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The papers that have been assigned to me as a general reporter illustrate very
well the number of new ideas and the diversity of research approaches that make
modern hydrology a vital and exciting field.

In general we can make no deterministic statements regarding the occurrence,
circulation and distribution of water in a hydrologic system at any particular time.
Because the output of a watershed, runoff, is related to at least one stochastic
input, precipitation, the runoff process is stochastic and can only be described
in tents of probability laws. However, if the initial conditions of the watershed
systen are known and the input is specified as a deterministic function of tine,

the output is also deterministic As I view it, deterministic hydrology refers to
the development of models for each component of a watershed and integration of these
components into a complex system. Such models promise to be very useful both as a
means of understanding hydrologic phenomena and as tools in water resource system
design. The development of objective criteria for determining the degree of com
plexity of hydrologic models is an important research problem in deterministic
hydrology. While abstraction is necessarily involved in building a model of nature,
the parameters in the systems of equaitons which make up these models must have
physical significance if they are to be anything more than complicated curve—fitting
devices.

In his laboratory study of watershed hydrology, Chow1 is making a frontal
attack on many of the currently important hydrologic problems. Most of his paper
is devoted to a description of the Watershed Experimentation System, the rationale
behind its construction and some of the research tactics that have been used or are
proposed.

The watershed experimentation system is a laboratory device for studying
unsteady, free—surface, hydraulic problems. Chow has coined the term watershed
j~y4~aul~s to distinguish it from the hydraulics of overland flow and open channel
hydraulics. This would appear to be a logical step if there are strong inter
actions between overland flow and open channel flow in the watershed system.
There is evidence, however, that in most cases overland flow can be treated as a
kinematic wave problem2, In these circumstances the overland flow portion can be
separated from the channel flow problem because no downstream boundary condition
is needed to solve the overland flow problem, While the overland flow affects
channel flow, the reverse is not true. Consequently, the general problem reduces
to unsteady flow im branching channels with lateral inflow. Although this problem
differs in geometrical complexity from the usual problems treated in open channel
flow, there is no fundamental difference.

Putting aside the question of terminology, it is obvious that the laboratory
watershed described by Chow will provide opportunities to study unsteady flow In
a number of geometrically different systems. It appears to be a powerful tool in
testing purely mathematical models of watershed hydraulics and also in testing the
applicability of lumped system models (linear or nonlinear) over the range of
prototype sizes that can be accommodated.

T. Chow, “Laboratory Study of Watershed Hydrology,” International
Hydrology Symposium, Paper No. 26.

20. A. Woolhiser and S. A. Liggett, “Unsteady, One—Dimemsionsl Flow Over a
Plane — The Rising Hydrograph,” Water Resources Research (In Press).
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Studies of surface runoff on small prototypes without spatial variation in
rainfall will unquestionably answer some interesting hydraulic and hydrologic
questions. When spatial variation of rainfall is introduced, however, modeling is
necessarily involved. The same conclusion can be reached with regard to saturated
flow which is quite likely to be of little consequence on 40— x 40—foot prototype
watersheds.

Jobling and Turner3 have described an interesting method of experimentally
simulating infiltration in a tilting flume.

The implications of their nethod are more easily understood if their equations
are written in a dimensionless form. Define the following dimensionless variables.

h t A2(h)
H+H* A* (1)

0 1

where H+H*
° /2g (H+H*)

and A2(h) is the area of container 2 expressed as a function of the depth h.

The other variables have been defined by Jobling and Turner.

W~en the dimensionless variables are inserted into equations (27—6) and
(27—8) with H*, the downward displacement of container 2 included, the dimen
sionless area Aft can be solved for explicitly as a function of h~ and two
dimensionless parameters. When a — 0.5 the following equation results:

A 1(2 c a h½

— +~r~ [32g (H + H*)3]~ {U — h~Y3~~2 ~ * h ~2J (2)11 11 *

This equation has been plotted in Fig. 1 for several values of the parameter

—1 assuning that c1 — c2 . This figure shows that if c1 — c2 and the ratio

a2/a1 is taken to be near 0.5 or 0.6 then the area of a container 2 is very

nearly constant over the range 0 < h~ < 0.75. Furthermore if different depths
of channel flow, H , are to be investigated, the dimensionless parameter

AK2 r
...L_._ [32g (H + H*)1~ can be kept constant by an appropriate choice of 14*

11

A. Jobling and A. K. Turner, “The Simulation of Infiltration for Studies
in Overland Flow,’ International Hydrology Symposium. Paper No. 27.

4Equation (27—6) refers to equation 6 in Paper No. 27.
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Consequently, the area of container 2 can renein a constant and the Kostiakov
expression with a 0.5 will be very closely approximated.

