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Chapter 10

Modelling erosion on hillslopes
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10.1 INTRODUCTION

Surface runoff on upland areas such as hillslopes is often accompanied by soil erosion.
Soil particles may be detached when the impact of raindrops exceeds the soil’s ability 1o
withstand the impulse at the soil surface. Detachment may also occur when shear stresses
- caused by flowing water exceed the soil’s ability to resist these erasive forces. Vegetation
as canopy and ground cover, and other surface cover such as gravel and rock fragments,
protect the soil surface from direct raindrop impact, and also provide hydraulic resistance,
reducing the shear stresses acting on the soil. Plant roots, incorporated plant residue, and
minerals increasing cohesion tend to protect the soil by reducing the rate of soil particle
detachment by flowing water and raindrop impact.

Once detachment has occurred, sediment particles are transported by raindrop splash
and by overland flow. Conditions which limit raindrop detachment limit the sediment supply
available for transport by splash and flow mechanisms. Vegetative canopies intercept
splashed sediment particles and limit sediment transport by splash. The rate of sediment
“ transport by overland flow is influenced by the factors controlling the amount of sediment
available for transport, the sediment supply, and by hydraulic processes occurring in
overland flow such as raindrop impacts, depth of flow, velocity, and accelerations due
to microtopographic flow patterns. Obviously, the steepness, shape, and length of slopes
affect both flow patterns and the resulting sediment transport capacity of the flowing water.

After sediment particles are detached from soil areas above, between, and near locations
of small flow concentrations, they may enter the flow concentration areas for subsequent
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Table 10.1. Some examples of empirical and conceptual models

Model Type Model Authoc
Empirical Musgrave Equation Musgrave (1947)
Universal Soil Loss Equation Wischmeier and Smith
(USLE) (1978)
Modified Universal Soil Loss Williams (1975)
Equation (MUSLE)
Sediment Delivery Ratio Method  Reafro (1975)
Dendy-Boltan Method Dendy and Boltan (1976)
Flaxman Method Flaxman (1972)
Pacific Southwest Interagency Pacific Southwest Interagency
Committee (PSIAC) Method Interagency Committee (1968)
Sediment Radng Curve Campbell and Bauder (1940)
Runoff-Sediment Yield Relation  Rendon-Herrero (1974), Singh,
. Baniukiwicz and Chen (1982)
Conceptual Sediment Concentradon Graph Johnson (1943)
Uaic Sediment Graph ~ Rendon-Herrero (1978)
Instantaneous Unit Sediment Williams (1978)
Graph
Discrete Dynamic Models Sharma and Dickinson (1979)
Renard-Laursen Model Renard and Laursen (1975)
Sediment Routing Model Williams and Hann (1978)
Muskingum Sediment Routing Singh and Quiroga (1986)
Model
Physically based Quasi-Steady State Erosion Foster, Meyer and Onstad (1977)

Kinematic Wave Models

Continuum Mechanics Model

Hjelmfelt, Piest and Saxton
(1975), Shirley and Lane (1978),
Singh and Regl (1983)

Prasad and Singh (1982)

During the period 1940-
a soil loss estimation procedure i

1954, work in the Corn Belt of the United States resulted in
incorporating the influence of slope length and steepness

(Zingg, 1940), conservation practices (Smith, 1941; Smith and Whitt, 1947), and soil and

management factors (Browning er al., 1947).
the Corn Belt factor values, included a rainfall factor,

equation (Musgrave, 1947).

During the period 1954-1965,
of Agriculture (USDA),
Conservation Service and state agricu

In 1946, a national committee reappraised
and produced the resulting Musgrave

the USLE was developed by the United States Department

Agricultural Research Service in cooperation with the USDA-Soil

ltural experiment stations. Plot data from natural

storms and from rainfall simulator studies formed the USLE data base. During the
1965-1978 period, additional data and experimental results were incorporated, resulting
in the current USLE (Wischmeier and Smith, 1978).

The USLE in equation form is: ’

A=RKLSCP (N

where:
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2. Separate the baseflow Q, from the runoff hydrograph Qy using a standard hydrograph
separation technique to obtain the direct renoff hydrograph O,

Q) =0r(1)— (1) (2)

3. Using the same baseflow separation technique, separate out the sediment concentration
due to baseflow. It should be noted that Rendon-Herrero assumed that the maxima

of runoff and sediment concentration occurred at the same time.
4. Compute sediment discharge Q; due to direct runoff by noting that sediment discharge
is the product of water discharge and sediment concentration,

0:=0:Cr—Cp 3)

5. Compute the volume of direct runoff, which is the arca under the direct runoff
hydrograph.

Vo= L Q(e)de @)

6. Compute the sediment yield, which is the area under the sediment graph due to direct
runoff.

Ve= _‘: Q, dt ()

