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10.1 INTRODUCTION

Surface runoff on upland areas such as hillslopes is often accompanied by soil erosion.

Soil particles may be detached when the impact of raindrops exceeds the soil's ability to

withstand the impulse at the sofl surface. Detachment may also occur when shear stresses

caused by flowing water exceed the soil's ability to resist these erosive forces. Vegetation

as canopy and ground cover, and other surface cover such as gravel and rock fragments,

protect the sofl surface from direct raindrop impact, and also provide hydraulic resistance,

reducing the shear stresses acting on the sofl. Plant roots, incorporated plant residue, and

minerals increasing cohesion tend to protect the sofl by reducing the rate of soil panicle

detachment by flowing water and raindrop impact.

Once detachment has occurred, sediment particles are transported by raindrop spla-sh

and by overland flow. Conditions which limit raindrop detachment limit the sediment supply

available for transport by splash and flow mechanisms. Vegetative canopies intercept

splashed sediment particles and limit sediment transport by splash. The rate of sediment

transport by overland flow is influenced by the factors controlling the amount of sediment

available for transport, the sediment supply, and by hydraulic processes occurring in

overland flow such as raindrop impacts, depth of flow, velocity, and accelerations due

to microtopographic flow patterns. Obviously, the steepness, shape, and length of slopes

affect both flow patterns and the resulting sediment transport capacity of the flowing water.

After sediment panicles are detached from soil areas above, between, and near locations

of small flow concentrations, they may enter the flow concentration areas for subsequent
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Table 10.1. Some examples of empirical and conceptual models
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Model Type Model Author

Empirical

Conceptual

Physically based

Musgrave Equation

Universal Soil Loss Equation

(USLE)

Modified Universal Soil Loss

Equation (MUSLE)

Sediment Delivery Ratio Method
Dendy-Boltan Method

Flaxman Method

Pacific Southwest Interagency

Committee (PSIAQ Method

Sediment Rating Curve

Runoff-Sediment Yield Relation

Sediment Concentration Graph

Unit Sediment Graph '

Instantaneous Unit Sediment

Graph

Discrete Dynamic Models

Renard-Laursen Model

Sediment Routing Model
Muskingum Sediment Routing

Model

Quasi-Steady State Erosion

Kinematic Wave Models

Continuum Mechanics Model

Musgrave (1947)

Wischmeier and Smith

(1978)

Williams (1975)

Renfro (1975)

Dendy and Boltan (1976)

Flaxman (1972)

Pacific Southwest Interagency

Interagency Committee (1968)

Campbell and Bauder (1940)

Rendon-Herrcro (1974), Singh,

Baniukiwicz and Chen (1982)

Johnson (1943)

Rendon-Herrero (1978)

Williams (1978)

Sharma and Dickinson (1979)

Renard and Laursen (1975)

Williams and Hann (1978)

Singh and Quiroga (1986)

Foster. Meyer and Onstad (1977)

Hjelmfelt, Piest and Saxton

(1975), Shirley and Lane (1978),

Singh and Regl (1983)

Prasad and Singh (1982)

During the period 1940-1954, work in the Corn Belt of the United States resulted in
a soil loss estimation procedure incorporating the influence of slope length and steepness
(Zingg 1940) conservation practices (Smith, 1941; Smith and Whitt, 1947), and soO and
management factors (Browning et at., 1947). In 1946, a national committee reappraised
the Cora Belt factor values, included a rainfall factor, and produced the resulung Musgrave

equation (Musgrave, 1947).
During the period 1954-1965, the USLE was developed by the United States Department

of Agriculture (USDA), Agricultural Research Service in cooperation with the USDA-Soil
Conservation Service and state agricultural experiment stations. Plot data from natural
storms and from rainfall simulator studies formed the USLE data base. During the
1965-1978 period, additional data and experimental results were incorporated, resulung

in the current USLE (Wischmeier and Smith, 1978).

The USLE in equation form is:

RKLSCP (1)

where:
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2. Separate the baseflow Qb from the runoff hydrograph QTwn% a standard hydrograph

separation technique to obtain the direct runoff hydrograph O,

Q(t) = Qr(n-Qb(.n (2)

3. Using the same baseflow separation technique, separate out the sediment concentration

due to baseflow. It should be noted that Rendon-Herrero assumed that the maxima

of runoff and sediment concentration occurred at the same time.

4. Compute sediment discharge 0, due to direct runoff by noting that sediment discharge

is the product of water discharge and sediment concentration.

5. Compute the volume of direct runoff, which is the area under the direct runoff

hydrograph.

