTE nrscxxAuGn MoDErj

Upstream. boundary. An antisymmetry con
dition was specified at the upstream boundary,
justified by assuming that the variable concen
tration at the boundary would remain small, and
hence that the curvature of the concentration
profile would be negligible.

Downstream boundary. The downstream
boundary was constructed at a fictitious point 0,
as discussed previously. The reasoning for con
structing such a boundary in this case is similar;
waste concentrations do not approach an infinite
dilution at the entrance to the estuary, but
rather at some distance farther out to sea. Thus,

0

0

5,

0
C)

the concentration at point 0, a distance D from
the mouth, is zero for all time.

Internal boundary. If discharge is contin
uous, an internal boundary condition is neces
sary. This boundary is permanently located at
the station nearest the outfall and consists of the
concentration of contaminant at the outfall sta
tion. This concentration is compuftd from an in
ventory equation covering the entire estuary.

sLUG WASTE DI5CRARGE

Upstream boundary. The upstream boun
dary was identical with that specified for the
continuous discharge model.

Downstream boundary. The downstream
boundary also was identical with that prescribed
for the continuous discharge model.

Internal boundary. An internal boundary is

1,0

slug Discharge Time: 8 hours
o Analylic
• Finile Difference

0’
Time, 3 hours

~iitlla

TimeS hours

Time: I hour

0
slolion

Fig. 4. Verification of the dispersion model.
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necessary to trace the motion of a slug of con
taminant in the estuary. This boundary is lo
cated at the modal value of concentration of
contaminant and is initially at the station near
est the outfall. However, it is translated through
the estuary by the unsteady tidal currents. The
value of concentration to be specified is then de
termined by the inventory procedure mentioned
previously.

~ccunncy AND STABILITY

The dispersion model did not exhibit insta
bilities for the mesh sizes used; these mesh sizes,
however, were governed by the step size im
posed on the hydrodynainic model.

Verification of the Solution: A closed analytic
solution [Kent, 1960] exists for the one-dimen
sional mass balance equation if the following
simplifications apply:

1. Steady, uniform flow with velocity ü;
2. A slug of conservative contaminant is

instantaneously discharged at one point in the
channel;

3. Diffusion and advection are the only forms
of mass transport. The form of the solution is

I ~A 2frE)”2 ~ a dx

Figure 4 compares the analytic solution with the
values resulting from model simulation of the
same problem. The agreement was satisfactory
over the range of a and t studied. -

EE5VLT5

General. The model was programmed in the
Fortran 63 language, and the computations
were performed on a Control Data 1604 Com
puter. The hydrodynamic model and the three
dispersion models were written as separate sub
routines; therefore, one may assemble the de
sired components to suit the particular problem
under investigation.

Approximately one minute of computer time
is necessary to simnlate 24 hours of data for a
single water quality parameter. The results, pre
sented in graphical. form, can be readily ex
amined for long-term and short-term trends in
water quality.

APELICATLON C A HYPOTHETIcAl2 ESTUARY

The capabilities of the unsteady model are
demonstrated by simulating water quality in a

(.0
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e(x,t) i/..pi\ 4J~

0

a
0

0z
0

0
0

C

I-c ~
0

lime (Hours)

Fig. 5. Salt intrusion, low flow conditions, profile at Station 7.
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Fig. 6. Continuous discharge mean flow conditions, profile at Station 4.

hypothetical estuary
given as

whose parameters are

L0 = 158,400 ft H0 20.0 ft
B0 = 2,000 ft II~ = 20.0 ft

b = 0.018 A1 = 2.0 ft
So = 0.00002 a5 = 28.91°/hr
Qo 80000 cfs a~ = 0
V0 = 2.0 fps B = 24—48 sq mi/day
Co = 1.0 ppm

The mesh size chosen was:
.0091. The ratio Az/At did
of instability.
The results presented are:

1. Salt intrusion under low flow conditions.
Figure 5 shows the time variation of salt con
centration at station 7 as the fresh water inflow
is gradually diminished to one-half the mean
flow value. Only the peaks and valleys of conS
eentration depth and velocity are plotted in
Figure 5. Actually, there were about 15 points
between each of those on the figure.