7. Divide the ordinates of the sediment graph by the sediment yield to obtain ordinates
of the USG, H,,

Qs
H’ = V’ - (6)
The USG varies somewhat with the intensity of the effective rainfall. It can be used to
generate a sediment graph for a given storm if the wash load produced by that storm s
known. A relationship between ¥, and V¥, was proposed. Using this relation, V; can be
determined. Therefore, @, can be determined by multiplying A, with V. It must be noted
that the duration of the USG chosen to determine Q, must be the same as thac of the
effective rainfall generating V. This USG method was tested on a small wash load-
producing watershed, Bixler Run Watershed, near Loysville, Pennsylvania.
Rendon-Herrero (1974) proposed the use of the so-called ‘series’ graph to determine the
sediment hydrograph. This method has the advantage that the duration of the effective
rainfall is neglected altogether, but requires construction of the series graphs beforehand.
Thus, this method cannot be extended to ungauged basins. Williams (1978) and Singh et
al. (1982), among others, have used the USG to model watershed sediment yield.

10.1.3 Development of Physically Based Erosion Models

Fundamental erosion mechanics were of interest to scientists and engineers as early as 1936
(Cook, 1936), and were described in terms of subprocesses by Ellison (1947). Negev (1967)
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10.1.5 Purpose

The first purpose of this chapter is to describe the evolution and status of erasion models
for hillslopes based upon the kinematic wave equations for overland flow, and on the interrill
and rill terms for erosion. The second purpose is to examine a particular erosion model
for which analytic solutions can be obtained, and then to discuss the mathematical properties
and implications of the solutions as they relate to experimental design and interpretation

of experimental data.

10.2 OVERLAND FLOW AND EROSION EQUATIONS

The development of improved erosion equations for overland flow is based upon prior
development of improved flow equations. That is, the development of methodology for
simulation of unsteady and spatially varying overland flow made the subsequent simulation
of interrill and rill erosion possible.

10.2.1 The Shallow Water Equations

Unsteady and spatially varying and one-dimensional flow per unit width on a plane was
described by Kibler and Woolhiser (1970) using the following equations: :

oh  wh Ru
actax Tox R ™
and
du udu goh o _oy_ -
T + " + ax =g(So—Sp)—(R/h)u-v) (8)
where .

h = local depth of flow (dimension of length, L),
u = local mean velocity (L/T),
t=tme(T),
x = distance in the direction of flow (L),
R = laterdl inflow rate per unit area (L/7T),
g = acceleration of gravity (L/T?),
S, = slope of the plane,
Sy = friction slope, and
= velocity component of lateral inflow in the direction
of flow (L/T).
Equation 7 is the continuity of mass equation, and equation 8 is the one-dimensional
momentum equation. In general, equations 7 and 8 must be solved numerically. Modelling
real overland flow with one-dimensional equations represents significant abstractions and
simplifications. Real overland flow occurs in complex mixes of sheet flow and small
concentrated flow areas. The routes of concentrated flow are often determined by irregular
microtopographic features which vary in the dowastream direction (x) and in the lateral
direction (). Definitive analyses of the influences of such simplications upon hydraulic
and erosion paramaters are nonexistent.
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are a good approximation to the solutions to the shallow water equations, provided the
kinematic flow number is larger than about 20. It is important to note that this refers to
the accuracy with which the kinematic wave solutions approximate solutions to the shallow
water equations for sheet flow on a plane. The kinematic flow number says nothing about
how well the shallow water equations, with one-dimensional flow and spatially uniform
parameters, approximate overland flow on natural surfaces.

10.2.3 Equations for Erosion by Overland Flow

The sediment continuity equation, with the kinematic assumptions, is quite similar to the
water continuity equation on the left hand side. The right hand side of the sediment
continuity equation is commonly separated into an interrill erosion term, E;, and the rill
erosion term, Eg. With these assumptions, the continuity equation for sediment is:

d(ch)  d(cq) .
T-l--—a—x—=E,-r-ER (12)

where:
¢ = sediment concentration (M L-?),
E; =interrill erosion rate per unit area per unit time (M L-2 T-!), and
Eg = net rill erosion (or deposition) rate (M L-2T-Y),
and the other variables are as described earlier. The procedure is to'solve the flow equations
first, and then solve equation 12 for sediment concentration. Total sediment yield for a
storm, V,, is then found by integrating the product cq over the period of runoff.

The interrill term, £

The rate of interrill erosion is a function of the rate, of detachment by raindrop impact
and the rate of transport from the point of detachment to a rill.