While the apparatus described by the authors can simulate infiltration for
steady flows (H — const.), it appears that this case would be very infrequent in
the study of overland flow or surface irrigation. The resulting infiltration rate
will be quite responsive to depth of flow and will no longer resemble the Kostiakov

expression. Apparently the only way to circumvent this difficulty with this equipment is to choose 11* very large in comparison with the maximum depth of flow. In
this manner the apparatus can be made relatively insensitive to changes in depth of
flow, and infiltration from unsteady flow conditions could be approximated.

Ibrahim and Brutsaert5 have approached the infiltration problem in a
mathematically rigorous manner by beginning with the partial differential equations
describing flow in unsaturated porous media. They have obtained solutions to these
equations by numerical methods and have examined the effect of hysteresis in the
moisture—suction relationship on the solutions. They have also recognized that
while the solution to this equation gives physically meaningful results, these
methods will very likely be used to investigate properties of the solutions rather
than as a means of simulating infiltration for whole watersheds, Consequently,
they have related their solutions to empirical equations proposed previously. By
so doing, they have been able to establish ranges of validity for certain of these
equations.

It would have been desirable for the authors to have selected a normalizing
length which expressed some fundamental property of the medium and the fluid
rather6than the depth increment Az which is quite arbitrary. Corey, Corey and
Brooks used the length L — P~,/~g as the normalizing length where is the

bubbling pressure for the given medium and liquid, and as usual p is the fluid
density and g is the acceleration of gravity.

It would be interesting to convert the results of Ibrahlm and Brutsaert to a
dimensionless form with length normalized using the “bubbling pressure” for compar
ison with future studies.

The authors’ statement “. . . the controversy about the exact value of n
at least for the infiltration problem . . . may be considered as resolved.” is not
adequately supported by the material presented in the paper.

According to an analysis by Brooks and Corey7, n 3 + 2/A where A is a
positive parameter of the pore—size distribution. The minimum value n can
assume is therefore approximately 3, which could occur for a medium with very
uniform pore size. Because A becomes small as the variability of the pore size
increases, n has no apparent upper limit. It appears that the value of n for
most soils lies between 3 and 4, however, Brooks and Corey presented data for
highly aggregated Pullman clay loam which indicate an n value of 7.2.

5H. A. Ibrshin and W. Brutsaert, “The Recovery of the Infiltration Capacity
after Drainage,” International Hydrology Symposium. Paper No. 30.

6G. L. Corey, A. T. Corey, and R. H. Brooks, “Similitude for Non—steady
Drainage of Partially Saturated Soils~! Hydrology Paper No. 9. Colorado State
University, Fort Collins, Colorado, August 1965.

7R. H. Brooks and A. T. Corey, “Properties of Porous Media Affecting Fluid
Flow.” Proc. ASCE Vol. 92, No. IR2. June 1966, pp. 61—88.



A subsequent computer run on Ibrahim and Brutsaert’s model with n = 3
indicated that the solution is indeed insensitive to the magnitude of n for
~ < n 4~. It appears that the variability of n is unimportant for the infiltra
tion problem for most soils.

Ibrahim and Brutsaert’s investigation into the recovery of infiltration
capacity after drainage is very promising. The research strategy of obtaining
solutions to the theoretical equations and then attempting to relate properties of
these solutions by empirical means can be very fruitful. Empirical equations
obtained in this manner can then serve as the mathematical model to be used in
analyzing field data.

Holtan, England and Allen have taken the approach that an infiltration model
based upon currently available soils information is needed as a tool in watershed
engineering. They propose a lunped parameter model consisting of three storages.
the contents of which are q1, q2, and q3 (see Fig. 2). q1 represents the volume of

water in depression storage. q2 is the volume of water held by capillary attraction

above an impeding layer and q3 is the volume of gravity water above the impeding layer
The precipitation input to storage 1 is and the outputs are surface

runoff y1 and infiltration y12. The parameter associated with storage 1 is

K1 which is the maximum volume that can assume. y12 is the input to storage

2 and in general the outputs are y23 which is the input to free water storage

and evapotranspiratiom rate, y3. y3 is not directly dependent on q2 and is
apparently considered to be zero during precipitation. The maximum storage K2 is

the parameter associated with storage 2. storage 3 has a maximum capacity K3

and the output is deep seepage y3. having a maximum value of

By utilizing the principle of continuity and the known relationship between
outputs (and inputs) and storage, we can write the state equation for the system.
a coupled system of ordinary differential equations.

n

= x1 — y1 — y12 — U(q1 — K1) y1 — a[(K2 + K3) — (q2 + q3)] —

where U(q1—K1) = 1 when q1—K1 = 0

and when q1 — 0, y12 nm a [(K2 + K3) — (q2 + q)Jn + ~c]

8W. H. Brutsaert. Personal Communication, June 1961.