2. Continuous waste discharge. Figure 6
shows the time variation of concentration at
the outfall for mean flow conditions.

3. Slug waste discharge. Figure 7 shows the

time variation of concentration at the outfall for
mean flow conditions.

APPLIcATION 2: ~nn DELAWARE ESTUARY

The assumptions on which this model is based
were found to approximate roughly prototype
conditions in the Delaware Estuary. One method
of evaluating the practical performance of the
model is to compare recorded observations
with model predictions.

The values of parameters used to describe the
Delaware Estuary from Trenton, New Jersey
to Reedy Island, Delaware, are

H0 18.0 ft
= 18.0 ft

A1 = 2,5 ft
a, 28.91°/hr

mj
E = 5—15 sq mi/day

This attempt did not succeed, however, because
of serious problems with the hydrodynamic
model. Figure 8 shows that the steady-state dis
charge profile clearly violates continuity, in that
upstream inflow is 51,854 cfs and the down
stream discharge is 50,637 cfs.
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Fig. 7. Slug discharge, mean flow conditions, profile at Station 3.
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The boundaries came under suspicion and
were investigated more thoroughly. In partic
ular, the antisymmetry condition was questioned.
For this purpose the Method of Characteristics
must be introduced. Stoker [1963] discussed the
theory involved, and Veal [1966] presented an
application closely related to the model study in
this thesis.

The characteristic solution requires that only
a single parameter be specified at the boundary,
either Ii or ii, or a unique relationship between
them. Assuming that the depth is specified at
both boundaries, the antisymmetry condition
becomes mathematically redundant and may
introduce errors when curvature is present.

To verify whether or not this was the source
of the error, a steady-state model solution was
obtained by imposing the correct steady-state
profile as initial conditions. The results are
shown in Figure 9 and confirm the above hy
pothesis. The solution within zone A, influenced
solely by the initial conditions, remains un
changed from the correct values, indicating sta
bility in the finite difference scheme. The re
mainder of the solution, affected by the steady
boundary conditions, shows the fluctuations
propagated in from the boundaries.

CONCLUsIONs ~wn RECOMMENDATIONS

The differential equations incorporated in the
estuary model proposed in this paper are based
on sound physical principles. The difficulties
that appeared in simulating the Delaware Estu
ary apparently stemmed from the assumed con
dition of antisymmetry at the boundary. This
approximation was poor for the Delaware Estu
ary because of the significant amount of curva
ture in the depth profile at the upstream boun
dary.

Future work should concentrate on validating
the model—as an example, the verification at
tempted herein using the Delaware Estuary. The
difficulties associated with the antisymmetry
boundary condition may be eliminated by using
a characteristic solution at the boundaries. In
joining the irregular characteristic net with the
rectangular implicit net used for the interior
points, certain interpolation errors will result,
especially where curvature is significant. How
ever, it is felt that the characteristic solution is
preferable to assuming antisymmetry at the
boundaries.

Extension of the model to simulate estuaries
with tributary inflows, nonlinear variations in
channel widths and slopes, and multiple outfalls

c~P,ot’(c

S

Slotion

Fig. 9. Zone A solution.
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is readily possible by virtue of the finite differ
ence solution used to solve the differential equa
tions.

The nondimensional parameters of the solu
tion F,’, (S,L,)/(Hy:) and (L,b)/B, permit an
investigation of the effect of parameter variation
on water quality that requires only a fraction
of the number of trials necessary when dimen
sional equations are employed.

A natural extension of this problem would be
a model for predicting concentration profiles for
nonconservative substances. It is recognized,
however, that there is very little information
available on the nature of decay processes in
unsteady tidal streams, and that research in this
area is essential if mathematical models are to
be relevant to real problems.
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