Yq=\ QU)dt (4)
Jo

6. Compute the sediment yield, which is the area under the sediment graph due to direct

runoff.

rs= f" Qs dt (5)
Jn

7. Divide the ordinates of the sediment graph by the sediment yield to obtain ordinates

of the USG, Ht,

The USG varies somewhat with the intensity of the effective rainfall. It can be used to

generate a sediment graph for a given storm if the wash load produced by that storm is

known. A relationship between Vs and VQ was proposed. Using this relation. Vs can be

determined. Therefore, gjCan be determined by multiplying H, with Vp It must be noted

that the duration of the USG chosen to determine Q, must be the same as that of the

effective rainfall generating Vq. This USG method was tested on a small wash load-

producing watershed, Bixler Run Watershed, near Loysville, Pennsylvania.

Rendon-Herrero (1974) proposed the use of the so-called 'series' graph to determine the

sediment hydrograph. This method has the advantage that the duration of the effective

rainfall is neglected altogether, but requires construction of the series graphs beforehand.

Thus, this method cannot be extended to ungauged basins. Williams (1978) and Singh et

al. (1982), among others, have used the USG to model watershed sediment yield.

10.1.3 Development of Physically Based Erosion Models

Fundamental erosion mechanics were of interest to scientists and engineers as early as 1936

(Cook. 1936), and were described in terms of subprocesses by Ellison (1947). Negev (1967)
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10.1.5 Purpose

The first purpose of this chapter is to describe the evolution and status of erosion models

for hillslopes based upon the kinematic wave equations for overland flow, and on the interrill

and rill terms for erosion. The second purpose is to examine a particular erosion model

for which analytic solutions can be obtained, and then to discuss the mathematical properties

and implications of the solutions as they relate to experimental design and interpretation

of experimental data.

10.2 OVERLAND FLOW AND EROSION EQUATIONS

The development of improved erosion equations for overland flow is based upon prior

development of improved flow equations. That is, the development of methodology for

simulation of unsteady and spatially varying overland flow made the subsequent simulation

of interrill and rill erosion possible.

10.2.1 The Shallow Water Equations

Unsteady and spatially varying and one-dimensional flow per unit width on a plane was

described by Kibler and Woolbiser (1970) using the following equations:

(7)
oc ax ax

and

-v) (8)
dt ' 3x dx

where

h = local depth of flow (dimension of length, L),

u = local mean velocity (L/T),

t=timc(T),

x - distance in the direction of flow (L),

R = lateral inflow rate per unit area (L/T),

g = acceleration of gravity (L/T1),

So = slope of the plane,

Sf= friction slope, and

v = velocity component of lateral inflow in the direction

of flow (L/T).

Equation 7 is the continuity of mass equation, and equation 8 is the one-dimensional

momentum equation. In general, equations 7 and 8 must be solved numerically. Modelling

real overland flow with one-dimensional equations represents significant abstractions and

simplifications. Real overland flow occurs in complex mixes of sheet flow and small

concentrated flow areas. The routes of concentrated flow are often determined by irregular

microcopographic features which vary in the downstream direction (x) and in the lateral

direction (y). Definitive analyses of the influences of such simplications upon hydraulic

and erosion paramaters are nonexistent.
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arc a good approximation to the solutions to the shallow water equations, provided the
kinematic flow number is larger than about 20. It is important to note that this refers to
the accuracy with which the kinematic wave solutions approximate solutions to the shallow
water equations for sheet flow on a plane. The kinematic flow number says nothing about
how well the shallow water equations, with one-dimensional flow and spatially uniform

parameters, approximate overland flow on natural surfaces.

10.2.3 Equations for Erosion by Overland Flow

The sediment continuity equation, with the kinematic assumptions, is quite similar to the

water continuity equation on the left hand side. The right hand side of the sediment
continuity equation is commonly separated into an interriU erosion term, Et, and the rill

erosion term, £*. With these assumptions, the continuity equation for sediment is:

i&l+Hza=E{+ER (12)

where:

c = sediment concentration (M L"J),
£, = interrill erosion rate per unit area per unit time (M L'2 T"1). and
EK = net rill erosion (or deposition) rate (M L"2 T"')»

and the other variables are as described earlier. The procedure is to solve the flow equations
first, and then solve equation 12 for sediment concentration. Total sediment yield for a
storm, Kp is then found by integrating the product cq over the period of runoff.