As discussed in the introduction, interrill erosion is, by definition, caused by raindrop
detachment and the rate of transport in the shallow interrill flow. On steep slopes, the rate of
detachment by raindrop impact limits interrill erosion, whereas transport capacity in interrill
flow limits the rate of delivery on flat slopes (Foster, Meyer, and Onstad, 1977). These
authors, and others, document the dependence of interrill erosion on soil characteristics,
slope steepness, and canopy and ground cover. In equation form, this can be expressed as

E;=AI,S,C,Soil) (13)

where I, S, and C are rainfall intensity, slope of the land surface, and cover effects,
respectively. Soil refers to the soil characteristics, primary particle-size distribution, type
and amount of clay and crusting, and land use influencing soil properties, such as densicy
and aggregation, which affect raindrop detachment and shallow flow. Following are some

selected interrill erosion terms.
A simple functional form incorporating rainfall intensity, 7, as a measure of the erosivity

of raindrop impact is

E;=al? : (14)
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equation 18 can describe the rate of deposition if the coefficient fis a deposition coefficient.
The deposition coeficient is primarily a function of particle characteristics, and is often
calculated as a function of the particle fall velocity and the steady-state discharge rate

(Foster, 1982).

10.2.4 Numerical Solutions

As stated earlier, equations 7 and 8 are solved numerically. Finite difference techniques
are usually used (i.e. see Kibler and Woolhizer, 1970). If R, in equation 9, varies in space
and time, then equations 9 and 10 must be solved numerically. If R in equation 10 varies,
or if E; and Ep in equation 12 are complex functions, then equation 12 must be solved
numerically. The advantage of numerical techniques in solving the above equations is that
one need not make as many assumptions as is required for analytic solutions, and the rainfall
excess term can vary in time and space.

The disadvantages of numerical techniques, compared with analytic solutions, is that
the former usually require much more computer time, the solutions are approximations
of the real solutions, and the mathematics required for sensitivity analysis, limits, and other
manipulations may be unavailable or very complex and difficult.

10.2.5 Analytic Solutions

Equations 9 and 10 can be solved analytically (by the method of characteristics) if R is
uniform over the plane, and the temporal variation in R is described by a series of step
functions. Howeéver, to obtain an analytic solution for equation 12, R in equation 9 must
be uniform and constant for a finite or infinite duration. Equations 9 and 10 must be solved
first to substitute into equation 12. Also, the form of T, in equation 18, should be simple,
for example, a linear function of ¢, to obtain an analytic solution.

As stated earlier, the disadvantages of analytic solutions, in comparison with numerical
solutions, is that they usually require much more restrictive and simplifying assumptions.
The main advantages of analytic solutions include the case with which they can be
implemented on a computer, the speed with which they can be evaluated, the simplicity
of sensitivity analysis, and the ease with which one can examine limits and other
mathematical properties of the solutions.

10.3 SIMPLIFIED EQUATIONS WITH ANALYTIC SOLUTIONS

In this section, specific assumptions and simplifications are made to allow the derivation
of analytic solutions for overland flow on a plane, and for interrill and rill erosion with
overland flow. Analytic solutions to the runoff and erosion equations are used to illustrate
field data needed for estimation of parameter values and for interpretation of processes

controlling erosion.

10.3.1 The Basic Assumptions

In addition to the assumptions necessary for derivation of the one-dimensional shallow
water equations and their approximating kinematic wave equations, specific assumptions
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Finally, Shirley and Lane (1978) showed that the mean concentration, C,, over the encire
hydrograph is

Cp=Qs/Q=B/K+ (K1~ B/K)(1 — exp(— Kgx))/ Kpx @

If B/K> K, then C,<Cy< Crand ¢(t,x) for fixed x is a non-decreasing function of ¢,
It can also be shown for fixed ¢ that if B/K> K|, then ¢(¢,x) is a non-decreasing function
of x. These two non-decreasing functions mean (in the context of this particular model)
that if B/K> K, then there is more transport capacity in the rills than is being satisfied
by sediment input from the interrill areas. As a result, rill erosion occurs ac all times and
at all positions on the plane. In terms of sediment concentration graphs measured in the
field, measured concentrations would tend to start at X; near £=0, and increase-
throughout the duration of runoff, assuming, of course, that the model is a good
representation of reality.

If B/K <K, then the opposite is true. Under these conditions, ¢(f.x) for fixed x would
be non-increasing, or tend to decrease with increasing ¢. Also, c(#,x) would be non-increasing
with x and a fixed . Again, if the model is correct, then measured concentrations would
tend to start at X near £=0, and decrease throughout the duration of runoff. If 87X =K,
then transport capacity and existing sediment load are in equilibrium, so C, = Cr=C,, and,
in fact, o(t,x)=K; for all x and .