9a. N. Holtan. C. B. England. and W. H. Allen, Jr .,“Hydrologic Capacities of
Soils in Watershed Engineering,” International Hydrology Symposium. Paper No. 29.

(3)

— o otherwise.

dq1 —

Note thatwhen q1 K1, — 0
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The rate of c~hange in capillary storage is

dq2
— — ~23 — 73 = a [(K2 + 1(3) — (q2 + q3)]n +

+ f, — U(q2 — K2) ~23 — U(q2) 73

where U(q2) 1 when q2 > 0

0 otherwise

and U(q2—K2) = 1 when q2—K2 = 0

0 otherwise

— 0 when q2 K2

The rate of change in gravity storage is

dq3

dt = ~‘23~’2 — u(q2K2)y23y2 (5)

Owhen q3 1(3

where ~‘2 — mm [y23, f~) when q 0

when q > 0

A general solution to these equations is not available unless some restrictions
are placed on the input x1, so numerical methods are mandatory for practical

cases. By assuming, however, that > ~ it is possible to solve analytically

for the infiltration capacity y12 for certain initial conditions and values of n

and compare it with the solution obtained by Ibrahin and Brutsaert.

If we add the time derivatives of q2 and q3 we obtain

fr + q3) = ~l2 — ~‘23 — 73 + — (6)

Consider the initial condition (q2)° < K~, (q3)° = 0. Them,

assuming zero evapotranspiratiom e.g. 73 — 0, this equation becomes



+ q3) ~‘l2 — a[(K2 ÷ 1(3) — (q2 + q9J° ÷ ~c (7)

with the initial condition (q2)° ‘~2 and (q3)° = 0,
equation (6) becomes

fr(q2+q3) = ~(q3) Y12-•Y2 a (K~ —q3)° (8)

To compare these equations with those of Ibrahim and Brutsaert it is convenient
to introduce the following normalizing quantities:

_____ tfc

• (9)

After substituting these quantities into equation (7) we obtain

dq~ + 1()m n
= a (l—q~) +1 (10)

* c

which is also the expression for infiltration capacity. This equation can be
solved analytically for certain values of n. For n = 1 the solution of equation
(10) results in the Horton infiltration equationlO. It can also be solved for
other values of n although the resulting expressions are quite unwieldy.

For n = 1.5 (as compared with n = 1.4 as recommended by the authors) the
relationship between t,, and accmnulated infiltration for the range
0 < q~ < 1 is:

= 3~IZ [s loge (I~2(: lcz+z2 ) + iT tan~ 2z _i] + 2C1 (11)

where z = (1 — q)½

a(K2 + 1(3)3/2
b

c

10o. E. Overton, ‘Mathematical Refinement of an Infiltration Equation for
Watershed Engineering,” USDA, Agricultural Research Service 41—99, Dec. 1964.
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and C1 is a constant of integration. For the initial condition

t~, = 0 , q~ 0

and with the parameters specified in the exapmple presented by Holtan, England and
Allen, C1 = 0.0555. Equation (11) is compared graphically with cumulative

infiltration curves from Ibrahim and Brutsaert in Fig. 3. While the curves do not
coincide because of differences in definition of the normalizing time, the slope
of the line is very close to that obtained by Ibrahin and Brutsaert. Any comparison
beyond the value of — 1 is not valid because Holtan, England and Allen assume
the presence of an impeding layer, whereas the analysis by Ibrahim and Brutsaert
assmnes a semi—infinite medium. Actually equation (11) is correct only for

< K2+ K3 which of course has a limit of 1 for very fine soils.

Ragan’a’~ general approach to the problem of determining the spatial and
temporal variation of the rate of lateral inflow given initial conditions, boundary
conditions and measurements of depth with time is sound. The strategy of solving
the problem for a relatively simple system before moving to field situations is
certainly advisable.

The agreement between the computed lateral inflows and the experimental inputs
is quite good. Ragan attributes the discrepancies to errors in the relation between
Manning’s “n” and depth, as well as errors in measuring depth. While these are
possible sources of error it night be fruitful to use an implicit finite difference
scheme to evaluate q and v rather than the explicit scheme defined by equatiof,
(31—4) and (31—5) which is unstable for the determination of v and y, given q

Although these equations are unstable for v and y, it is likely that this is
not the case for the problem at hand. Certainly since y is bounded, the fluctua
tions can never be extremely severe. However, an implicit scheme nay result in
better approximations. Ragan may not have used the difference equations (31—5) and
(31—6) as shown, since in his thesis (31—3) he introduced then in this form but
later redefined both v~ and yj such that the difference equations are stable.