The interriU terra, Ef

The rate of interriU erosion is a function of the rate, of detachment by raindrop impact

and the rate of transport from the point of detachment to a rill.
As discussed in the introduction, interriU erosion is, by definition, caused by raindrop

detachment and the rate of transport in the shaUow intcnill flow. On steep slopes, the rate of
detachment by raindrop impact limits interrill erosion, whereas transport capacity in interriU

flow limits the rate of delivery on flat slopes (Foster, Meyer, and Onstad, 1977). These
authors, and others, document the dependence of interriU erosion on soil characteristics,

slope steepness, and canopy and ground cover. In equation form, this can be expressed as

E,=AI.S.C,Soil) (13)

where /, S, and C are rainfall intensity, slope of the land surface, and cover effects,
respectively. Soil refers to the soil characteristics, primary panicle-size distribution, type
and amount of clay and crusting, and land use influencing soil properties, such as densicy
and aggregation, which affect raindrop detachment and shallow flow. Following are some

selected interriU erosion terms. . .
A simple functional form incorporating rainfall intensity, /, as a measure of the erosivicy

of raindrop impact is
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equation 18 can describe the rate of deposition if the coefficient/is a deposition coefficient.
The deposition coefficient is primarily a function of particle characteristics, and is often
calculated as a function of the particle fall velocity and the steady-state discharge rate

(Foster, 1982).

10.2.4 Numerical Solutions

As stated earlier, equations 7 and 8 are solved numerically. Finite difference techniques

are usually used (i.e. see Kibler and Woolhizer, 1970). If R, in equation 9, varies in space
and time, then equations 9 and 10 must be solved numerically. If R in equation 10 varies,

or if E[ and Eg in equation 12 are complex functions, then equation 12 must be solved

numerically. The advantage of numerical techniques in solving the above equations is that

one need not make as many assumptions as is required for analytic solutions, and the rainfall

excess term can vary in time and space.
The disadvantages of numerical techniques, compared with analytic solutions, is that

the former usually require much more computer time, the solutions are approximations

of the real solutions, and the mathematics required for sensitivity analysis, limits, and other
manipulations may be unavailable or very complex and difficult.

10.2.S Analytic Solutions

Equations 9 and 10 can be solved analytically (by the method of characteristics) if R is

uniform over the plane, and the temporal variation in R is described by a series of step
functions. However, to obtain an analytic solution for equation 12, R in equation 9 must

be uniform and constant for a finite or infinite duration. Equations 9 and 10 must be solved

first to substitute into equation 12. Also, the form of T& in equation 18, should be simple,

for example, a linear function of q, to obtain an analytic solution.
As stated earlier, the disadvantages of analytic solutions, in comparison with numerical

solutions, is that they usually require much more restrictive and simplifying assumptions.
The main advantages of analytic solutions include the ease with which they can be
implemented on a computer, the speed with which they can be evaluated, the simplicity

of sensitivity analysis, and the ease with which one can examine limits and other

mathematical properties of the solutions.

10.3 SIMPLIFIED EQUATIONS WITH ANALYTIC SOLUTIONS

In this section, specific assumptions and simplifications are made to allow the derivation
of analytic solutions for overland flow on a plane, and for interrill and rill erosion with
overland now. Analytic solutions to the runoff and erosion equations are used to illustrate
field data needed for estimation of parameter values and for interpretation of processes

controlling erosion.

10.3.1 The Basic Assumptions

In addition to the assumptions necessary for derivation of the one-dimensional shallow
water equations and their approximating kinematic wave equations, specific assumptions
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Finally, Shirley and Lane (1978) showed that the mean concentration, Cb, over the encire

hydrograph is

Cb^Qs/Q=B/K+(Kf-B/K)(l~^\p(-K/{x))/K/ix (27)

UB/K>Kr, then Ce<Cb<Cf and c(/^c) for fixed xis a non-decreasing function of t.

It can also be shown for fixed t that if B/K>Kt, then c(t^c) is a non-decreasing function

of x. These two non-decreasing functions mean (in the context of this particular model)

that if B/K>Kt, then there is more transport capacity in the rills than is being satisfied

by sediment input from the interrill areas. As a result, rill erosion occurs at all times and

at all positions on the plane. In terms of sediment concentration graphs measured in che

field, measured concentrations would tend to start at Kr near r = 0, and increase

throughout the duration of runoff, assuming, of course, that the model is a good

representation of reality.

If B/K<K[, then the opposite is true. Under these conditions, c(/^c) for fixed x would

be non-increasing, or tend to decrease with increasing t. Also, c(/,jc) would be non-increasing

with x and a fixed r. Again, if the model is correct, then measured concentrations would

tend to Stan at K{ near r=0, and decrease throughout the duration of runoff. If B/K=Kt,

then transport capacity and existing sediment load are in equilibrium, so Co = Cf= Cb, and,

in fact, c(/,x) = Kt for all x and t.