The implications of these results for plot and hillslope studies are that sediment
concentration should be measured throughout the duration of runoff, and that analysis
of data, using this model for parameter identification, should concentrate on events with
nearly constant rainfall intensity and nearly saturated initial soil water content. The last
two conditions will tend to make rainfall excess nearly constant, as assumed in the analysis.
Fortunately, these conditions can nearly be met in rainfall simulator studies if data from
runs where the initial soil water content is near saturation and the infiltration rate is nearly
a constant are obtained for analysis.

Therefore, as a first approximation, one can examine the shape of the sediment
" concentration vs. time curve from a particular event on an experimental plot, and infer
whether transport capacity in the rills (B/K'< X)) or detachment rate (B/K> X)) in the
rills is limiting sediment vield.

10.4 DISCUSSION

Although the Universal Soil Loss Equation remains the most often used model for predicting
erosion on upland areas, more physically based models are emerging, and may become
practical tools in the near future (i.e. see Rawis and Foster, 1986). As these new models
emerge, they will probably be based upon unsteady and nonuniform overland flow modelled
with the kinematic wave equations. Moreover, interrill and rill erosion processes will
probably be explicitly represented in the partial differential equation used to describe erosion
and overland flow.

The implications for plot and hillslope studies are that more, and more intensive, data
need to be collected throughout the duration of runoff events, and at various positionis
on the slope. Only then can we begin to quantify unsteady and spatially varying overland
flow and erosion processes.
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2. Solutions in the Regions
a. Domain of Flow Establishment. In this region, the flow is unsteady but uniform:

h(t,x)=Rt (AT
b. Domain of Established Flow. In this region, the flow is steady but not uniform:
h(t.x)=(Rx/K)\/™ (A8)
c. Domain of Prerecession. In this region, the flow is steady and uniform:
h(t,x)=Rt, (A9)
d. Domain of Recession. In this region, the flow is unsteady and not uniform:

k(tx)=/7" (Rx/K) (A10)

where
f,(u)=u"'+Rmu‘"'l (t-t,) (All)

The soludons described above are also shown in Figure 10.1.

Summary of Solution Regions and Solutions for the Sediment Coucentration
Equations in the t—x Plane

Recall that the erosion equations are:

Ah) XD _ppr £y (A12)

with
E=KR (Al3)

and
Epg=Kga(Bh"~cq) (Ald)

where the variables are as defined previously in the text.

1. Domains in the t—x Plane for Solutions of the Sediment Concentration Equations

Solutions for the concentration equations require that the positive quadrant of the f-x
plane be divided into seven regions. The regions listed below are also shown in Figure 10.2.

a. Domain 1. This region of the plane represents time from zero untif cessation of rainfall
excess and distance down the plane such that concentration and flow have not reached

steady state:
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DISTANGE {x)
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Figure 10.2. Domains in the £ —x plane for solutions of the overland flow erosion equations for a coastant and
uaiform rainfall excess rate of duration 7,

O=t=t,

0=x<Km-mRm=1 (= (A17)

d. Domain 4. This region, corresponding to the domain of prerecession for flow, represents
time after cessation of rainfall excess before depth of flow is receding, and before the arrival
of the slower travelling concentration disturbance from the interaction of the water wave
with cessation of rainfall excess:

2t

xzK( -mR™ T+ Km(Rt )"~ 't (A18)

In Domains 5-7, let

a(u)=t,+(Kou™ —mu=-'/(m+1))/R(m-1), (A19)
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2. Solutions in the Regions
a. Domain !. In this region

c(t,x) = K+ Kp(B/ K~ K)uF(u)

where
u=KRm= tm/m

and |
Ru) = S vi/m exp(Kqu(v—1)) dv
]

b. Domain 2. In this region

c(t,x)=B/K+(K;=B/K)(1 —exp(Kp(x~ X))
((Kpxo)/ mF(xp/m) + 1 - K,x9))/ (K px)

where
Xo=KRm=1 ((m(Rx/K)V™ = Rt)/R(m— 1))

¢. Domain 3. In this region
o(tx)=B/K +(K;— B/K)(1 - exp(— Kpx))/ Kgpx)

d. Domain 4. In this region

(t.x)=B/K+ (K~ B/K)(1 = Kpxo/mF(x/m)}exp((Kpxe/te M(te — 1))

where
Xo=KRm=1 g

e. Domain 5. In this region

o(t,x) = B/K+cgexp(—Kpx)

where
Ko=(R(m—1)(t—t,)+ mh(t,x)/(m+1))h™(t,x)

and
co=(c{a(1/Rt,), B(1/Rt.))— B/K)exp(Krb(1/R¢.))

where ¢ is computed using the formula from domain 4, equation A34.

f. Domain 6. In this region

c(t,x)= B/ K+ coexp( — Kp{x—x3))

30s

(A28)
(A29)

(A30)
(A3D)
(A32)
(A33)

(A34)

(A35)

(A36)
(A37)

(A38)

(A39)
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