His redefinition of vj was for example

— _____vj — 2A1

1½obert N. Ragan, “The Determination of Local Inf lows Entering a Channel,”
International Hydrology Synposi~n Paper No. 31.

A. Liggett and D. A. Woolhiser, “Difference Solutions of the Shallow—
Water Equation. Proc. ASCE, H 2, Apr. 1967. pp. 39—71.

I



Dimensionless lime, ¼or r

FIGURE 3

Comparison of empirical infiltration model with
diffusion equation solution

0
*

B
C

C

C

E
ol
C
4

oj
0.01 0.1



Ragan refers to the quantity q in his finite difference scheme as represent
ing the average discharge to a segment 2Ax during a tine period At. This
definition is somewhat confusing. If q in equation (31—5) is an average in At
it could have been written in the subscripted form,

q. +

2

If it is an average over space and tine as his statement implies, the expression

+ q1 +

4

is one possibility.

The magnitude of the errors in computed q at individual stations for this
experimental system suggests that such errors for real streams would be much
greater. However, in real streams an average lateral inflow over a reach of chan
nel may be much more meaningful than estimates of a continuous function at discrete
points because in real streams the lateral inflow is likely to be very erratic.
In this case the errors will tend to average out and the answers may be quite
reliable.

Dickinson’s13 statistical error model for a single discharge measurement
should be useful in planning stream gaging. The advantage of a formal model such
as this is that it forces one to consider all sources of error and to attempt to
make some explicit statements with respect to the distributions of the errors or
at least to estimate the first and second moments. Questions with regard to
independence of errors must also be answered. By this mechanism, ‘areas of
ignorance” can be charted and research initiated to eliminate them.

Dickinson’s basic model differs very little from the model proposed by Carter
and Anderson (32—2) in that both assume that the error in a single discharge
measurement is a linear function of independent random variables. If the means and
variances of the individual components of the error can be determined, this model
is quite tractable because the mean and the variance of the error are the suns of
the means and variances of the component errors respectively.

Carter and Anderson (32—2) assumed a priori that all component errors had a
mean of zero and inferred that there is no bias in an individual measurement.
Dickinson’s expression for the mean error shows that bias can exist. Hopefully,
data on the possible magnitude of this bias will be forthcoming.

Dickinson’s expression for the variance of the error shows the importance of
selecting stream sections with approximately equal discharges. He also considered
the error due to oblique currents. The other error components had been recognized

l3~, T. Dickinson, “An Error Model for a Single Discharge Measurement,”

International Hydrology Symposium Paper No. 32.



by Carter and Anderson but their dependence on the coefficient of variation of
the point velocities and the coefficient of variation of the discharge had not been
explicitly recognized.

Thirriot and Villeneuve 14 have presented the equation describing one—
dimensional saturated flow through a porous media of finite length and have reduced
it to a dimensionless form. Under the assumption that the variation of the
saturated depth, h, is very small, Bou55~~e~q~ equation was linearized to the
one—dimensional parabolic equation:

~h a2h
31 — (0 < x < 1, t > 0)

with the boundary conditions

h(0. t) f1(t), hO., t) h1

h(x. 0) g(x)

The authors obtained an analytic expresaion for the stationary part of the solution
when the water level at the upstream boundary followed a sinusoidal variation in
time. The initial condition was arbitrary and was of no importance since the
transient response was not desired. The theoretical results were verified
experimentally.

The dimensionless results are presented in tens of the relative amplitude,
and the phase angle as a function of the relative distances from the upstream
boundary and the frequency of the disturbance. It is found that high—frequency
waves are damped rather quickly.

This type of problem coimiionly occurs when a river or channel with a fairly
constant elevation lies near a body of water subject to tidal fluctuations, but
it could also apply to certian interactions between rivers or between rivers and
lakes. The important limitations are: (1) flow must be one—dimensional, (2) the
assumptions involved in linearizing the equations must be satisfied, and (3) the
boundary conditions must be deterministic and periodic so they can be represented
by a Fourier Series.

It is significant that four of the seven papers reviewed in this report have
involved the use of the digital computer. While it is becoming repetitious to
sing praises of the computer, it appears to me that this technological advance has
provided us with a new laboratory——one where we can perform numerical experiments
upon mathematical models. Such experiments can give us much greater insight into
these models and can also assist in planning field or more conventional laboratory
experiments.

1% Thirriot and S. P. Villeneuve, ‘Consideration Sur La Fonction De Transfert

Des Milieux Poreux Limites.” International ilydrology Symposium Paper No. 28.