The implications of these results for plot and hillslope studies are that sediment

concentration should be measured throughout the duration of runoff, and that analysis

of data, using this model for parameter identification, should concentrate on events with

nearly constant rainfall intensity and nearly saturated initial soil water content. The last

two conditions will tend to make rainfall excess nearly constant, as assumed in the analysis.

Fortunately, these conditions can nearly be met in rainfall simulator studies if data from

runs where the initial soil water content is near saturation and the infiltration rate is nearly

a constant are obtained for analysis.

Therefore, as a first approximation, one can examine the shape of the sediment

concentration vs. time curve from a particular event on an experimental plot, and infer

whether transport capacity in the rills (B/K<Kt) or detachment rate (B/K>K,) in the

rills is limiting sediment yield.

10.4 DISCUSSION

Although the Universal Soil Loss Equation remains the most often used model for predicting

erosion on upland areas, more physically based models are emerging, and may become

practical tools in the near future (i.e. see Rawls and Foster, 1986). As these new models

emerge, they will probably be based upon unsteady and nonuniform overland flow modelled

with the kinematic wave equations. Moreover, interrill and rill erosion processes will

probably be explicitly represented in the partial differential equation used to describe erosion

and overland flow.

The implications for plot and hillslope studies are that more, and more intensive, data

need to be collected throughout the duration of runoff events, and at various positions

on the slope. Only then can we begin to quantify unsteady and spatially varying overland

flow and erosion processes.
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2. Solutions in the Regions

a. Domain of Flow Establishment. In this region, the flow is unsteady but uniform:

(A7)

b. Domain of Established Flow. In this region, the flow is steady but not uniform:

h(ts) = (Rx/K)1"" (A8)

c. Domain of Prerecession. In this region, the flow is steady and uniform:

A(r^r) = /?r. (A9)

d. Domain of Recession. In this region, the flow is unsteady and not uniform:

1 (A10)

where

1 (r-O (All)

The solutions described above are also shown in Figure 10.1.

Summary of Solution Regions and Solutions for the Sediment Concentration

Equations in the t-x Plane

Recall that the erosion equations are:

f -Et+E. (A12)

with

Er=KfR (A13)

and

ER = KR(Bh»-cq) (A14)

where the variables are as defined previously in the text.

1. Domains in the t-x Plane for Solutions of the Sediment Concentration Equations

Solutions for the concentration equations require that the positive quadrant of the t-x

plane be divided into seven regions. The regions listed below are also shown in Figure 10.2.

a. Domain 1. This region of the plane represents time from zero until cessation of rainfall

excess and distance down the plane such that concentration and flow have not reached

steady state:
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REGION©

TIME (t)

Figure 10.2. Domaini in the t-x plane for solutions of the overland flow erosion equations for a constant and
uniform rainfall excess rate of duration t.

-mRm-1 t"

d. Domain 4. This region, corresponding to the domain of prerecession for flow, represents

time after cessation of rainfall excess before depth of flow is receding, and before the arrival
of the slower travelling concentration disturbance from the interaction of the water wave

with cessation of rainfall excess:

(A 18)

In Domains 5-7, let

(A19)
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2. Solutions in the Regions

a. Domain 1. In this region

citj)=Kf+KdB/K-Kt)uF(u) (A28)

where

u=KRm~l F/m (A29)

and

F{u) = I vl/m exp(^«(v-1)) dv (A30)
Jo

b. Domain 2. In this region

(A31)

where

Xo=KR«-' am(Xx/K)1""-Rt)/R{m- \))m (A32)

c. Domain 3. In this region

c(ts) m B/K+ (K,~ B/K)( 1 - exp(-K^/K^x) (A33)

d. Domain 4. In this region

dt^) = B/KHK,-B/K){\ -KKx./mF{xJm))exp«Kxx<./t.Xt. -/)) (A34)

where

xm=KRa-1 /." (A35)

e. Domain 5. In this region

c(t^)=B/K+qfixp(-KKx) (A36)

where

-Ko=(i?(m - l)(f- f.) + mh(t^)/(m + l))fr"(/^c) (A37)

and

C6=(c(fl(l/i?r.), 6(l/i!r.))-S/iOexp(jr^(l//;r.)) (A38)

where c is computed using the formula from domain 4, equation A34.

f. Domain 6. In this region

(A39)
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